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Dynamic Instability of an Elastic
Disk Under the Action of a
Rotating Friction Couple

H. Ouyang . _ . . o
This paper investigates the instability of the transverse vibration of a disk excited by two
J. E. Mottershead corotating sliders on either side of the disk. Each slider is a mass-spring-damper system
traveling at the same constant speed around the disk. There are friction forces acting in
Department of Engineering, the plane qf the disk at the contact int(_erfaces b_etween the d_isk e_md each of the two slid_ers.
University of Liverpool, The equation of motion of the disk is established by taking into account the bending
Liverpool L69 3GH, UK couple acting in the circumferential direction produced by the different friction forces on

the two sides of the disk. The normal forces and the friction couples produced by the
rotating sliders are moving loads and are seen to bring about dynamic instability. Regions

of instability for parameters of interest are obtained by the method of state space. It is

found that the moving loads produced by the sliders are a mechanism for generating

unstable parametric resonances in the subcritical speed range. The existence of stable
regions in the parameter space of the simulated example suggests that the disk vibration
can be suppressed by suitable assignment of the parameter values of the sliders.

[DOI: 10.1115/1.1795815

1 Introduction spinning disk model for a computer disk drive. Friction modeled
as a follower force appeared to originate from Nd@hfor a very

Disks are basic mechanical components and can be found in fhple model of a disk brake. Lee and W446] studied a rotat-

disk brakes, clutches, saws, computer disk drives, and many ofief multilayer disk subjected to a stationary frictional follower

e ; . - in
appllcatlons. In these mech_anlcal devices, friction “S“‘?‘”Y plays %?ce. Chan et al.11] investigated the parametric resonances of a
ess_entlal role. Ap_art from IS useful purposes, the fr|_ct|on forC&ationary disk under a rotating frictional follower force. Motter-

acting at th_e moving contact 'f?teff"’.‘ce among m_echan_lcal COMRGead et al[12] extended the work to a distributed system of

nents can induce excessive vibration or offensive noise, SUChrﬁgss stiffness, damping, and friction. Ouyang e{ 8] com-

squeal in a car disk brake. The vibration and noise emanati fled the frictional follower force and the negative slope of

from a disk brake causes diskomfort to passengers and raises_t ﬁf‘fion-velocity curve and identified some new parametric reso-

concern about the safety and reliability of the vehicle. Excessi Qnces Tseng and Wickdit4] included the friction-induced in-
vibration of a wood saw can cause damage and poor quality of the he stresses through theory of elasticity into the equation of
work piece. Therefore, it is of both academic interest and practi tion of a spinning disk. Ouyang et &L5] found rich dynamic
significance to understand how unstable vibration and noise g, yior of a stationary disk excited by a rotating slider experi-
generated in disks. The objective of this paper is to explore g stick-slip vibration due to friction. Ouyang et E16] de-
friction-induced dynamic instability in a disk modeled as a flghyeq 5 numerical-analytical combined method for the stability
circular plate. The friction mechanism incorporated is intended Iy sis of a car disk brake with the pads treated as moving loads.
explain the unstable vibration appearing in components in MOViRg,e genetic algorithm was used to find optimal placement of sta-
frictional contact, for example, the squeal in a car disk brake. pjjizers to suppress friction-induced vibration of a stationary disk
. .The st.udy of the vibration Qf dlsk§ subject to moving Ioads. W38 7]. Tian and Huttor{18] presented a general approach for sta-
initiated in the 1970s. Motl] investigated the vibration of a disk jity analysis of disks involving various nonconservative forces
under a pointwise moving load and showed that instability mighicting on spinning disks. The vibration and dynamic stability of
occur in the supercritical speed range. Iwan and Mo¢#gstud-  isks were reviewed by Mottershefto].
ied the dual problem of a disk spinning past a stationary mass-, aqdition to the follower force hypothesis, the stick-slip sce-
spring-damper system in the supercritical speed range. Many parig and the mechanism of the decreasing friction against relative
pers have been published since. The parametric excitation \Rincity, there can be other means whereby friction results in un-
asymmetric disks was analyzed by Yu and Mf¢ Jiang et al. giapie vibration. Nortfi20] showed in his two-degrees-of-freedom
[4] looked at axially moving loads acting on a disk. Shen andioge| of a car disk brake that the different friction forces on
Mote [5] explained why a stationary disk could be Qestablhzed B¥ither side of a vibrating diskmodeled as a rigid bodyould lead
a rotating damper. Sh46] used the method of multiple scales fory, jhstapility. Hulten and Flinf21] extended this simple idea to a
analyzing different types of parametric resonances of a stationgry,ch more refined model of disk brakes in which the disk and the
disk excited by a rotating slider. Large damping forces were ey pads were modeled as beams.
amined by Huang and Mofg]. _ _ This paper presents a study of the transverse vibration of a disk
Ono et al.[8] introduced friction as a follower force in their nqer two co-rotating sliders. Each slider, driven at the same con-
- _ o stant speed, is a mass-spring-damper system, which may represent
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF a pad in the case of a car disk brake. There are friction forces
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- o ; C
CHANICS. Manuscript received by the Applied Mechanics Division, October 15{:\_Ctll’lg in the plane_Of the disk a_t the cc_)nta(_:t '_nterfaces between the
2001; final revision, April 12, 2004. Associate Editor: A. A. Ferri. Discussion on thélisk and the two sliders. The differential friction forces on the two
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journalgiles of the disk produce a bending couple in the circumferential
Applied Mechanics, Department of Mechanical and Environmental Engineering; ; : : : : ;
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will %icffyés\;\g;roﬂﬂﬁwt?;?z Eﬁ)rltthtgc:;lzz ?Om;rrlgotrzer;/:::’;ﬂ:n?nghs;

accepted until four months after final publication of the paper itself in the ASM ‘ .
JOURNAL OF APPLIED MECHANICS. of the disk as an annular plate and, more importantly, treats the
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Fig. 2 Forces acting on the disk under sliders

k c Hulten and Flint[21] later applied the idea to a disk brake and
B o treated the disk as a beam and the friction force and normal force
S were acting on the entire length of the beam. Popp and Rudolph
[26] introduced the same nonconservative friction force into their
14-parameter lumped-mass model of a disk brake. The vibration
of all these models was not considered as a moving load problem.
Since car disk-brake squeal tends to appear at low road speeds
. . . ) . when centripetal and gyroscopic effects may be omitted, the prob-
rotating frictional sliders as moving loads. Moving loads are oMy, js treated instead as a stationary disk excited by two rotating
monly found in many mechan_lcal and civil engineering SYStem%iders in this paper, as shown in Fig. 1.
Fryba's monograph summarized many analytical solutions Of th¢ gligers are initially located at polar coordinates if,).

simple moving load problgn{szz]. ) . As the disk vibrates, the two sliders experience a vertical displace-
Friction is a very complicated phenomenon, and it consntutesrﬁemu(t) in the z direction ag27]

challenging research topic in its own right. In this paper, the au-
thors make no attempt to use very sophisticated friction laws.
Instead they adopt the simple Coulomb friction model, which is
able to generate interesting results of instability. Furthermore, itis = . . o
important that excitation by a friction couple can be justifiedvhich is the transverse deflection of the disk where it is in instan-
physically, whereas the follower-force model, though it producddneous contact with the sliders. Equatiti) implies that the

an effect similar to what is observed in squealing brakes, has bediflers always maintain contact with the disk. As a result of the
the subject of some debate, since it is an internal force. The rea@nsverse vibration of the disk, the normal forces from the sliders
is referred to two comprehensive review papers on the physics @ding on either side of the disk become

modeling of friction and simulation of friction-induced vibration . .

by Oden and Marting23] and lbrahim[24]. ppb=N—mu—-cu—ku, p=N+mu+cu+ku )

Fig. 1 Circular plate under rotating sliders on both sides

u(t) =w(ro,0t,t) 1)

2 Theoretical Development c():fotr;]seegilging?/éthe friction forces illustrated in Fig. 2 on either side
When a car disk brake is applied, two normal forces are applied

through the pads, modeled as sliders in this paper, onto either side _ _ T

of the disk. These forces are initially equal in magnitude, but fo=pPp=p(N=mu=cu—ku),

acting in opposite directions. As the disk rotates past the sliders

and when the transverse vibration of the disk is initiated, the two

normal forces from the sliders vary with time and thus cause two o )

different friction forces acting on the top and the bottom surfaces These uneven friction forces produce a couf®6,2y in the

of the disk in contact with the two sliders, as illustrated in Fig. 1circumferential direction of the disk. In the present model, this

The net friction force acting in the plane of the disk plate is takefPuple is

to be constant. This is simple and assumed by most researchers. o

However, the two different, time-varying friction forces on the M =h(f;—fp)/2=puh(p;—pp)/2= ph(mu+cu+ku) (4)

two sides of the disk, which make up a non-time-varying constant

friction force in the plane of the disk, also produce a bendinghich brings about a second-order singularity to the equation of

couple, which has been neglected or omitted by most researchenstion of the disk modeled as a Kirchoff plate. It should be

This couple produced by the two uneven friction forces was firgbinted out that both the two normal forces and the friction couple

considered by Nortti20] and the idea was recently extended byre functions of only. This equation of motion in the space-fixed

Hulten [25] in the context of a drum brake modeled as beamsylindrical coordinate system shown in Fig. 1 is

fi=up=u(N+mu+cu+ku) (3)

Pw oW w1 ow - J -
ph¥+D*W+DV W= F Pp— pt+,u,(pb+pl)% 5(r7r0)5(079t)+ %[M(t)é(efﬂt)]ﬁ(rfro)
1 ow ~ J ~
=FHpb—pt+2,uN%}5(r—r0)6(0—0t)+ %[M(t)(s(a—ﬂt)]b‘(r—ro)j (5)
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where the biharmonic differential operator in the cylindrical coor- b
dinate is

a

4 &2 d 92 2 b . , (9)
Vi= ﬁ + m—i_ 12962 (6) J D ¢V el dr d0= ©5,06kmdin
a
Equation(5) describes a circular thin plate under moving concerwhere the bar over a symbol denotes the complex conjugation.
trated loads manifested by tl&functions in thed direction. The Multiplying Eqg. (5) with ¢y (r,6), integrating the resultant
third term in the first square bracket on the right-hand side of Egquation yields
(5) represents the in-plane friction as a follower force.

2
The transverse vibration of the disk can be expressed by sum- f j E ph&—w +D*ﬂ +DV4w | rdedr
mation of its modes and modal coordinates as kP g2 at
o — ow

W 00= 2 X nlF,6) (D) U] =| | Py Pt 2uN _

m=0 n=—9% r=rg,0=0t
where the mode shape functions are uh (;Zkl

: 5|5 (Po— Py (10)
Yl 0) = Rnn(1)eXA(in6)/(phb?) V> 2ro| 90 r=rg, 0=t

(m=0,1,2...:n=0-11-2,2,...) 8) Substituting Eqs(2)z (3), (1), ar_1d(8) into (10_) an_d making use
of Eq. (9), the equation of motion of the disk in terms of the

which satisfy the ortho-normality conditions, modal coordinates is derived as
|
-- - 2 2 ¢ % ; 0 puh. - 0 202 :
Qw1+ 28wy Oy + 0 A = — ﬁ EO E Rmn(ro)Ru(ro)exdi(n—1HQt]y | 1- Z_I'O il |LM(Qmnt 2iNQ0m,—N“Q%Amp) +C(Amn
m=0 n=—»
o~ inuN
+inQdmn) + Kqmnl + r_oqm“ (k=0,1,2...1=0,-11-2.2,..)) (11)
[

Equation(11) indicates that the rotating sliders introduce time- i+ 28 £Bia+ B0

dependent mass, stiffness, and damping into the disk. The last

term in the curly bracket on the right-hand side of ELl) is for ® o
the constant in-plane friction modeled as a follower force. In the = 2 2 Rin(To)Ru(ro)
case of a disk brakeuwN/rq is many times smaller thak. In m=0 n=—c
addition, the dynamic instability generated by this term has been . .
studied in detail by Chan et dll1]. For these reasons, this term is xexdi(n—hHQ7][1-iluh/(2rg)]
omitted in the subsequent derivation and the final calculation. In % 8 +2inQd. —n202
other applications, computer disk drives for example, this term [&7(Amn+ 2InE2Gmn Gmr)
can be relatively large becaukendh are both small. +&5(Qmnt iNQAmn) + & k0mn]
The critical speed for the relative rotation of the disk is defined
as (k=0,1,2...;1=0,—-1,1-22,...) (15)
where the time derivative is now with respect to the new time
_ variable .

Qe=min(w /1) (1=1,2,...) (12) It is impossible to get closed-form solutions of Ef5). So it is
[ usually solved by numerical methods, such as the method of state
space for general cases or by perturbation methods veghen
small.
Nondimensional variables are defined as

3 Numerical Solutions by the Method of State Space

~ ~ ~ ~ To use the method of state space, new variables are introduced
7=Qct, Bu=on/Qy, Q=00 (13)

as
X(r)=expilQ7)q(7) (k=0,1,2...;1=0,-11-2.2,...)

Introduce a scaling parametersuch that (16)
Equation(15) then becomes

ey=2m/(phb?), es=2c/(phb2Qy), i+ 2(8 €L —11Q) Xy + (B — 122 €8l Q= 12Q%)xy
5 _ == 2 Rudro)Ra(ro)[1—ilzh/(2ro)](e Yimn
sk=2kl(phb?Q2), s&=¢£,0 (14) m=0 n=—c
+ £5Xmnt € K0mpn)
Thus Eq.(11) becomes (k=0,1,2...;1=0-1,1-2.2,...) a7)
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Table 1 Natural frequencies and nondimensional frequencies
of the disk

EY]

30

Modes k) 0,0 0,1 0,2 0,*3 0,+4 0,=5 0,+*6
wy (radls) 7203 4678 7532 16,391 26,535 37,111 48,080 20 1
B 191 124 2 435 705 985 1277

RI

10

which no longer has time-dependent coefficients. Equatiah r
can be rewritten in matrix form as ’

(1+eyQ)X+ (A+esQ)x+ (B+exkQ)x=0 (18)

0 0.01 0.02 0.03 0.04 0.05
EK

Fig. 3 Region of instability = (us=0.55, ££=0.0001, &s=0,

where £7=0.002)

A=2diade£By—ilQ], B=diad B —i2s£B Q2 —1207]
xX"={xq} (k=0,1,2...]1=0-11-2.2,...)

and the element of matri® on thelth row and thenth column is —0.0576~)r0 and x=0.3 if the formula produceg<0.3. The
value of negative slope is taken from measured {26

(19)

Qin=Ru(ro)Rmn(ro)[1—iluh/(2ro)] The vertical spring constant of the sliders, which can represent
(km=0,1,2...1,n=0,-1,1-22, .. (20) thg aggregate rgsult of t.he stiffness of the pad§, caliper and brake

) fluid, is a very interesting parameter. As a first example, take

When a new vector is introduced gs=x, Eq. (21) can be £y=0.002,£=10*, es=0, us=0.55. The region of instability

derived from(18) as is presented in Fig. 3. The range of rotating speed is limited to 30

d (x 0 | rad/s since squeal tends to occur at low speeds below 30 rad/s.
_[ ] = It spreads over the entire range of the stiffness values. However,
dr Y] [—(I1+eyQ) X B+exQ) —(I+&yQ) (A+esQ)| asmallincrease of the disk damping can greatly reduce the region

(21) This indicates that the damping of the disk is stabilizing and is
y very effective in suppressing the disk vibration. Of course, the
If the real part of an eigenvalue of the matrix in E@1) is addition of damping of the slider can achieve the same effect, as

positive for some parameter values, the whole system is unstal§l@own in Fig. 5. The damping breaks the single region of insta-
Otherwise, the system is stable. Those parameter values that IB## into two smaller halves. Further increase of the damping of
to zero real part of at least one eigenvalue and negative real pah@ slider can eliminate the first region of instability at smatier

for all the rest of the eigenvalues form the boundaries of tHB Fig. 5 and leads to only one region of instability like that of
regions of instability, which are of particular interest to the authofsid- 4.

and the designers. Equati¢®1) provides numerical solutions for

general cases. Being numerical, the state-space formulation does

not normally lead to any definite conclusions about the effects of

X of instability, as shown in Fig. 4.
gt

a parameter before a computation is made. Q2 30
If £ is small, the method of multiple scalg28] can be used to
derive approximate analytic solutions. The parametric resonanc
in the subcritical speed range may appeaflds 20 |
(nxHQ=Bnn—But+eo (n>1,1=0;kkm=0,1,2...)
(22)
when the method of multiple scales is used. The detailed formt 10 4
lation is not presented here.
. . RI
4 Simulated Example and Analysis o

In the subsequent parametric analysis, one of the five parar 0 0.01 0.02 0.03 0.04 0.05
etersey, es, ek, €&, and u is varied while other parameters are
kept constant. The regions of instability dependent on the varying ) ) B
parameter versuQ are found. When each one of these parametef®- 4 Region of instability  (us=0.55, ££=0.00014, &s=0,
is studied in this way, their roles in the instability of the wholg??=0-002)
system are established. ~

To provide a detailed picture of the effects of the parameters o %
interest in terms of the regions of instability, an example is ana
lyzed. The dimensions and properties of a real brake disk made « 20 |
gray cast iron area=0.0805m, b=0.1305m, h=0.02m, E
=120 GPa,»=0.211, p=7200 kgm 3. The plate model of the RI
disk is tuned to fit the numerical frequencies and modes of a ver 10 1

/A

EK

detailed finite element model of the disk. The first(®8e single

and six doublg frequencies of the disk are computed by an ana-

lytical method and are listed in Table D¢=3766 rads 1). 0 001 002 003 004 005
The rotating sliders are located B§=0.11 m. The damping

coefficient of the sliders is taken to be 2.5%. The friction coeffi-

cient is taken to be a linear function of the relative velocity berig. 5 Regions of instability — (us=0.55, ££=0.0001, £5=0.025,

tween the disk and the sliders with negative slope,uasus &y=0.002)

&K
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o 30 - the ranges of mass parameter values and stiffness parameter val-
ues. At low speeds, small vertical stiffness of the slider is harmful.
Large stiffness values are even more detrimental because the re-
20 gion of instability expands to the right. The same is true for the
mass of the sliders. The location and size of these stable regions
depend on the specific parameter values involved. This means that
10 4 by suitable design of the rotating sliders the transverse vibration
of the disk can be suppressed even though the dampings are not
; great. This offers a new way for vibration suppression of disks
0 . ; . , under a rotating frictional load, other than damping, which may
] 0.01 0.02 0.03 0.04 0.05 not always be feasible to enhance.
€K It should be noted that the above results do not apply to high
: : : - _ _ _ rotating speeds, where the stabilizing centripetal and gyroscopic
zlf,];o'%ogeglon of instabilty  (p;=06, e£=0.000L, es=0. ot needs to be considered. It should also be stressed that the
instability displayed by this friction mechanism is highly speed-
dependent. The consequence is that the omission of the relative
Both figures reveal that with adequate damping from the disk g?tatl_on between the disk and the slidehich IS @ common
from the slider, there is a region of stability within the range opractice among researchers of brake squettiat is, when the .
stiffness values. Higher damping can remove instability for ﬂ.‘\ébratlon and squeal of a d.'?"‘ brake IS not mc_)deled_ as a moving
range of parameter values shown in these two figures. O?d prob_lem—some S|gn|f|ca_nt regions of |nstr_;1b|I|ty will be
If the friction coefficient is increased, the region of instability ignissed. Figures 3-8 are obtained using the particular parameter
Fig. 3 expands and the region of instability in Fig. 5 expands at)(@lues specmed._ If_the da”?p.'”g Qf _the disk or of the_sllders_ls
duced or the friction coefficient is increased, the regions of in-

may even reconnect to form a larger, single region of instabili tability will widen t h | tational ds th
An example of usingws=0.6 is presented in Fig. 6. abrlity wil widen 1o reach even lower rotational speeds than
ﬁ‘émwn in these figures.

Interestingly, the influence of the mass of the sliders on t
stability of the system shows a similar trend. The region of insta-
bility obtained by usinge&é=10"%, £s=0, us=0.55, andex ,
=0.02 is given in Fig. 7. 5 Conclusions
If either the damping of the disk or the damping of the sliders is |n this paper, the instability of the transverse vibration of a
increased, the region of instability in Flg 7 reduces, reminisceeﬁrcmar disk under rotating load of two sliders of mass, Springy
of what has happened feik. Figure 8 shows the reduced regionand damper is studied as a moving-load problem. The friction
of instability when the damping of the disk is increased. between the disk and the sliders is modeled as generating a fluc-
By examining Figs. 3-8, it can be seen that either damping @fating couple as the sliders move around the top and bottom
the disk or the damping of the sliders is stabilizing. Presence &firfaces of the disk. The friction coefficient is assumed to be a
large enough damping can completely eliminate unstable vibiigrear function of the relative speed between the disk and the
tion. Even if the damping is not great, there are stable regions f§iders with negative gradient and then becomes a constant at
sufficient relative speed. The model is meant to demonstrate a
mechanism for unstable vibration of a car disk brake and similar
Q 30 applications. Parametrical analysis allows the following conclu-
sions to be drawn:

1. At very low damping values, the regions of instability

20 A spread over the whole range of the stiffness parameter val-

ues. In the range of parameter considered, the unstable re-

RI gion tends to lie within the higher mass values.

2. At normal level of damping of the sliders or with a small
increase of the disk damping, the regions of instability con-
tract and may reveal stable regions.

3. The size and location of the regions of stability depend on

0 ' ‘ the specific parameter values. This phenomenon can be ex-
0 0.001 0.002 0008, ploited in designing suitable sliders to suppress the vibration
of the disk.

Fig. 7 Region of instability = (us=0.55, ££=0.0001, £s=0, 4. The damping of the slider and the damping of the disk, in

ex=0.02) particular, are both stabilizing in the speed range studied.

5. The friction coefficient is very destabilizing.

30 6. The mechanism whereby friction destabilizes the vibration
of the disk, incorporated in this moving load problem, is
seen to be able to generate speed-dependent instability over
20 | a wide range of parameter values. The instability of the vi-
bration of the disk is speed-dependent and, therefore, should
RI be modeled as a moving-load problem.

10 -
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Stochastic Stability of Coupled
v, srinamachenivaya | OSCIllators in Resonance: A
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H. J. Van Roessel A perturbation approach is used to obtain an approximation for the moment Lyapunov
Department of Mathematical Sciences, exponent of two coupled oscillators with commensurable frequencies driven by a small
University of Alberta, intensity real noise with dissipation. The generator for the eigenvalue problem associated

Edmonton, Alberta T6G 2G1, Canada with the moment Lyapunov exponent is derived without any restriction on the size of pth

moment. An orthogonal expansion for the eigenvalue problem based on the Galerkin
method is used to derive the stability results in terms of spectral densities. These results
can be applied to study the moment and almost-sure stability of structural and mechanical
systems subjected to stochastic excitatidOl: 10.1115/1.1795813

1 Introduction ties, and generators is obtained in two consecutive papers by Ar-
. . . . - ) nold et al.[6,7] for white- and real-noise situations, respectively.
This paper is concerned with stochastic stability of two-degree The aim of this paper is to determine an asymptotic expansion

of-freedom(dof) systems in the presence ioternal resonances or the moment Lvapunov exponent of a noisy 2-dof svstem aiven
In linear multi-degree-of-freedom systems, resonances occur que yap P Y Y 9

to commensurability of the frequencies(w) whereu represents
the system parameters. A relationship of the formw,(w) - ) . o
+ ...+m,w,(n)=0 exists in this case for some integer values Qi+ o Qi+282§wiQi+82 kijg;f(£(1))=0, i,j=12 (1)

of my, ... m,. The resonance effects would in this case, persist =1

in all regions of the phase space and is due to a particular choigere theg;’'s are generalized coordinates; is theith natural

of the system parameteys Almost-sure and moment stability of frequency,&(t) is a stationary stochastic process, arfd repre-
coupled oscillators with commensurable frequencies has beesents a small viscous damping coefficient. This scaling of damp-
difficult problem to tackle because resonance gives rise to a nang and noise terms is such that the leading-order diffusion part
trivial approximate foliation of the phase space. As a result, tH®lances the leading-order drift term, after transforming to polar
equations cannot be reduced to a lower dimension via standambrdinates as shown in Sec. 2. Under the assumption that the
stochastic approximation methods. Thus, the determination of thatural frequencies areoncommensurablehe small-noise ex-
moment and maximal Lyapunov exponents of two coupled oscjtansions of the moment Lyapunov exponent for this 2-dof system
lators in resonance at present is an open problem. The challemgae obtained by Sri Namachchivaya et [@] for small p. Sri

has been to extend the existing technigies3] in order to ex- Namachchivaya and Van Roes§g], extended these to obtain an
plicitly evaluate the moment Lyapunov exponents for such syasymptotic representation of the moment Lyapunov exponent for
tems withcommensurable frequenciel$ is this need and chal- finite p. Our interest is in the case when the two frequencies are
lenge that we shall address in this paper. commensurablei.e., there exists a relation of the formyw,

In the study of stability of solutions of random dynamical sys=m,w,, wherem; andm, are integers. As beforf,3] we con-
tems, the exponential growth rate Bfx(t;x,)||P is provided by sider a real-noise excitation with specific infinitesimal generator
the moment Lyapunov exponent defined as G. It is assumed thab has an isolated simple zero eigenvalue. In

this paper, we derive the generatgp) for finite p, whose prin-
cipal eigenvalue is the moment Lyapunov exponent, by an

2

g(p;Xg) = Iimilog B[ x(t;%o)|[P asymptotic expansion similar to that presented in Sri Namach-
too b chivaya and Van RoessgB]. The second method is based on
stochastic averaging, and it is presented in Sri Namachchivaya
et al.[8].

wherex(t;X) is the solution process of a linear random dynami= : . .
cal system. Ifg(p:xe) <0, then, by definitionfx(t: xo)|P—0 as Section 2 presents the formulation of the problem and describes

. I I the general formula of the moment Lyapunov exponent for linear
:i:noobaert]v(?/etzlns ﬁéﬂg;rfgt?bﬁ‘iﬂh g:]%m;mosstﬁgﬂ'g‘ ;g%iﬁ?n?gf's stems with real noise. In Sec. 3, a small-noise expansion is

X . ty ; - Y onstructed and we obtain the appropriate eigenvalue problem for
undamped linear oscillator under real noise excitation was est

. N < € moment Lyapunov exponent. The generator for the eigenvalue
lished for the first time by Molenov[4]. These results were ex- : : . - : -

X o . problem is derived without any restriction on the sizepofThis
tended for an arbitrarg-dimensional system by Arnol] where uation along with appropriate boundary conditions forms the

;ggmf'sgnfgrmurlgggz g{;giﬁtreilgt'Orgsier:gzer}ﬁémc?;s:gti SSzT q%envalue problem for which moment Lyapunov exponent is the
resultsyon tf?e so-called morxentpL a unov. ex onentp its oro rincipal eigenvalue. An orthogonal expansion for the eigenvalue
yap P ’ PrOPHoblem based on Galerkin method is presented in Sec. 4. In Sec.
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF 5, various cases of interest are obtained numerica”y based on
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- Galerkin ap_proxmatlon. One-to-one |nternal_ resonances arise in
CHANICS. Manuscript received by the Applied Mechanics Division, January 3d1any physical systems. However, the semi-simple form that is
2002; final revision, March 18, 2004. Associate Editor: A. A. Ferri. Discussion on tlexamined in this paper is common in coupled oscillators where
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journaltpfare is geometric symmetry present in the physical system. The
Applied Mechanics, Department of Mechanical and Environmental Engineerin h e . _
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will Ifgomem Lyapunov gxponent In Ferms of spectrgl densities is cal
accepted until four months after final publication of the paper itself in the ASME_U|ated for this special case, which is common in many conserva-
JOURNAL OF APPLIED MECHANICS. tive structural and mechanical systems.
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2 Problem Formulation Consider the transformatiofx, ,X,,Xs,X4} —1{p, b1, ¢, 6} given

The stochastic terng(t) is a real-noise process on a smootf?y
connected Riemannian manifold (with or without boundary

with f a smooth nonconstant function defined Mn The associ- X;=€" CoS¢; C0SH, X,=—e’sin¢g, cosd @)
ated infinitesimal generator is assumed to have the form
n X3=e" cos¢,sinf, x,=—e’sing,sinéd
G(&)= E u.@) E [2 0(6)@} 2, k(&)@}
! '( 2) with the determinant
The almost-sure stability of the equilibrium state-q=0 of ) RN )
is to be investigated. Using the transformatign=x,;_1, Q; ——=2e Pcsc 2
=wXy, i=1, 2, Eq.(1) may be represented by the following 9(X1,X2,X3,X4)

system of Stratonovich differential equations:
. 4 wherepelR, 0=< ¢; <2, 0<0<m/2. The transformation is singu-
x=Ax+ef(£)Bx, XpeR (3) lar at¢=0, m/2. Applying the transformatiofé) to (3) yields the

following set of equations for the logarithm of the amplitude

r
d§=,u(§)dt+2 oM(E)edW,, EeM phase variablesd; , ¢,,6), and noise process
k=1
where p=s0u(By.b2.0,6)+570x( b1, b, 6,0)
0 o, 0 0
| o 2% 0 0 O=c51(b1,62,0,6) + 7S5l b1, 6.6,9) )
0 0 0 w, | _
0 0 —w, —2&%w, ¢i=witehi(¢1,¢2,0,6) +%his(dy,¢2,0,0)
0 0 0 r
lpn 0 —p O ki dfzﬂ(f)d“‘kgl o*(&)edWy, £eM
o o o PiTy
—p21 0 —pyp O where

A1 b1, b2,0.8) =3 (E[ AN b1, b2) +AS(b1,$2)COS 20+ 1, b)sin 26]
Aol b1, 2,60,0)=0a( b1, b2) +05( by, b2)cOS 26
S1(h1,¢2,0,6)= (O[S b1, ¢2) +S5( b1, $2)COS 20+ 531, ¢)sin 26]
Sa(h1.$2,0,8)=3(b1,$)sin 20,
his( b1, ¢2,0,6)=3F(E[N1(h1,¢2) +hii( b1, ¢)tand]
hai(B1,¢2,6,6) = 3F(E)[N51(¢b1,b2) +hiy( b1, bo)c0t 6]
hio( 1, 02,60,8) =hiodq,0)=— 51 Sin 2¢4
hoo( b1, s, 0,0) =hoo( Py, 0)=— 5, Sin 2,
03(B1,b2) =P11SiN 261+ P2pSin 2¢h, Sy, 2)=PiSine " —pyising”
Q5( 1, b2) =P11SiN 21— P22SiN 265, Si( b1, 2) =P SiNG" —pySing”
Qi(¢1,42)=pxSind’ —pyising ™, Si(d1,¢h2)=P2zSin 2¢,— Py Sin 2¢;
03(h1,¢2) = — 2 51(1—COS 21) + 55(1—COS 25,)]
05(h1,b2) = 3 51(1—C0S 2b1) — 5,(1—C0S 25)]
S5( 1, b2) = 3 81(1—COS 2p1) + 5,(1—COS 2p,)]
hi(#1)=p1s(1+cOS2p1), hii(dby,¢p)=Pp1AcOSS” +cOSPH")
h21( 1) =P 1+COS 2b2),  h3y( by, h2) =P2i(COSGH " +cCOSP ™)
Pa=Pat P2 ¢ =dit by S={o)
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Since the processesp(,¢,,6,&) do not depend om, the pro-  +m,w,(u)=O(e?), on the moment Lyapunov exponent can be
cesses ¢, ,¢,,06,£) alone form a diffusive Markov process, andeasily incoperated by adding an appropriate detuning term in
the associated generator is given by hi2(é1,¢2,6,6) of (5).

LP=Lotelyte?l, Then we obtain the following expression for the norm of the

response:
where .
A |x<t;xo>||:|x0|exp{ [ ee. 619,020 0007
B wWi—— + wo—— 0
0 Yoy “Pag,
P P where
[,1: 81(9_9 + hllrﬁl + hzzqusz o
P P J a°(a(t), Pa(t), 6(1),£(1), ) = eds(Pa(t), Pa(t), 6(1),£(1))
Lo=Sozg ¥ gz g+ hazg o + 820, b1(1), Bol1), B(1), )
It is worthy to note that the influence of smal(e?) deviations Combining the above result with the definition of moment
from the exact commensurable frequencies, Meq(«)+ ... Lyapunov exponent yields

1
g(p;Xg)=lim—logk

: for peR, and fixed xoe R%\{0} (6)

t
eXP{ p foqa(f( 7),¢1(7),¢2(7),0(7),0)d T]

t—o

For peR, it was shown by Arnold et al[7] that g(p) is the Moshchuk{10], and Pardoux and Wihstuf21]. Insertion of these

principal eigenvalue of expansions intg8) leads to the following sequence of Poisson
equations:
def
Lé(p)=L"+ pq€(§,¢1,¢>2,0,5)=Lo(p)+sL1(p)+82L2(p)( ) [Lo(P)—Go(P)]#o=0 9)
7
[Lo(P) —go(P)]¢1=01(P) o~ L1(P) o (10)

whereL®(p) acts onC(M x 5% and
[Lo(p)_go(p)]llfzzgz(p)l/fo"”gl(p)l//l_Lz(p)ll’o_l—l(p)éll)

2
J
Lo<p>=G<§>+§1 Vigg POl b1 42,0,6)= Lot P

2
J J
Ll(p)zsl(¢l,¢2,0,§)£+2 hi1(¢1,¢2,0,§)£ [Lo(P) = 9o(P)]¢n=092(P) ¢hn—2+91(P) ¢hn—1—L2(P) hn—2
~ .
I I —L1(P)n-1
+pai(p1,b2,0,6)= L1+ pay
L = 0,6 i +§2: h 0,6 J
2(P)=Sx(b1, 92,0, )(9_6 ~ i2(b1,¢2,0, )(9_¢i
P by ba, 0,8)= Lot Pl We construct a formal expansion of the adjoint problem, i.e.,
Consider the operatdr®(p) and its adjoinﬂ_e*(p). Then by the we=motemt-+eNuytoo

main theorem in Arnold et al.7], g°(p) is an isolated simple

eigenvalue oL °(p) with non-negative eigenfunctiof®(p) such Substituting this expansion and the expansion lférinto the
that | 4*(p)|=1. The adjoint operatoL®" (p) has an eigenfunc- Fokker-Planck equation yields the following sequence of Poisson
tion u*(p) corresponding ta@®(p), which is unique and has the €quations to be solved fqro, w1, ua, .. .-

property(4°(p),u°(p))=1, i.e.,

& e —_ NE e & e _ Lé,lLO:O (12)
L*(p) ¢ (P)=g°(P)¥°(p), (¥°(p),u®(p))=1 VpeR

®) Lgma=—LTuo (13)

3 Asymptotic Results for Coupled Oscillators Lymo=—LTimi—L3 uo (14)

Here we consider an expansion of the moment Lyapunov expo-
nent in powers ot

9.(P)=do(p) + £91(p) + £20a(p) + O(£?)

It has been shown that such an expansion is asymptotic by Snir interest is in the case when the two frequenciesamemen-
Namachchivaya et al[2], Arnold et al. [9], Khasminskii and surable i.e., there exists a relation of the form;w;=m,w,,
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wherem,; and m, are integers. To solve the above sequence ahd the inverse transformation is

Poisson equations, it is convenient to consider another transfor-

mation,{ ¢, ¢} —1{ 1,72} given by

171, 72) =t v w2, d2=Po(y1,72)=v2 01

Hence, for anyy e C?(M xS®), we define the differential opera-

VT wrP1— w1y, V2= w1 tors in (£,60,v1,7,) as
|
o oy F
Lo= G+w|(9 s +paoy= G+w1w2 +p%¢
31!’ Ip dyq I dyq o 24 Iy
Lig=s;—+h S +H;— +w;h +

1y vog Thig g, g o0 +pop=s1—0 70 15, T @har - pa.¢

2/ Y Iy dp dy1 Y P 2’
Loy= S254 h12(7,y 76, 225 G4 PQ2¢—525_6+H2(9_,h+w1h22a_72+pq2¢

where

def

01(¥1:72,60,6) =d1(D1(v1,72), b2 v1,¥2),0,€)

def

2(¥1:72,60,6) =Ao(D1(v1,72) s D2 ¥1,¥2),0,€)

def

S1(¥1:72,60,6) =S1(1(v1,72),d2( V1, 72),0,0)

def

S2(¥1:72,60,6) =So(1(v1,72),d2(v1,72),0,0)

def

Hi(y1,72,0,8) = 0oh11(P1(¥1,72), $2(¥1,72),0,8) — @1hou(D1(v1,¥2) P2 ¥1,72),6,6)

def

Ha(v1,72,0,8) = 0oh1 p1(y1,72), d2(¥1,72),0,6) — @1hol d1(¥1,72), d2( v1,72),0,6)

Before proceeding with the determination of solutions, let us stateordinatesug(y,,v2,6,€) is 27w, and 2rw,-periodic in vy,
some facts about the periodicity and commensurability in the neamd y;, respectively. In order to make the problem tractakie,

variablesy,, v,.

Lemma 3.11If () w; and w, are commensurable (i.ew,/w,
e() ); and (ii) f(x) is both w; and w,-periodic then f is
w-periodic wherew=gcd(wq,w5).

Proof: It follows from (i) that 3n,, n,e 7 such thatw,/w,
=ny/n, with ny andn, relatively prime, which in turn implies
that Am,;, m,eZ such that m;n;+myn,=1. Now let w
=defw, /N;=w,/Nn,. Then f(x+w)="f(x+(min;+myn,)w)
=f(X+miw;+myw,)=f(X). |

Then the following result is easily obtained.

Lemma 3.2If w(¢4,¢,) is 2m-periodic in ¢,, thend*w is
w,-periodic in y;, wherew,=9R7w,.

Proof: Let W(y1,y5)=(®*w)(y1,y,). Then

W(y1t @z, 72) =W P1(y1+ ©2,72), Po(y1+ 02, 72) ]
=W[Dq(y1,¥2) +27,Po(y1,72)]

=WLDP1(y1,72), Paly1,72) 1= W(y1,72)
O

3.1 Solution to O(1). Sinceqg(y1,v2,60,£)=0, it follows
from the definition ofg(p) that go(p)=
Lo(p) reduces taZ, and(9) becomes

Loho=0

will be assumed to have aisolated simple zero eigenvalue
Hence, the only solution dbu=0 is u=constant. It follows that
the associated adjoint opera@i* also has zero as a simple, iso-
lated eigenvalue, and the normalized invariant meas(égd¢é
satisfiesG* v (&) =0.

Since the frequencies; andw, are commensurable a@has
an isolated simple zero eigenvalue, the solutiofg,=0 is

v(§)F(71,0)

1“‘0(71!015): 24

where F is an arbitrary function of ¢,,6), which has yet to be
determined. By a similar argument it follows that:

yoeken Ly)={C(y1,6):C is an arbitrary function ofy,,6}

Therefore, o= to(y1,0), a function of (y1,0) which has yet to
be determined.

3.1.1 Solution t@(e). Inserting the above expression

0. Thus the operator into (10) results in

Lop1=091(P) Yo—S1( 71,720, §) o —H1(7117’2 95)

Since the equations to be solved involve the differential operator

L, at each stage, the solution of the corresponding adjoint prob-

lem £} 1o=0, along with periodic boundary conditionsy( ¢,
+271¢2101§):M0(¢17¢2+2W1 615) :MO(¢1r¢2101§)r is re-

—PAi(y1,72.0,8) o (15)

Premultiplying by(£) and integrating with respect thand v,

quired. However, from Lemma 3.2, it follows that in the newyields
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27wy 2mwq ‘9‘7//1
f f V(f)'Gllflddez*f V(f)J wlwzo—,_dhdf
0 M M 0 Y2

2mwy awo
=91(p)l/fo_f f V(§)51(71:721915)(9_0d§d72
0 M

27w,
o
0 M

2mwy
_fo fMPV(f)%(Ylﬁzxaxf)‘ﬁodfd’)’z

o
1(71-72,9,§)ﬁ—71d§d72

def
Rl(vl:’)/210):

Since,G* v(£)=0 and ¢, is 27 w4-periodic in vy, the left-hand
side of the above equation is identically zero, and the last three
terms on the right-hand side of the above equation are zero due to
the factf (&) is mean zero. Hence, the eigenvalyép) is zero.

The solutiony,, of (15) with g,(p)=0, can be expressed in
terms of the Green'’s functiog(¢,t; »,0) for the operatoc. Re-
write (15) as

Lor=—3f(©)R1(71,72,0)

where

) . I
PLAZ( Y1, ¥2) +A5( Y1, ¥2)COS 20+ Q3 (1, ¥2)SiN 2014+ [ ST (v1,¥2) +S5(v1,72)COS 20+ S3( 71, ¥,)sin 26] —a

Ay
+2[w,hy(y1,72) — @1h31( b1, 2) + wsh{y(y1, v2)tan0— w1y ( vy, y2)cot 6] a7 (16)

If g(n,7;&,0) is a solution of

d
(a_r_G) g=0, with g(%,0:§,00=d(%—¢)

then
1 o)
l//1(71:72:0:§):z K(&T)XRy(y1,72+ 010,T,0)dT
0

where

def
K(§.T)=fo(n)g(n,T:&O)dn

def

(%(71!015) = 2

1 27ra)1
» f W(y1,72,0,6)dy,
1Jo

for all y;, #eS? and £ M.
Once again, premultiplyingl7) by »(¢) and integrating with
respect tof and vy, yields

lﬁ

92(p) ho— pq2(71r0)¢0+52(7110) o +H2(7119)

fva@)-mm.e,g;p)d&o (18)

We consider the three terms in the bracketis), then

Ap=—3(81+ 8) — 3(81~ 5,)c0s 29
3.1.2 Solution ta?(e?). Employing the above results, Pois-
son equatior(11) for ¢, becomes 5_2: %( 8,— 8,)sin 26, ﬁzzo
I Hence,
ﬁolﬁz:_(DQ2(7’1:72.9§§)¢0+32(71:72,0,§)W
— — dpg  — Jg
I +s,—— +H —)
+H2(?’1:72:9:§)0_0 =Lt (y1,72,0,6p)+92(P) tho (P%lﬂo 52 a0 2oy, (71,6)

(17) 1 1
=p) - 5(51+ 8) — 5(51_52)00325 Po(y1,0)
the first term on the right-hand side @f7) depends on damping 1 e
alone while the second term dependséon e
Definition 3.3 (Averaging Operator) Fix e C*(S®XM), 2( ~ %)sin 20 (yl,ﬁ) (19)

which is 27 w4-periodic in y, in its second argument. Defing

e C*(R*XM) by We now consider the last term {18)

2mwy R§ [ ﬁR

EK(ET(LIRD (71,0)dTdé= 5 S (71.72.6)

_ 1 %
f V(f)"—l’/’l(?’lﬁ‘fip)dfzzf f v(
M MJo

4
JR] IR]
+Hl (Y1,72:0)+w1h21 (71-72,0)+DQ1R1(71172- dy,dr (20)
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where def
ot Re(7)= f (£ p(§K (£ 7)dE

Ri(¥1,72,0)=Ry(y1+ 01T, y,+ 0,T,6) .

and Then, after a lengthy calculation, we get

f ) v(£) Lig(1,0.£0)dE=[pQy, (71.0,S¢ . Te)+P2Qy (71,05 T Wo(v1. )+ [y, (v1.0,5¢ . T¢)

diho o
+p,u¢(71,0 ngTg)] (‘)’179)"‘[%(')’119 Sng§)+PV¢(7’1:9 ngTg)] (7’11 0)
1 2¢ 1 T
+35 U@e(Ylﬁsg, g) > (v1.0)+ 5 Uylyl(h.esgy-rg) P > (71.0)
71
P
+06‘y(7110 ngTg)lm& (y1,0) (21)

where a typical term, take for example a diffusion coefficient, iined. We have also made use of the correlation functioi{ &f
evaluated as and the cosine and sine spectrum given, respectively, by

C def
o2,= fy(g) {89597+ (955 T+ s97s$) cos 26 Sg(w)ZZJ'O Re(r)cod wr)dT

+(895T+ s77s%) sin 20+ sSsST cog 26 and

+(sSsT+ sSTs?) cos 20 sin 20+ s3s5 si? 26} dé def [or
oT . Tg(w)ZZJ Re(7)siMwT)dT
Here the superscriph in the coefficients;  denotes that the vari- 0
?blegz hashlze_en shifted g+ w0, T. The explicit ezxpregsmns Combining the the right-hand sides of Eq49) and (21) and
02rt e coefficientsQy,, Qu,» Myyr Mypr Yy Yy Toor Ty defining

Ty, Are given in the Appendix. For physical systems with sym-
metry, one-to-one resonance is the rule rather than the exception. d:efﬂ
Hence, while averaging these coefficientd29), we have made Y w
use of this specific resonance condition caltete-to-onesemi- | . . ) . ) o
simple resonance, where we define yields the partial differential equation &(¢<), whose principal
eigenvalue is the moment Lyapunov exponent, i.e.,
def
O=01= 0, L(p)lﬂo g2(P) o (22)

and the results for the other resonance cases can easily be where

defq w 1 lﬁ

2
LpMe=5 oin 0.0 % 20,904 505,000 S (0.0 40,9 T 0+ L(0,7)+ P 0] 2 (,3) +[1(0,)

d60dy

~ 8$0 1 2
+DV(9,7)](9—7(0.7)+ PQ(6,Y)+ 5P Q(6,7) |40(6,7) (23)

We reiterate that22) was derived without any restriction on the sizepofThis equation along with appropriate boundary conditions
forms the eigenvalue problem for which(p) is the principal eigenvalue. In order to reduce the number of cases to be evaluated, we
can simplify the coefficientp;; by a suitable scaling of the state variablest can be shown as i8] that it is always possible to take

P12= % P2r= K. Since the semi-simple linear formw{= w,= w) natuarally occurs in conservative systems, we shall only consider
P12= P21= , in which case the coefficients reduce to

w(0,7)=[03 4(0,7)+ 1k2S,(0)cog 2)]cot 20— 3A Sin 26+ 5S,(2w)(P11+ Pay) k COL ¥)COS 20+ §T(2)(P11+ Pag) & SIN(Y)
~§54(0) (P11~ P2o) k COL )
n(6,y)= %(ZA( y)cos 20— Eg)sin 20+ 1_16K[2(p11— P2)COS 260+ (P11t P22)COS 20— (Pyy— P22) 1S(2w)cog y)
v(0,7)= = (P11~ P2 (P11t P22) Te(20) — 3S(0)siN(2y) k? c5E 20+ k[ {(P11+ P2 Te(2w)COL )
+ (P11~ P22) Se(0)SiN( ) }€0S 20— (P11+ P22) Se(20) SN ) ]€SC 20+ 3S¢(0)SiNn(2y) K2

764 /| Vol. 71, NOVEMBER 2004 Transactions of the ASME



(8,7)= = gk[{(P11—P22) + (P11 P22) }Se( 20)SIN ) 16SC 20— 5P11P25S,(0)siN(2)
—P22)S¢(2w)cog y)cos 20 sin 260
(pil

0%,(0,7)=30°k?| S{(0) + S 2w) + S§(0)005< 2 %) ] cof(26) — 30%k(P11— P22){2S:(0) + Sg(ZQ))}COS( %) cot(26) + sw?

Y
+ p%z)Sg(Zw) +2(p11— p22)28§(0) - 2p11p228§(2w)co{ 2 Zl) }

05,(8,7) = k*S(0)sin(2y)cot 20— 3x(P11— P22 Se(0)sin( y)
1
8
Q(6,7)=—[ Ao+ 15P11P255:(20)COK 27) ]cOS 26+ E €OS 20+ F o+ 155:(2) P11P» COS 27) + 3k(Pyy

Q(6,7)=02(6,7)+ 3A c0s 20+ D+ §5,(0) k2 04 2y) + = S(2w) P11+ P22) & COK )sin 20

— P22)Si(20)co ) cos 20 Sin 26+ 5x(P11+ Pay) Se(2w) oS y)sin 26

with the constants given by

2
Ao= %{ 4k*S(w") - Zl pﬁS(Zwi)} ;

2
Co= é{ 4K2S(w” )+ .21 pﬁS(Zwi)}

Do=3(A1+ A2+ 564 S(0")—S(07)],

Eo=761P5:S(2w;) — p3,S(2w,)}
2
Fo=é|4xzs<aﬁ>+21 P2S(2w;)

, A=A1_A2

Ai=—6+3p2S(2w;), i=1,2

wherew™ =2w;=2w andw™ =0.
We note in passing that making terms wighdentically zero in

the above equation recovers the equations in Sri Namachchiv

and van RoessdB]. It is clear that the operatd}(p) obtained

above is identical to the one [8] using the method of stochastic
averaging. Hence we are sure of the correctness of the resyl
obtained in this paper. Except for some special cases, the gengtg|

solution of (23) cannot be obtained explicitly fay,(p).
The domain for the diffusion process éhand vy is

o

0,2

D=[(0,y):0€ ,76[0,277]}

It is obvious thaty is 2m—periodic in y. Boundaries for the&

1
mb.y)~g K*{Se(2w) +S(0)[1+cod2y) ]} ——

a
00— —

2

Therefore, the diffusion process near the boundary is character-
ized by the drift term. It follows, therefore, that for#0, the
trajectories close to the boundary @&t0 are pushed away from
the boundary due to the positive drift. Similarly, near the bound-
ary at #=m/2, the trajectories near the boundaéy-n/2 are
pushed away from the boundary by the negative drift. Thus for the
case when both the degrees of freedom are coupledpi.g#0
andp,,#0, the boundaries a#=0 and #=/2 are not attainable
states. Also, trajectories starting at either of these boundaries are
pushed into the interior of the domaih Moreover, this assertion
can also be justified from transformati¢f) that 6=0 implies the
amplitude of the first oscillataa, , is zero andd==/2 implies the
rﬁplitude of the second oscillatay is zero. It is clear physically

at unless the coupling coefficiergs, andp,, are both zero, it is
not possible to have a solution with eithay or a, identically
zero. For the remaining part of this study, we shall make the
umption thak#0. This assumption is valid and appropriate for

t of the practical situations to which these results can be ap-
plied. The cas&=0 corresponds to a set of uncoupled oscillators
and, therefore, is not of interest to us here. The results deduced
above imply that the probability flux in a direction normal to the
boundaries a¥=0 and #=/2 is identically equal to zero. From
the above observation and based on our earlier W8fKor the
noncommensurable case, wesume a Neumann boundary condi-

process are not physical, thus it is not clear what boundary cc;[Hzn for 4.

ditions one should use to solve the eigenvalue probi2a). In
general it is also possible, to have singularitieséinonly the

nonsingular cases will be considered hehe order to obtain the 4 Ejgenvalue Problem

boundary conditions at the boundari¢s0 and #/2, we investi-

gate the asymptotic behavior of the diffusion process near thesé'S in [3,12,13, the solution of22) can be calculated from an

boundaries. It is obvious that

0% o(0,7) = miz0= 5K2Se(20) + 5x2S,(0)[ 1— cog 2) ]

orthogonal expansion. The nature of the coefficients of the equa-
tion suggests that a double Fourier series is appropriate. 3ince

is 2ar-periodic iny and because of the assumed Neumann bound-
ary conditions

It can easily be seen from the expressions for the drift term

m(6,7),

1 1
n(o.y)~g k*{Se(2w) +S,(0)[1+cog2y) ]} 55" 6—0"
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iy (7%( 77):0 (24)

%(Y,O)ZW vy
we may expresg, as follows:
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9,(P)

*x
*****
***** .
*x
—*
****
************************

T T

* 1 term
+ Bterms
A  {15terms

— 28 terms 3

0 1

Fig. 1 Variation of moment Lyapunov exponent,

©

Yol y,0)= aoo+2 aOnCOSQna"‘E E (amncosmy

=1 m=1

© ©

+by,sinmy)cos h 6 (25)

Insertion of(25) into (22) leads to the following equation for the

coefficients:

Crsmn C Qg
e N BT s
D rs

(26)

Drsmn rsmn

where

def

rsmn

f j L(p)(cosry cos Z0) X cosmy cos 2hfdyd o

def
f f (p)(sinry cos X6) X cosmy cos nodydo

rsmn

. def
rsmn j j
_ def
rsm n— j f

The existence of a nontrivial solution {@6) requires that the

p)(cosry cos &0) X sinmy cos 2n6d yd

p)(sinry cos Z6) X sinmy cos 2h6dyd o

2 3 4
p
g2(p) with p

(@ ao an] _

a;p an ain
A=| . ; =1 Ay Ag An
L3N0 ani awn] i
[ b1y by bin] - ;

by by bon
B: . : . = BO Bl BN
L bno b bun i

Then (28) may be written as the following (2+1)(N+1) di-
mensional system:

Ar=g(p)r (29)

where
r=[Ag,A1, ..., Ay,Bo,B1,....Bn]" (30)

Thus to evaluatg(p), the leading eigenvalue of, Ave construct

a sequence of approximations by finding the eigenvalues of a
sequence of submatrices. The set of approximate eigenvalues ob-
tained by this procedure converges to the corresponding true ei-
genvalues adN—o. However, the amount of calculation in-
creases drastically with the increase in the number of terms
considered.

determinant of the coefficient matrix be zero. Thus to evalua® Numerical Results

g(p), the leading eigenvalue of the coefficient matrix, we con-
struct a sequence of approximations by truncating the sums. Con-

sider the truncated system
M N
E 2 (ars):g(p)(amn)
r=0 s=0 brs bmn

We approximate the solution t@6) by numerically solving the
truncated Eq(27) for g(p) with M=N

N
s=0 Drsmn

represent the following matrices:

rsmn Crsmn

(27)

Drsmn Drsmn

Crsmn

rsmn Qg

bI'S

"MZ

o™ o)

Drsmn

Let A andB
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We now present some numerical results to illustrate the conver-
gence of various orders of approximations. For this purpose, we
consider the numerical valugs;;=1, p»=2, k=1, §;=1, 6,

=2, S{(2w)=S40)=1, T,(2w)=0. We obtain several sets of
results corresponding td=0, 1, 2, 3 giving rise, respectively, to

1, 6, 15, and 28 terms in the Fourier expansion. We compare the
6-, 15-, and 28-term expansions for the fourth-order eigenvalue
approximations. From the results shown in Fig. 1, it is clear that
the results folN=2 (15 term$ and N=3 (28 termg are essen-
tially the same. Thus, it suffices to use a 15-term expansion in
order to obtain a sufficiently accurate expressiondefp). For

the parameter values given above, the system is almost-surely
stable, but moment unstable beyope 1.77.
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In conclusion, a method to compute the moment Lyapunov ewith a rectangular cross-section and excited stochastically at the
ponent of a 2-dof coupled linear system with commensurable @eints of support along the longitudinal direction of the beam.
genvalues, under random parametric excitation was developed.

We derive the generatdr(p) for finite p, whose principal eigen- Acknowledgments
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the stochastic stability of a number of nongyroscopic mechanical,
structural, and diverse other physical systems with symmetippendix
These include for instance, surface wave excitations of fluid in a . . - . -
container with nearly square cross-section, transverse motion of An tAh'S apperldlx, the FXpl'C;t exgressm;ns. for the coefficients
flexible spinning disc with time-dependefrandom variation in ~ Quy» Quyr Myys Byys Vyys Vi Togr 0% 50 Oy, 1N (21) are evalu-
the spin rate, randomly loaded shallow arch structures, and beaatesd under a specific resonance condition w,= w,.

def
79, 160 {P21P31Se(0)[ 1+ €0(26) 1+ (P37 + i) S¢(0)0% 260)}eSA20) — 2(Pa1— P22) Se(0)[ P31+ P2y €O 2 0)]]sin( %)

defq

1
Ty=g wz[ S(0)+ Se(2w) + 55(0)00{ 2 %) ) : (p£12+ 2p;1p5, €O 26) + pérlz cos(26))csc(26) - a1 w?(P11— P22){2S¢(0)

(P31t P35 Se(20) +2(p11— pzz)zsgor2pnpzzs§(2w)cos( 2%”

+S:(20)} [ pat p;lCOQZB)]CO< ? )CSC(ZG) + %wz

1
(0]

def 1

To9===| (Pa2— 2= P2)S:(2w) + Pr2SH0) — (p52S:(0) — 2 Sy(2 2E §20+i7+80+82
00~ 35 P21 = P11~ P22) Se(2w) + Poy™Se(0) — (P217Se(0) — 2p11Pp2:S:(2w) ) cO QO cos(26) 16p21p21[ :(0)+S:(2w)]

7

1
—S,;(O)cos( 2 a ) ] coq20)+ kY

_ Y
(Por’+ Pirt P32 Se( 2) +P5*Se(0) — (2P11P22Sy(20) + pz*fsgoncos( 251)

1
—16(Pu~ pzz)Sg(Zw)COS( %) [p5,c0926)+ py]sin(26)

def

1 _ _ _ (L 1
vy, =~ 16 @S OH{(2057+ Pr’) +4p21p;; €O 26) + Py’ COSH(2 a)}sm( 2 ;1) 0s¢(26) + g w| (Pr+ P22 P1 0% 26)

+{(P11~ P22 Se(0)[ P21 €O 260) + Pyl — (P11+ P22) Se(2w)[ P21+ Py COiZG)]}Siﬂ( %) cs¢26)

_ Y1
+p21]T§(2w)cos(E

1 . Y
+ 6% p2+128§(0)sm( 2;1) —2(pf— p%z)T§(2“’)

~ def 1 ) . B .
vy, =~ 1_6‘1’{2p£1(p11_ P22) S¢(0)SINF(26) + (P11~ P22) Se(20)[ P2 €O 26) + Py ]+ (P11+ P22) Se(2) [ Py

1
- palcosizen}sin( ”) c5426) + 75 0{[P2Si(0) ~ 2p11P2,Se(26) 1+ p;1p518§<0>cos(20)}sin( 2 %)

(O]

def 1

- - Y . 1
MW1=3—2[<p;fpilp§2>s§<2w)+pzfs§<0>+<2pnpzzs§<2w>pzfsg(oncos(z ) cog26)sin(26) + o

1
(0]

pzﬁDu( S:(2w)

1
sin(26) + 3_235(20))[2p2+1(P11_ P22)COS(26) +{P2y(P11— P22)

+S40)— sg(O)cos( 2 %) —Si(2w) (P31~ P3)

1
0]

_ Y
+ Par( P11t P22} €O 260) + Por( P11t P22) — Poy(P11— pzz)]co% )
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D705 S(0) + Si(20)]

defl 1 5 , V1 1
Miﬂl: 3—2 (p2 pll p22)3§(2(1))+p2 Sg(o) ( Sg(O)—Zpllpzzsg(Zw))CO 2; CO§(20)+ 1_6
1
- pglpglsg(o)cos( 7 ) ] cog26)+ 32{ (PIrt P2t + P2 Se(20) + P2 °Se(0) — (2P11P22Sy(20) + p;ng(O))Cm( Z,l) }

sin(26)

1 Y1 . + — 1 2 2 -+ Y1
- E(pn_ P22)Se(2w)co o Sin(260)(p,,c0926) + p,y) |COL(26) — 16 (P11~ P22)Se(2w) + P2yP2:SL(0)cos 2 o

{P21(P11+ P22 Se(2w) — Poy(P1s

16[(p22+p )Sg(O)cos{20)+2p21p2155(0)]<305{ y)csc(20 16

Y1
—pzz)Sg(O)}COS( + PPt pzz)Tg(zw)Sln( ) 005(29)"‘ 16 {=pai(P1i— P22)S:(0) + P21(P11F P22) Se(2w) }
XCO{% +pay(Pigt pzz)Tg(zw)Sin(%)
defl
Q¢1 (pzl i p22)S§(2w)+p21ZS§(O) (p2123§(0) 2p11p225§(2w))co{2— cos(26)+ 6p21p21( S:(0)+S;(2w)

1
—sg(omos(z%))cos(zew3—2[(p§1+p£12+P§2)Sg(2w)+p2285(0)] 32(2p11p228§(2w)+p2ZSg(O))COS( 71)

1 1
- 1_6(p11_ pzz)sg(zw)005< %) [P21CO826) + pyy]sin(26) + 16 (pil_ p%z)Sg(Za)) + p£1p313§(0)005< 2 %) ) cog20)

1
+ 3—2(2pil+2p§2+ 3y — Pai )S§(2w) En

(032 p32)5:0) — (324 pif )S§(0)005< 71”

sin(26)

+ 16 {P21(P11+ P22 Se(2w) — P(P11— pzz)Sg(O)}CO{ 7 +P2i(P11t p22)T§(2w)S|n( n )

. defq 1
Q¢12Ep;15§(2w)[(p11_ P22)C0g20) + (pyit ng)]CO{ ) sin(26) +

S| (P2175:(0) - 2p11p22s§<2w>>cos( 71)

+(Pirt P22~ P21 Se(2w) — P2Se(0)

1 1
COS/(20) + 75 Se(20) (P11~ P, COL20) + 25 (2P11P22S(20)

— P2y Sg(o))co% 2— 32[P2 235(0) +(piy+ Pl pay )S§(2w)]
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A method is presented for calculating the stress relaxation due to scission in elastomeric
components that operate at a fixed deformation while at an elevated temperature. A
relationship is established between stresses at different temperatures that is called the
correspondence principle for scission/healing materials. Two examples involving cylin-
ders illustrate its use. The first example involves combined tension-torsion, for which an
axial force-twisting moment relation is derived, that might be useful in experimental
studies to assess the applicability of the correspondence principle. The second example
provides a criterion for estimating the lifetime of an annular seal.
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1 Introduction were used in a vibrating pump. Thus, the conditions for the appli-

cation of thecorrespondence principleould be at least approxi-

t rlr? ?ippllt(;atlfr;s Iwh(;r]e ﬂr:e rrl’r;ecrrlant;c?lli ar?d rt]hern;la;uo?gs 02 erllﬁétely satisfied and would lead to a useful first approximation for
omeric structural components are benign enougn that no cha relaxation of stresses in an elastomeric component undergoing

in microstructure occur, stresses and deformations can be Calgkll’ssion

lated using the nonlineqr theory of elasticity. However, when the The constitutive theory that accounts for scission-induced stress
temperaturdor deformation of an elastomeric structural compo-

; - C @ - relaxation in an elastomer at an arbitrary fixed deformation is
nent is sufficiently large, scission of molecular cross-links angtesented in Sec. 2. Theorrespondence principle for scission/

possible in situ recross-linkinhealing can result in significant heajing materialss developed in Sec. 3. Two examples involving
time-dependent softening of mechanical properties as well as pgftinders are presented in Sec. 4. The first involves combined
manent sef1,2]. In applications involving elastomeric seals Okension-torsion. A result relating the axial force and twisting mo-
bushings in automotive or truck suspension systems, for exampigent is derived which might be useful in experimental studies.
these changes can impair performance and require eventual TRe second example provides a criterion for estimating the life-
placement. In such applications, where it is important to be abletime of a seal.
predict the lifetime of the elastomeric component, the nonlinear
theory of elasticity is no longer applicable, and a new means for
determining stresses is required. . .

In this paper, a method is presented which can be used to cal- Constitutive Equation
culate the stress relaxation due to scission in elastomeric compoTobolsky[1] described experiments in which a rubber strip at
nents that operate at a fixed deformation while at elevated temsom temperature was subjected to a fixed uniaxial stretch and
peratures as, for example, could occur in seals or bushings. Tthen held at a higher fixed temperature for a specified time inter-
method is based on a correspondence that is established betwedn At temperatures aboveT. (say 100°Q, called the
stresses in an elastomeric component at different temperatu@®emorheological temperature, the stress decreased with time. At
Because an analogous situation in the linear theory of viscoel#ise end of the specified time interval, the external force was re-
ticity has proven to be very usef[8], the method presented hereduced to zero and the specimen was returned to its original tem-
is referred to as theorrespondence principle for scission/healingoerature. The specimen was observed to have a permanent stretch.
materials Tests were carried out for different applied stretches, tempera-

The proposedtorrespondence principlés restricted to condi- tures, and time intervals. The decrease in tensile stress with time
tions when the deformation is fixed and the temperature is sgid the permanent stretch were measured. Results of more recent
tially uniform. There are applications when these conditior@Xperiments can be found in the article by Wineman, Jones, and
should be at least approximately satisfied. For example, if tfhaw[2]. Tobolsky analyzed the data assuming the elastomer to
surface temperature of a seal is increased, the time required for Bfeinstantaneously neo-Hookean, for which the relation between
temperature field within the seal to become uniform may be smifinsile(Cauchy stresso(t) and uniaxial stretch ratia is
compared to the time for there to be significant scission. Also, a
seal may be subjected to a large initial deformation and then small )
superposed deformations as, for example, would occur if the seal o(t)=2n(OkT| A°— N

@
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f This is the case for the phantom model, affine model, constrained
chain model, localization model, liquidlike model, and eight-chain
model[9]. Accordingly, Eq.(6) can be restated as

whereX is the stretch ratio of the original network while held at o=—pl+c¢°B,T) (7a)

the high temperature), is the cross-link density of the original

network at the end of the test, and is the cross-link density of Where

the new network. Equatiof®) expresses the assumptions that i AN AW

the total stress is the sum of the stresses in each netwpdadh 0°(B, T)=2n,kTS’(B), S°(B)=——B— —B L

network acts as an incompressible isotropic neo-Hookean elastic I dla

material, and iii broken cross-links reform to produce a new net- (7b)

work that is stress free when the stretch ratio of the original net- For temperature$<T,, and moderate deformations, no micro-

work is X [1,4]. structural changes are assumed to occur, and the stress is given by

Tobolsky’s data suggested tha(t) in (1) is independent of the EQ. (6), (7a), or (7b). If the material is held at a fixed homoge-
stretch ratiok up to a value of about 4. This was supported by thBeous deformation and the temperature is increased to a fixed
results of Scanlan and Watsofb]. According to Egq. (1), VvalueT=T. attimet=0, scission of the original microstructural
o(t)/o(0)=B(T,t) and n(t)=pB(T,t)n, wheren, is the initial Nnetwork is assumed to occur continuously in time. The volume
cross-link density3(T,t) is a material property function that canfraction of the original network cross-link density at tinhes

be obtained experimentallfsee[1], Fig. V.4). Tobolsky (1], p. denoted ag3(T,t), a monotonically decreasing function bat-

N superscripb indicates the scission-independent part of a quantity.
+2n,kT (;) —( H 2

1
U=2n1kT()\2— -
A A

226) suggested thaB(T,t) can be represented in the form isfying g(T,0)=1.
The current stress is given by
B(T.H)=¢(a(T)t) ®3) W AW
for a number of elastomers. For a particular natural rubber vulca- o=—pl+p|2 R B-2 i Bl}, (8a)
nizate in the temperature range 100ST<130°C, Tobolsky . 2
showed that or, alternatively,
T,t)=exp(— a(T)t), 4 W oW
AT H=ex=a(T)) ) o= —pl+2BnKT| 5B ——B"1, (8b)
with Ayl
K where 8 and o are evaluated at the current tiheThis constitu-
a(T)= —BTEXD(—Eact/RU (5) five equation extends the ideas inherent in ED. to arbitrary
Kp homogeneous deformations. Neubert and Sauri@rnssed it in

their analysis of the permanent set due to new networks that

kg is Boltzmann’s constanikp is Planck’s constan is an ; .
B e Fact fymed during a pure shear deformation.

activation energy whose value was found to be 30.4 kcal/mol, al . . i
9y Several comments are in order regarding constitutive (Bqg.

R is the gas constant. o= : , X
Neubert and Saundef§] carried out tests similar to those of 'St in accordance with Tobolsky's experimental resy8T,t)

Tobolsky, but for a pure shear deformation. They measured pésr_a_s_sumed to be_ indepe_nd(_ent of the_deformation. This is_ strictly

manent biaxial stretch upon removal of stress and reduction of L'f'efd only f_or f'XteId un_laamal e}<tenst|ﬁns (‘;V'?K‘L t'_l'here SIS a d

temperature to its original value, and found that predictions bas of expermental evidence for other detormations. second,

on the assumption of a neo-Hookean response led to inaccu Qough Tobolsky assumed the response of the original and newly

predictions of permanent set. They modified assumptiproyi or(rjneFd netwoakszto bseﬂneo-Hqé)keaan, lt\lheubert, a?g.‘i'.t.sa“@ﬁfs

modeling the rubber as a Mooney-Rivlin material, and showdlf!C FONg and zapap/] considered other possIbililies. Thus,

that this model led to better agreement with the measured pernja-(/112) is left unspecified. Third, consistent with assumption

nent biaxial stretch. Fong and Zap& later proposed using the ' above, new networks that result from cross-linking are formed

Rivlin-Saunders model to determine the permanent biaxial stretdh 2 Stress-free state. Provided the deformation is held fixed, these
These results are now used as a guide for the development G&YV .networks dq not contrlbut.e to the stress and no further con-

constitutive framework for the three-dimensional response ofS§tutive assumptions are required.

rubber undergoing scission while at a fixed homogeneous defor-

mation and constant temperature history. For a detailed discuss®n Correspondence Principle for Scission-Healing

of the constitutive equation, see Wineman and SfwConsider Materials

a rubbery material in a stress-free reference configuration at a . , .

temperaturdr. There is a range of deformations and temperaturesCOnsider an elastomeric body that has been subjected to a non-

for which the material response can be regarded as incompre&Mogeneous deformation and is in equilibrium at a spatially uni-

ible, isotropic, and nonlinearly elastic. fis the position at cur- [0'™M temperaturd ,<T,, . Let its deformed configuration be de-

rent timet of a particle located & in the reference configuration, "oted by«. Surface tractions are specified on the portion of the

the deformation gradient iE=ax/dX. The left Cauchy-Green deformed surface denoted ag(?) and the current positions of

tensor isB=FFT and the Cauchy stress is given by particles are specified on the portion of the deformed surface de-
noted asdx(?. Let X denote the prescribed current particle posi-
oe—pliaWNo W, (6 tons on 9@, T() denote the prescribed surface traction on
P dly dl, Ik, and T@ denote the computed surface traction e ?.
. . . - The stress and deformation fields satisfy the following conditions:
wherep is an arbitrary hydrostatic pressure arising from the con-
straint that deformations are isochorig., |, are the first and dive=0 in «, (9)
second invariants dB, respectively, an&V(l1,l,,T) is the strain .
energy density associated with the original material. In . on=T on 3«7, (90)

o,B, andT are evaluated at the current time t, which is omitted . ()
from the notation for brevity. For many proposed models of rub- X=X on dk (%)

ber elasticity, the strain energy density function is written agheren denotes the unit outer normal at a point of the external
W(l4,1,,T)=nkTW(l4,l1,), that is, the dependence on temsurface. The constitutive equation is given by Eq®)(a&nd ("),
perature and deformation is separable. Note that the subscriptndiich when substituted into Equationd® gives
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—gradp,+ 2n,k T, divS°=0 (10) N

Boundary condition (B) with (7b) can be written in the form M

—Pon+2n,kT,Sn="T() (11)
Equations(9c), (10), and (11) define a boundary value problem T @@; R
for the scalar fieldp,(X) and deformationx,(X). The corre- !
sponding stresses are given by

Oo=—Pol +2nkT,S(B,) (12)
whereB, is calculated fromx,(X). The surface traction$® on L
kD are
T@=g.,n=—pyn+2n,kT,(B,)Nn (13)

Now, suppose the body is brought to a higher, spatially uniform
temperaturdl ;> T, and is in equilibrium at a fixed deformation. -— &_’y
According to various researcheisg.,[1,5)), the volume changes Tt
associated with the temperature change of interest and the process
of scission and subsequent reforming of cross-links are small Q—)
enough to be neglected. It is thus assumed that the body has the

same deformation as when at the lower temperalyreT,, , that
is X=X,(X). Constitutive Eq. (8) gives

1= —P1l +2B(T1,1)nKT;S(B,) (14)
Equilibrium condition (%) becomes, using Eq14),

Fig. 1 Hollow cylinder subjected to axial force and torsion

) ) ond example is a practical application of the correspondence prin-
div o= —gradp; +2B(T1,t)nokT, divS’(Bo) =0  (15)  ¢iple, showing a method for determining the lifetime of an elas-

Sincep,(X) andx,(X) satisfy Eq.(10), Eq. (15) becomes tomeric seal at an elevated temperature.
div o= —gradp, + 8(T,,t) T, /T, gradp, Combined Tension-Torsion of a Circular Cylinder. Con-
sider a circular cylinder at a uniform temperatdrg<T., with
=grad —p;+p.B(T1,1)T1/Ty)=0 (16) lengthL, inner radiusR;, and outer radiu®k,. The inner and

outer cylindrical surfaces are traction free and axial fdkcand
twisting momentM are applied to its end surfacésee Fig. L
The cylinder is in equilibrium under these applied loads.

The resulting deformation is assumed to be axially symmetric,
1= B(T1,)T1/To[ = Pol +2NnKT,S(By) ] (17) in which plane cross sections remain plane, displace along and
otate about the axis of symmetry, and cylindrical surfaces deform

Boundary condition (8) is automatically satisfied because 0‘cirnt cylindrical surfaces. Let a cylindrical coordinate system be
the assumed deformation. The tractions on the deformed exter oduced that is coaxial with the cylinder and has its origin at

surface are calculated using H@7), one end. A material point alR;®,Z) in the reference configura-

on=B(T, )T, /T[ —pon+2n,kT,S2(B,y)N] (18) tion dgf_orms to (,0,2) in_the current configuration. The mapping
describing this deformation has the form

1/2

If we let p1=po(X)B(T,t)/T,/T,, the equilibrium equation is
satisfied.
The corresponding stress is found from Etg),

Evaluating Eq.(18) on 9« gives B(T;,t)T,/T,T¢”) and on

Ik gives (T, )T, /ToTO. =2 Rot
The results of this section establish the following: A
Correspondence Principle for Scission/Healing Materials 0=0+ Y0z (19)

Let x=x,(X) be an equilibrium deformation for an incompress-
ible isotropic elastomeric body at a spatially uniform temperature 7=\Z

T,<T, and let the corresponding stress field be denoted as ) ) .
a,(X). Thenx=x,(X) is also an equilibrium deformation when andy are constants that represent the uniform axial stretch ratio

the body is brought to a higher, spatially uniform temperatur%nd uniform cross-sectional rotation per current length, respec-

T,>T,,, where it undergoes the scission-recross-linking proced&ely. If r; andr, are the radii of the deformed inner and outer

The corresponding stresses asg(X,t)=pB(T;,1)T,/T,0,(X), Surfaces, then

where B(T4,t) is the material’s scission response function, i.e., 1 r2—y2 R2r2— R2r2

the ratio of the current to the original cross-link density for the =y

original material. If the surface tractions afé”) on g«(*) and MR-R Ro—Ri

T on gk atT,<T,,, then afT,>T,, the surface tractions are  Consider a possible experiment in whiktand i are specified

BTy )T /ToT@ and B(T,, ) T, /T, T, respectively. and the cylindrical surfaces are traction free in the current con-

figuration. Using the notation of Sec. 3, the inner and outer cylin-

drical surfaces formi«(® andT(©)=0. The ends of the cylinder,

I L z=0 andz=\L, form the surface/x?. & is obtained by evalu-

4 .Appllcan'ns of thg Correspondence Principle for ating the mapping in Eq19) atZ=0 andZ—L .

ScissioriHealing Materials An analysis of the combined torsion and tension of a circular
In this section, two examples are presented to examine the ceplinder can be found ifil0]. A scalar fieldp,(r) can be found so

sequences of theorrespondence principle for scission/healinghat the equilibrium equation is met. The radjiandr, of the

materials The first example discusses a nontrivial multiaxial dedeformed cylindrical surfaces are determined from the first of Eq.

formation state that could lead to a nice experimental assessm@th and the boundary condition that” =0 on 9«(?). The con-

of the validity of the proposed correspondence principle. The sestanty is then known. Expressions for the stress are presented in

(20)
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R, cylindrical surfaces form the portion of the boundamt?. Sup-
pose it is assumed that the deformation is given by (E§). with
¢=0. It can then be shown thd =0. Sincer; andr, are speci-

seal Ri fied, X andy are determined from E@20). In general, the bound-

ary conditionT(?)=0 cannot be satisfied at each point &r(".

Instead, let the relaxed boundary conditida-0 be imposed. The

\ | / scalar fieldp,y(r) and the stress components are then completely

\ | determinedo,, , the radial stress, is the only nonzero stress com-

ponent acting o«¥, and the pressure between the seal and a

rigid cylinder is|o,|. Suppose that the pressure between the seal

and a cylindrical surface must be at le@st if a leak is to be
avoided. WhenT,<T.,, r; and r, can be chosen so that

|‘Trr(ro)|T0> p* and |0'rr(ri)|To> p*.

Suppose that the temperature of the seal is increasen, to
>T., att=0. According to the correspondence principle, the de-
formation is unchanged. Using the discussion from the first ex-
ample, it can be shown thN|Tl=0. The pressures fdr>0 be-
tween the seal and the inner and outer rigid cylinders are,
respectively,

pinner(t):|0'rr(ri)|T1:B(Tlft)Tl/To|0'rr(ri)|To:
Fig. 2 Elastomeric seal and rigid die (24)
pouter(t)z|O'rr(ro)|Tl=ﬁ(Tlvt)T1/T0|Urr(ro)|T0-

Because of scission, these pressures will relax with time. Leakage
[9] but are omitted here for brevity. Of particular interest here aie predicted to occur at the smallest tinfewhen
the expressions for the axial force and twisting moment applied

rigid
die

the ends of the cylinder, Min{Pinner(t*), Poutel t* )} =p* (25)
o is reached, thereby giving an estimate of the seal’s useful life at
szﬂ.f o, rdr (21a) temperaturer; .
" 5 Summary and Conclusions
M =2Wfr0025r2dr (21b) A correspondence principle has .been introdupeq Which can be
' used to calculate the stress relaxation due to scission in an elasto-

' meric component at an elevated temperaflirein terms of the

. S Resses in the component at a lower temperatyrehere there is
T1>Te, . According to the correspondence principle, the deformey, eission. The application of the principle assumes knowledge
tion x=x,(X) is given by Eq.(19). The traction ondx'” is  of two items: 1 the stress distribution at temperattfg, deter-
B(T1)T/TTO=0. On 9k, o, =B(T1.)T1/Te02d7,,  mined by either analytical or numerical methods and naterial
and O'Zg|T1:B(Tl,t)T1/T00‘w|T0. Since Eq.(21) applies at all propertyB(T,t) that can be determined from uniaxial stress relax-
temperatures, it follows that ation experiments at different constant temperatures. The corre-

spondence principle requires that the deformations be the same at

Suppose that the temperature of the cylinder is increased

_ fo _ fo T, andT, and that the temperature fields be homogeneous. When
N|T1_27’ﬁ ‘722|T1rdr_277J'r_ B(T1,O)T1/Too gy rdr these conditions are at least approximately satisfied, the corre-
' ' spondence principle can give a useful first approximation to the
=B(T,,0)T1/TN|T (22a) actual stresses during scission. Two examples illustrate the appli-
. ) ° cation of the correspondence principle. In the first, a tension-
In a similar manner it can be shown that torsion experiment can be used to assess the validity of the prin-
|V||Tl=,B(T1,t)T1/ToM It (22b) ciple. In the second example, the usable lifetime of a seal at high
° temperature can be predicted.
It also follows that
Nl7 Nl Acknowledgment
_t___° (23) This material is based on work supported by NSF Grant No.
Mlr, Ml CTS 9908925.
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Elastoplastic Modeling of Metal
Matrix Composites Containing
Randomly Located and Oriented
Spheroidal Particles

Micromechanics-based effective elastic and plastic formulations of metal matrix compos-
ites (MMCs) containing randomly located and randomly oriented particles are developed.
The averaging process over all orientations upon three elastic governing equations for
aligned particle-reinforced MMCs is performed to obtain the explicit formulation of ef-
fective elastic stiffness of MMCs with randomly oriented particles. The effects of volume
fraction of particles and particle shape on the overall elastic constants are studied.
Comparisons with the Hashin-Shtrikman bounds and Ponte Castaneda-Willis bounds
show that the present effective elastic formulation does not violate the variational bounds.
Good agreement with experimental elastic stiffness data is also illustrated. Furthermore,

the orientational averaging procedure is employed to derive the overall elastoplastic yield
function for the MMCs. Elastoplastic constitutive relations for the composites are con-
structed on the basis of the derived composite yield function. The stress-strain responses
of MMCs under the axisymmetric loading are also investigated in detail. Finally, elasto-
plastic comparisons with the experimental data for SiCp/Al composites are performed to
illustrate the capability of the proposed formulatigfDOI: 10.1115/1.1794699

1 Introduction self-consistent method for each orientation. Takao €6d).Tan-
Metal matrix composite$MMCs) have evolved over the pas'[dOn and Wend7], Ben\_/enl_ste[s], gnd Ferrari and Johnsd@]
40 years, and have been applied as structural materials in aeﬁja(_)wed the effec_t of misoriented fiber on the overall eIQSt'C con-
space and automotive industries, due to their high-performal nts of compogtes,lbased on the Mor.|-Ta}naka mean-ﬁeld theory
specific mechanical properties in service. The stress-strain 1, co%pled V&"tr\}v.(ﬂ!ﬁirentdf'belr d|satr|b#t|on ffun(cj:tlons_. F.)om?
sponse of MMCs generally represents their basic mechanical fxaStaneda and Willig15] developed the refined variational
havior: i.e., the elastic stiffness, yield stress, and plastic ftbv ounds for randomly orlentgd composites. Riccardi and Monthe!l-
The prediction of effectivéoveral) elastic and plastic behavior of €t [18] proposed a generalized self-consistent method to predict

MMCs are of considerable interest to researchers and engineerf €ffective elastic moduli of composites. .
many science and engineering disciplines. For the elastoplastic behavior of MMCs with randomly oriented

Although the constitutive relations of discontinuously reinParticles, Qiu and WengP2,23 considered the overall composite

forced MMCs were widely studied in recent years, most of thléehgwor, using a secant moduli approach coupling with either the
research efforts have been directed to unidirectionally aligndferi-Tanaka methodl7,21,24 or the energy method proposed by
particle-reinforced composites. For MMCs containiramdomly the authors earlief25]. L|_ et al. [26] derived the_ e_IastopIastlc
oriented particles, the first elastic study seems attributed to CdgsPonse of the composites, based on the variational procedure
[2] who considered the effects of random orientation of short fleveloped by Ponte Castane@¥,28. Dunn and Ledbettel29]
bers on the stiffness and strength of paper and other fibrous ra#s0 proposed a micromechanical model to predict the elastoplas-
terials. However, Cox’s results did not take into account interalic behavior of MMCs with orientation-preferreiextured rein-
tions between fiber and matrix phases. Christensen and coworkéf§éements. From a numerical point of view, Bao et[80] cal-
[3,4] proposed a geometric averaging method for determining tG&lated particle orientation effects on discontinuously reinforced
effective isotropic elastic properties of randomly oriented fibd¥IMCs by considering randomly oriented needle-type elastic rein-
composites. Christensen’s averaging method is directly basedfercements and disc-type elastic particles embedded in an elasto-
the stiffness-type mechanical properties of aligned continuous filastic matrix. Moreover, Sorensen et [@1] and Dong et al[32]
ber composites so that the end effects of short fibers are neglecetiployed micromechanical finite element methods to simulate the
Since the 1980s, more investigators were involved in predictirgjfects of reinforcement misalignment on the tensile elastoplastic
the effective elastic behavior of composites based on micromesponse of MMCs.
chanical approachd&-20Q]. For example, Chou and Nomufa] The objective of the present paper is to develop a
derived the elastic formulation of randomly oriented compositesicromechanics-based effective elastoplastic model of MMCs
based on the results from both the mathematical bounds and tioataining randomly located and randomly oriented spheroidal
particles. The averaging process over all orientations upon three
"Author to whom correspondence should be addressed. governing equations for aligned spheroidal particle-reinforced
ME%zTL‘EfLEdE%mEEARPS%‘?d mﬁggg‘g:f?n?LV;SAOé‘MOSgﬁF’:”NEECOAFNAﬁ‘L?:E;Y'\A(;F composites is performed to obtain the constitutive relations and
CHANICS. Manuscript receiveg by the Applied Mechanics Division, August 20, ZOOé,SQtrODIC E‘_|aStIC stiffness of MMCs with randor_’nly Onented sphe-
final revision; December 29, 2003. Associate Editor: A Needleman. Discussion on #i@idal particles. The effects of the volume fraction of particles and
T Voo Do 3 Wt x5 Enimmer) Eraoenme barlle aspect fatio on the overal elasic constants o the
DASY. oS ~@omposites are discussed. The comparisons with the Hashin-
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will ghtrikman bound§33], Ponte Castaneda-Willis bounftks], and

accepted until four months after final publication of the paper itself in the ASM ¢ h |
JOURNAL OF APPLIED MECHANICS. the available experimental data are also illustrated. Furthermore,
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(a) (b) o === =

Fig. 1 (a) A composite containing randomly dispersed and
randomly oriented spheroidal particles, and (b) the sketch of a
spheroid

the orientational average is utilized to derive the overall yiel
function for the composites based on the previous re§aits35

for the aligned particle-reinforced MMCs. As a demonstration, tr
overall elastoplastic stress-strain curves under uniaxial loading i
studied in detail. Comparisons between the present theoretical
predictions and experimental data are performed to illustrate thig. 2 Transformation between local coordinate system Xj
capability of the proposed model. Finally, initial yield surfacegnd global coordinate system  x;

and effects of stress ratio on the MMCs under axisymmetric load-

ing are investigated.

2.1 Orientation-Averaged Constitutive Equations. To ob-
2 Effective Elasticity of MMCs With Randomly Ori-  tain effective constitutive equations of random heterogeneous
ented Particles composites, one typically performs the ensemble-volume and ori-
tational averaging procedurédsomogenizationswithin a me-
scopic representative volume elemé&RVE). In particular, Ju

d i \ elastic i . heroidal . 1 with and Chen[36] performed the ensemble-volume homogenization
and linearly elastic isotropic spheroidal particlghase 1, with ong derived the governing stress-strain equations for particle-

: 7 S .
the stiffnessC(%)), as shown in Fig. (). The randomly oriented |ginforced composites under the applied far-field stegfssin the

particles are also randomly located in the matrix. The aspect rafigse of the first-order approximatiéwhere the near-field strong

of the spheroidal particles is defined @s-a, /a wherea, anda jnerparticle interactions are neglectethe three governing con-
are the semi-axes of the sphero[@&g. 1(b)]. It is assumed that stitutFi)ve equations take the forESG]'lE g ¢
the two phases are perfectly bonded at the interfaces. '

The transformation between local coordinates of particles and o=CO:(g— gpe*)
global coordinates of composites is demonstrated first. As shown — 0 —
in Fig. 2, the local axes of a spheroidal inclusion are denoted by e=e +¢Se ®)
the primed coordinate system;(,x;,X3) with axis x; being the ¥ =—(S+A) Lgl
symmetric axis of a spheroid. The global or fixed axes are repre-  _ __ _
sented by the unprimed coordinate system,X,,x3). Each com- Whe_re o, €, z_md e* are the ensemble-volu_me average_d stress,
ponent of the coordinate transformation mafigx; ] is simply the strain, and eigenstrain tensors of complosnes, respectively. The
cosine between thizh primed andjth unprimed axes. Thus, we corresponding far-field strain is®=C(® “:¢° and the elastic
have(c.f. [7]) mismatch tensor reada=[C®—C@]71.C(®, The operation
(X' 1=[Q; 11x) 1) symbol “:” denotes the contraction between a fourth-rank tensor
! SRl and a second-rank tensor while the symbel tepresents the
where the transformation matrix has the following form multiplication between two fourth-rank tensors. In additiginge-
fines the volume fraction of particles, a®lis the fourth-rank
Eshelby’s tensor of an ellipsoid. For spheroidal particles, the Es-
[Q;]=| —sin@ coshcosy cosdsiny (2) helby’s tensoiS can be expressed 37]

0 —siny cosy Siki=SiK' 8 S+ ST (S Sji + 8 Si) (6)

with 6 (0<6<m/2) denoting the angle between andx;, andy  where the second-rank tens@ig’ andS{?) are given in Appendix
(0<vy=2m) representing the angle betweenpandx;. Therefore, A. It is noted that Mura’d38] tensorial indicial notation is fol-
any second-rank tensor, e.g., the stress tensor, can be transfortoe@d in the above expressions; i.e., upper-case indices take on

Let us start by considering a two-phase composite consisting%g
. . . . ) . on S
a linearly elastic isotropic matrigphase 0, with the stiffness'™)

cosf sinfcosy sinésiny

between the global and the local as the same numbers as the corresponding lower-case ones but are
, not summed up. The effective stiffness tensor of aligned patrticle-
oi; = QiQji o () reinforced composites can be easily obtained from the foregoing
or three governing equations. The explicit expression of effective
stiffness is of the transversely isotropic form as shown in Ref.
0i;=QyiQjjoy (4)  [34].
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When all of the reinforcements of composites are randomphd satisfyingL{Y=L{, L&P=LY, LP=LB=1P=LY,
located and randomly oriented in the three-dimensiof3) Q@121 @ @1 @y @_| @2 _
h . . ! . Li7=L57=L33=L3s7, andL35=L33=L37=L33, the follow

space, the orientation-averaging process is further applied to %

le. th ) ional o p orientational average formulation can be obtained after
(5). For example, the orientational averagecofs defined as lengthy but straightforward manipulations:

— A ZWJW/Z— . 1 2w (72

<0>_f0 0 oP(6,y)sindody ) <Lijkl>zﬂfo fo QmiQnjLmnpQpKkQqi Sin 6dody
where the range of the two Eulerian angbeasnd y (see Fig. 2are
0<6#<n/2 and G=y<2mw, respectively. Further, the function
P(6,v) represents the probability density function of the randowhere
orientation. In what follows, the random orientation of particles is
assumed to be uniform so thB{(6,y)=1/2m is a constant. The
three governing equations of composites together with the uni-
formly random orientation of particles can be formulated as

=£6ij 61+ (6851 + 611 i) (13)

e MU+ aLE AL T oL+ 2L g -a @2
1
r= MUY LY L+ LG 2L 6L g+ 7L

The above formulation shows that any transversely isotropic

O s
(0)=C™:((e)— ¢(e*)) fourth-rank tensor, after the 3D orientational average, becomes an
(g)=A:&° (8) Isotropic fourth-rank tensor, as expected.
- Based on Eq(13), the transforming tensok between the mac-
(e*)=—Q:8° roscopic strair(e) and the far-field straia® can be constructed as
where the fourth-rank tensors and () read Ajja == ¢A18; 8+ (1= 2hA o) (855 + 8 8)  (15)
¢ 2w (w2 where
Aij=lijn— 5= QmiQnjSmnpd Apgst
2 1 1 2 1
0 Jo [SH+4S +287][1-T1,— 4T ]+ 1085 T,
+Spgs) 'QsiQq Sin od6dy @ 300Z,+SP]
and 25<122)
1 27 (@2 - —2)
QijkI :ﬂ JO JO Qmian(Amnpq+Smnpq)ilkaqu singdgdy 192Z,+ 12]
(10) | [352 4287 +385][3— 41— 6] ~ 655+ 58T
It is noted that signifies the fourth-rank identity tensor. Emanat- 457,+S3)]
ing from Eq.(8), the effective elastic stiffness tensor for randomly 16
oriented particle-reinforced composites can be derived as (16)
— 0 . and
(C)=CO.(I1+¢Q-A" (11) o : "
Vg4 282[1-T,+T Si3
2.2 Explicit Effective Stiffness. Before we explicitly derive A2=[ 1 T il . EREE) 12 5
the isotropic elastic constants for composites with randomly ori- 30 Z,+ 5(11)] 5[Z,+ S<12)]
ented spheroidal particles, we need to consider the following for- 1) ), 2 2)
mula. For any transversely isotropic fourth-rank tensor, kay N [S55 — S5 + S5 1[1+ 20 5~ 2 5] + 6555 17
which is expressed as 3([ZZ+S(222)] (17)
Liji =LK & 8+ LiY (8 + 81 85) (12)  with
|
Iz [Z+2Z,+ S35 + 85121+ ST 1-[2,+ S5 ][ 21+ S5
11—
[Z1+ 25+ Sy + SB[ 21+ 225+ S+ 2871 [Z,+ SF N[ 2, + S5 ]
s [Z,+2Z,+ S +2871[Z,+571-[2,+ SF1[Z, + Si1]
12— 41137
2[Z1+Z,+ S+ SN Z1+2Z,+ S+ 2871 2[Z,+ S5 Z,+ S5y
I
5 NoM1— N1fo in which
Y (1= m0)[2( 1~ o) +3(N1—No)] 0 1-T,—4T, 1 . 1—4T,— 6l 5, (20)
=
S Mo 18) 30Z,+S4] 182,851 30Z,+ S5
2 2(:““1_/4’0) and
It is noted that\ ; and 4 are the Lame constants of tiephase
(8=0,1). Furthermore, an inverse formula for the transversely iso- ,= 1-Tyt F127 1 T+~ 1)

ropic fourth-rank tensor is utilized; Appendix B. a (2) 27" (2)
tropic fourth-rank tensor is utilized; see, Appe 30Z,+S3] 10Z,+S3] 60Z,+S5]
Similarly, the transforming tensdi between the orientational

eigenstrain*) and the far-field straiz® can be constructed as Therefore, from Eq.(11), the overall bulk modulus<®™ and
shear modulug.“°™ of the randomly oriented composites can be
Qi) = Q165 0+ Qo 6k 851 + 611 i) (19) derived as
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K - - - -
keomp— 0|1 54,4200, E,=70GPa, v 0.3, E =450GPa, v,=0.2

172¢A2 100 T T T L T d T d T
3d(Q1+2¢A1Q5—2¢AQ0) L | == H-S lower bound or o=1
1-3pA;—20A ——H-S upper bound
Pham2oh, (22) or ... «=10.0 b
tio(1—2h A+ 2)) —

comp_
o P—

1-2¢A,

T 80
wherekq and ug are the bulk modulus and shear modulus of theg
matrix, respectively. g

Alternatively, the overall Young's modulug®™ and Poisson Eg
ratio »°°™P of the randomly oriented composites can be obtaine

as

70

9Kcomp,ucomp 60
Ecomp—
comp, comp i ;
3O+ 23) (a)
50 A L " L " 1 1 1 L 1 i
LComp_ B OMP— 2 "omP 0.00 0.05 0.10 0.15 0.20 0.25 0.30
6 K COMP4 Zlucomp $
To illustrate the capability of the proposed effective elasticity E _=70GPa, v =0.3, E =450GPa, v =0.2
model, let us compare our analytical resylEy. (22)] with the 60 — T T T

variational bounds for the isotropic elastic stiffness of composite: ——H-S lower bound or =1
The current stiffness bounds for randomly oriented isotropic con ~—— H-S upper bound
posites are available from Hashin and Shtriknha8] and Ponte | | ... . 0=10.0

Castaneda and Willi§15]. The celebrated Hashin-Shtrikman 50 ’
(H-S) upper and lower bounds for the bulk modulus and shee
modulus of isotropic composites were developed by Hashin ar—
Shtrikman[33], and generalized by Hi[l39] and Walpolg40,41]. a.
By utilizing the theorems of minimum energy and minimum>= 4o
complementary energy, the H-S upper and lower bounds for tt§

- - -o=0.1

effective bulk modulus<®®™ and shear modulug®®™ of a two-
phase composite are described 38—42
¢ K™ kg ¢ %
<
(1-¢)(k1—Ko)  K1—K (1= ¢) (K1~ ko) L :
14 17 Ko 17 Ko 1+ 17 Ko )
(Kot &) (Kot Ky)
(24) 20 1 s 1 i ) 2 i 1 "
¢ wOP— g ¢ 0.00 0.05 0.10 0.15 0.20 0.25 0.30
< ¢
1+(1_¢)(M1_M0) M1~ Mo 1+(1_¢)(M1_M0)
(pot ) (ot py) Fig. 3 The overall (a) bulk modulus and (b) shear modulus of
composites with randomly located and oriented harder par-
where for (u; — uo) (51— ko) =0, ticles as a function of the volume fraction and aspect ratio of
4 particles
KI=3Mo
_4
Ky= 3M1 (25

m==|—+ —— metal matrix composites. Similar comparisons are also made for
2o 9kt 8uo the soft particle E,=20 GPa and,,=0.25) filled Al composites,
3 { 1 10 }1 as illustrated in Figs. () and(b). These comparisons demonstrate

)
3[ 1 10 }1 (Young’s modulusE,,=70 GPa and Poisson ratig,= v,=0.3)

that the present analytical results always lie within the H-S

Hu=3 M1 * 9k1+8u, bounds. In addition, for the spherical parti¢leith the aspect ratio
a=1) reinforced composite, our elastic prediction is identical to
and for (ug— uo) (k31— 1) <0, the H-Slower bound if the reinforcement is harder than the ma-
_a trix, and coincides with H-Sipperbound if the reinforcement is
K= 3 softer. Moreover, it is observed from FigsaB and (b) that the
" composites withoblate aspect ratios of particles are more effec-
uT 3ko (26) tive in enhancingc®°™Pand u“°™", whereas the spherical particles
31 10 -1 are least effective. These results are consistent with those of Wu
M|:§[—+ W} [43] and Tandon and Wen¢7]. By contrast, if the matrix is the
Mo K17 OMo harder phase, the trend of the overall elastic moduli of composites

301 10 1 is completely reversed, as shown in Fig&y4and (). It is also

== | — A+ ———— noted that there is a continuous transition of elastic properties
Y2 s 9ko+8u, between the upper and lower bounds with relative changes in
. . . constituent moduli. Furthermore, care must be exercised to pre-

Figure 3 shows the comparisons between our analytical predigsnt the spheroidal reinforcements from overlapping with each

tions [Fig. 3(a) for the bulk modulus and Fig.(B) for the shear other. Such cases would occur if the aspect ratios of the spheroids

modulug and the H-S bounds for the SiC hard partiCi®ung’s were extremely high or extremely low.

modulusE,=450 GPa and Poisson ratig,=0.2) reinforced Al From Eq.(24), it is clear that the H-S bounds are related to the

Journal of Applied Mechanics NOVEMBER 2004, Vol. 71 [ 777



E,=70GPa, v,=0.3, E =20GPa, v,=0.25
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Fig. 5 The comparisons between the present predictions and
the Ponte Castaneda-Willis bounds [15] for (a) effective shear
modulus of composites with randomly oriented spheroidal
rigid particles and (b) effective shear modulus of porous mate-
rials with randomly oriented spheroidal voids

Fig. 4 The overall (a) bulk modulus and (b) shear modulus
of composites with randomly located and oriented softer par-
ticles as a function of the volume fraction and aspect ratio of
particles

volume fraction of reinforcements and elastic constants of the

constituent phases. Nevertheless, the H-S bounds are independ@et composites are made of SiC particulates dispersed in the Al

of the shapes, spatial locations, or spatial orientations of particlesatrix. The input data are taken &,=75GPa,v,=0.33,E,

Based on Hashin and ShtrikmdB83], Walpole [40,41], Willis =420GPa, andv,=0.17, in accordance with the constituents.

[44], and Ponte Castaneda and Wil[i$5] further refined the The mean aspect ratio of 2.0 for the SiC particulates is converted

variational methodology of the overall stiffness bounds for rarie 3.0 based on the volume equivalence between particulates and

domly oriented isotropic composites, which directly depend ospheroidal particleg46]. The present elastic formulation performs

the aspect ratio of misoriented spheroidal particles. Two casesry well for the volume fraction of particles up to about 25%.

were explicitly provided(as shown in Fig. 8 if15]): effective When the volume fraction of particles becomes larger, the present

shear modulus lower bound for isotropic composites with rapredictions somewhat underestimate the effective Young’s moduli

domly oriented rigid spheroids, and effective shear modules compared with the experimental data. This is expected since the

bound of isotropic materials with randomly oriented spheroidg@resent formulation neglects the near-field direct interactions

voids. These two cases can be directly compared with the presaniong the spheroidal particles in the composites.

predictions resulting from Eg22). It is shown from Figs. &)

and(b) that predictions from our proposed model are mostly iden-

tical with the bounds for various aspect ratios of spheroids. The Effective Elastoplasticity of MMCs With Randomly

effective shear moduli.®™ are plotted as a function of spheroidyiented Particles

density parametep,, introduced by Refl15]. The density param-

eter ¢, is equal toga? for prolate spheroids and is equal ¢éa 3.1 Orientation-Averaged Constitutive Equations. Let us

for oblate spheroids. consider two-phase MMCs containing randomly located and ori-
We further compare our analytical predictions with the experented elastic spheroidal particles embedded in the elastoplastic

mental data reported by Yang et g45], as displayed in Fig. 6. matrix. For simplicity, the commonly used von Misds-yield

778 / Vol. 71, NOVEMBER 2004 Transactions of the ASME



E,=75GPa, v,=0.33, E =420GPa, v =0.17, 0=3.0
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Fig. 6 Comparison between the present predictions and the experimental Young's
moduli of SiCp /Al composites (Yang et al., [44])

criterion with an isotropic hardening law is assumed for the matriXote that(?} is an isotropic fourth-rank tensor, and its two com-
material; i.e., at any matrix material poirt the local stresg(x) ponents are calculated as
must satisfy the following yield criterion:

Flo.eh)=VA(o) 3oy rhehy=<0 (@)

whereo, h, g, ande};, signify the initial yield strength, the linear
hardening parameter the exponential hardening parameter, &mdq. (30), (H) is expressed in terms of the far-field stregs
the effective equivalent plastic strain of the matrix material, réAlternatively, the orientation-averaged square of the stress norm
spectively. Furthermore (o) represents the square of the stressan also be formulated via the macroscopicrientation-
norm at matrix poink, defined byH =a:14: 0, with |4 being the ensemble-volume-averagestress(a). The relationship between
deviatoric part of the fourth-rank identity tensor. the far-field strese® and the orientation-averaged stréss can

The overall yield function of MMCs with randomly located andpe established through E(B) as follows
oriented spheroids can be derived by employing the aforemen- _
tioned orientational averaging process upon the analytical formu- o%=(P):(0) (33)
lation for the randomly located, yet unidirectionally aligned, sphe-
roidal particle-reinforced MMCs, which was prewously
developed by Ju and SUB4]. Following Ju and Su34], the (Pij)=P18, 81+ P 515+ 81 55) (34)
ensemble-volume-averaged stress nétmeads

Ti= 1o T +4TH +4T5 +6T5 + 2T —4T2 + 2T(2"2](32)

To= e T - T - T+ T5 + 2T + 6 T2+ 7T52]

Where the isotropic fourth-rank tens@®) reads

— with
H=0¢%T:o” (28)
where the transversely isotropic fourth-rank ten3otakes the P,= $A1— )
form: [1+2¢(Qo—=A)J[1+ (301 +20,—3A ;1 — 2A2)](35)
Tiki =Tk 8 S+ 15 (S &5+ 81 8) (29) 1

S
with the second-rank tensof§y andT(?) given in Appendix A. 2+44(Q2=Ar)

Since the far-field stress® is independent of the local orienta-As a result, Eq(30) can be rephrased as
tions of particles, the orientational averagetbfcan be simply

obtained as (H)=(o)(T):() (36)
(Hy=0%(T):0° (30) Where
where the fourth-rank tensdT) reads (ﬂkl):ﬂ(sij 5k|+?2(5ik5“ +8185) (37)
(Tijk1) =T18i 6+ To( 8 8 + 83 6j) (31) with
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i:(3P1+2P2)2T1+2P1(3P1+4P2)T2 The initial_ yield surface of the_compos_ites can be se<_:ured from
_ (38)  Eq.(46) with h=0 andq=0. By introducing the volumetric stress
T,=4P2T, <ﬂ,>%<0’kk>/3=(<011>+_2(0'22)l/3 and the effective stress
£ 3(s;)(s;)2= - where (s) is the deviatoric
Therefore, the effectivéorienta}tion-ensem_ble-vo_lume-averagedégﬁz of the Ir]naclr]oscoéi((r:lsjiregf)z? tﬁe initia<l 3>/ield surface of the
yield function of randomly oriented particle-reinforced MMCScomposites can be written as

can be proposed as

2 2
o oo
(Fy=(1—¢) <O’>Z<T>Z<(J’>—\/;[O'y+h(<ep>)q]$0 9(3T1+2T2)(0y +4T, 7, (1— )2 (48)

(39) The overall elastoplastic stress-strain relationship is thus ex-

where(eP) denotes effective equivalent plastic strain of the confressed as

posites. It is noted that the effective yield function is pressure . D, O 0 L, 0 O
dependent and not of the von Mises type anymore. — Ao (1= @)\
The total macroscopic straifz) is composed of an elastic part (eij)= @ 0 Dz 0]+ W L, 0
and plastic part: 0 0 D, 0 0 L,
(2)=(e%)+(e") (40) (49)

— - o . where the first term on the right-hand side of the above equation
where(s®) and(c") are the macroscopifrientation-ensemble- renresents the elastic part and the second term is attributed to the

volume?averagedelasti_c and plas_tic strai_ns of the composite§3|astiC effect. In addition, the matrix componehtgandL, are
respectively. The elastic constitutive relation reads

= Ly=T;+2RT,+2T,

(0)=(C):(&%) (41) e (50)
where the effective elastic stiffness tengGp has previously been Lo=Ty+2RT +2RT,
given in Eq.(11). The effective plastic constitutive law is assumedhe cumulative plastic consistency parametés determined as

to satisfy the associated flow rule:
Y P T3] N 1 V3121 ) D(R)(010) — oy |1
- HF . (o =
<§p>=)\——=(l—¢))\—ﬁ (42) V2/3(1- ¢) h
%o) (0)(T)(o) In all subsequent numerical simulations in this subsection, unless

where \ is the plastic consistency parameter to be determinégherwise noted, the matrix is assumed to be an aluminum alloy
from the plastic consistency condition. It is noted that, when d@nd the Young's modulug,, the Poisson ratioy,, the initial

- ) . ; yield stressry , and the linear and exponential isotropic hardening
Egl;);]gsfoqulgfi)é c()alri]flf)(le:Zﬁtrgtztdt%;ﬂ]hil?;eg?%; TJI’ICtIO(r‘F) in Eq. parametery andq are taken as 70 GPa, 0.3, 300 MPa, 1000 MPa,

Consequently, the overall elastoplastic constitutive model fG1d 0-5: respectively. The Young's modulig and Poisson ratio
randomly oriented particle-reinforced MMCs is established i’ of requrcements are 450 GPa and 0.2, respectively, similar to
above. In the following subsection, a specific example is provid 6)033 of SIC reinforcements.

: " - . _The mechanical behavior of MMCs in practice often involves
]EO |IIu?tr§te the capability of the proposed effective elastoplast%ﬁe monotonic uniaxial stress-strain relatiF())nship To demonstrate
ormulation. :

the present effective elastoplastic micromechanics-based model
3.2 Axisymmetric Loading. For axisymmetric loading, the for randomly oriented particle-reinforced MMCs, it is of interest
symmetrical axis is assumed parallel to theaxis of the global to consider the special case of uniaxial tensile stress loading with
coordinates. The overall stressgs) satisfy R=0. Figure 7 provides the illustration of uniaxial overall stress-
_ _ _ _ _ _ _ strain responses of the composites. From Fig),7t is clearl
(010>0, (029=(039=R(017), (01=(029=(030=0  pserved pthat, with increasirFl)g reinforcemen(tgconcentratioil], the
(43)  effective yield strength and plastic hardening modulus increases.
where the stress rati is a function of the loading history. For However, the strengthening effects are not as significant as those
simplicity, only a constanR is considered here. IR=0, the of the composites with unidirectionally aligned particles; see, Sun
uniaxial tension loading is recovered. On the other hatd,l and Ju[35]. In addition, Fig. Tb) exhibits the effects of particle
recovers the pure hydrostatic loading. Under the axisymmetg§bape on the stress-strain behavior of MMCs. Unlike the aligned

(51)

loading, the effective elastic strains can be expressed as particle-reinforced MMCs, the aspect ratio of particles does not
result in a significant difference in the elastoplastic behavior of the
— D, O 0 randomly oriented MMCs. However, the composites with ran-
(e8)= (o1 0 D, O (44) domly orientedoblate particles correspond to stifféhighen re-
7 peomp sponses than those with prolate particles. Figu® #lso indi-
0 0 D cates that the composites with higher Young’s modulus of
where reinforcements result in highéstiffer) stress-strain responses.

As a step further, the present effective elastoplastic uniaxial
D;=1-2p%M™R predictions of MMCs with randomly oriented particles are com-
_comp com pared with the experimental data reported by Yang €t4&l]; see
Do=— v+ (1-v*™R Fig. 8. Here, we adopt the elastoplastic parameigys 75 GPa,
On the basis of Eq(39), the effective yield function for the axi- ¥m=0.33, 0,=50MPa, h=320 MPa, andq=0.265, in accor-
symmetric loading becomes dance with the aluminum matrix material. Moreover, elastic con-
B stants for the SiC particles are taken Bs=420 GPa, andv,
(FYy=(1—¢)®(R)(o10)— \/g[gy+ h((e’))9]<0  (46) =0.17. Again, the mean aspect ratio of 2.0 for randomly oriented
particulates is converted to 3.0 as previously discussed. As de-

(45)

where picted in Fig. 8, the overall elastoplastic behavior of the composite
5 is well modeled by the present formulation, for particle volume
®(R)=\T;+2T,+4RT;+4R¥(T;+T,) (47)  fractions up to 48%. Since the effect of aspect ratio of particles
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Fig. 7 Effects of (a) volume fraction, (b) aspect ratio, and (c¢) Young's modulus of particles on the uniaxial elastoplastic
behavior of randomly oriented particle-reinforced MMCs

seems not to be significant for uniaxially elastoplastic responsgscreases. On the other hand, Figp) @lemonstrates that the com-
of randomly oriented particle-reinforced MMGsee Fig. T)), posites with smaller aspect ratios exhibit more strengthening ef-
the predictions for spherical particle-reinforced MM@s=1) are fect in terms of the volumetric stre¢s-,). However, the particle
also plotted in Fig. 8 for comparison purposes. It is observed thettape does not have a significant influencé @g). In general, it

the simulation froma=1 underestimates the elastoplastic reis difficult to find a certain aspect ratio or volume fraction of
sponses but its difference is not significant compared with thparticles in the composite that would produce the strongest com-
prediction froma=3. It is further noted that, rigorously speakingposite under all loading conditions. This observation suggests that
since the present micromechanics-based model does not consillerselection of MMCs for the most effective strengthening appli-
the near-field direct interactions among particles, our effectiation depends on the specific applied service load conditions.
elastoplastic formulation should only be valid for moderate cotwhile only initial yield surfaces are demonstrated, subsequent
centrations of particles. Based on these preliminary validations)dading surfaces with nonzero equivalent plastic strain would be
seems that the proposed framework along with the assumptioneapected to be different, but following the isotropic hardening
associated plastic flow rule is adequate and satisfactory. rule.

The overall initial yield surfaces of the composites under axi- Finally, effects of the stress ratiR on the overall stress-strain
symmetric loading are displayed in Figsap and (b). It is ob- behavior of MMCs with randomly oriented particles are shown in
served that all yield surfaces are pressimean stres¢o,)) de- Fig. 10. The loading combination has a considerable effect on the
pendent. Furthermore, Fig(d illustrates that, for the compositesoverall response of the composites. Rincreases from zero, the
with prolate spheroidal particles, the initial yielding point for thestress-strain relationship of the symmetrigataxis direction of
effective stresgo,) increases with increasing volume fraction ofspheroidal inclusions tends to render more strengthening effect
particles, whereas the yielding point for volumetric stréss) until the opposite plastic strain effe¢tbendover”) appears for
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Fig. 8 Comparison between the model predictions and the ex- E =70GPa, v_=0.3, E =450GPa, v =0.2
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R>1, as indicated in Fig. 18). The reason for the “bend-over”

behavior is that the plastic stra{a};) may become negative due
to the fact that the magnitude of combined negative lateral plast
strains from the 22- and 33-directions gradually becomes great
than that from the 11-direction. It is also noted that effective
stresses are high when the stress r&is close to 1, indicating
that the local stress level in randomly oriented particles may e»
ceed the fracture strength of particles and/or interfacial bondin
between the matrix and particle. Correspondingly, particle crack
ing and/or interfacial debonding may occur under such circum
stance. Future research is focused on the detailed interfacial de
onding processes.

From Fig. 1@b), it is observed that the effect of the aspect ratio 0.0
of particles is no longer insignificant when stress r&increases. 0 1
The aspect ratio of randomly oriented particles plays a significar..
role on the elastoplastic responses of MMCs under purely hyd
static loading.

T
3
G /o
v

y

|’|9|-g 9 Effects of (a) volume fraction and (b) aspect ratio of
particles on the overall initial yield surfaces of randomly ori-
ented particle-reinforced MMCs

4 Concluding Remarks

The effective elastic and elastoplastic models of MMCs with
randomly located and oriented reinforcements are developed. Th&he proposed micromechanics-based homogenization frame-
averaging process over all orientations upon three elastic govework allows the overall elastic and plastic behavior of randomly
ing equations for aligned particle-reinforced composites is peavriented particle-reinforced MMCs to be analytically and explic-
formed to obtain the effective constitutive relations and isotropidy predicted in terms of the 3D far-field loading histories and
elastic stiffness of MMCs with randomly oriented particles. Thenicrostructural information, such as the mechanical properties of
effects of volume fraction of particles and particle shape on thbe constituent phases and the spatial concentration and geometry
overall elastic constants of the composite are presented. Compafireinforcements. Good agreement between the theoretical pre-
sons with the elasticity bounds show that the present analytichttions and experimental data are observed and provide prelimi-
formulation does not violate the variational bounds. Good agreeary assessment of the capability of the proposed formulation in
ment with experimental data is also illustrated. quantitatively predicting the overall elastoplastic behavior of the

Furthermore, the orientational averaging procedure is utilized k4MCs.
derive the overall yield function for the underlying MMCs. Elas- In the present study, with an assumptionJgfzon Mises plastic
toplastic constitutive relations for the MMCs are systematicallffow in the metal matrix, the overall elastoplastic yield function of
established. The overall elastoplastic stress-strain behaviors und&Cs is micromechanically derived to be quadratic and
monotonic uniaxial tensile loading are studied in detail. Furthepressure-dependent, which is not of thetype anymore. How-
more, comparisons between the present analytical predictions awver, in general, this form may not be universal for all MMCs. For
experimental data are performed to illustrate the capability of tlexample, Dvorak and co-workef47,48 suggested that the over-
proposed formulation. Finally, the initial yield surfaces and effectl yield function of anisotropic composites be constructed from
of stress ratidR upon the MMCs under axisymmetric loading arepiecewise smooth sections and not from a single smooth surface.
also discussed. We would need to consider more complicated local yield mecha-
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Fig. 10 Effects of stress ratio

R on the overall elastoplastic

behavior of randomly oriented particle-reinforced MMCs under

axisymmetric loading

ening rule and the associated flow rule as an illustration of the
proposed concept and framework. In addition, we have not con-
sidered the effect of interfacial particle/matrix debonding upon the
overall elastoplastic behavior. Future work is needed to improve
the proposed method.
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Appendix A

The two second-rank tenso&Y and S(?) in Eq. (6) are ex-
pressed as

2 4
Su)— 4yy+ a)+4vgt ———
ot e g(a) 0 3a’—1)
2 2
a+1 2a
Su)— ) = 4yy— g(a)+4vy— >
a?—
202+1 2a?
Sy =85'=| —2vp— ——|9(a@)— —
at— a‘—1

2

g 2 } )+
4(a?— 9l 2

e T
S@=| —4vg+ o g(a)—4v0+—1 8
a’— 3(a?-1)
24
Sp-s2-52- 23:[% o2 ——
a2_ 2
R [

with « denoting the aspect ratio of particleg, denoting the Pois-
son ratio of the matrix, and

nisms in the matrix and connections between the matrix and rein-

forcements to render a sophisticated multisurface piecewise [a(1—a®)Y—cos ta], a<l
smooth elastoplasticity model. Furthermore, since isotropic hard- (1—a?)%? '

ening is postulated in the present model, elastoplastic responses of g(«a)=

MMCs under complex loading such as cyclic loading should not [cosh ! a—a(a?—1)¥2], a>1

render the Bauschinger effect which could be an essential compo- (a?

_ 1)3/2

nent for fatigue behavior of MMCs. More general isotropic/

kinematic hardening laws and an alternative nonassociated flaWe two second-rank tensoﬂé and T(Z) in Eq. (29 are ex-
rule can be considered within the proposed framework based Pressed as

reliable experimental data and evidence; see, e.g., Dvorak et al.

[47] for kinematic hardening law and a nonassociated flow rule 1
for boron-aluminum composites. These issues can be further
vestigated within the proposed context in the future, but with con-
siderably more effort. It is noted, however, that the present paper

i =—3+ 20
3 47251-14)%B; Byk

+21(25v5— 23)(1— 210) (T A+ T A)) + 212500 — 2)

[15751— 2V0)2rIIFKK

does not purport to include all continuum plasticity aspects or

features. Instead, we apply the micromechanical and ensemble-
averaging methodology to the simple
J,-type plastic yield function with the power-law isotropic hard-

volume-orientational

Journal of Applied Mechanics

X (1= 2w) (T}, + Tgk) + 3(3505— 70vg+ 36) A + 7(5005
—59uo+8) (A, +Ag) —2(175v2— 343v,+ 103)]
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T(2)=£+ ¢
15751 — vo)?B,;B,

5=5 (7003—140v,— 72 A5

) A+A, )
—(175v;—266vy+ 75) — +350v;— 476vy+ 164
where
B;=2[Z,+S?]

_3[1-a*f(a?)] 1

1-a* ¢ B2=AsT

Al —E

(3—4y)

_5[2+ a*—3a*f(a?)]
 2(1-a?

11

150 — 3+ (1+2a*f(a?)]

Ap=Ar=A13=A5=
12~ A21= A13= Agy 41— a2

150 [1+2a*+(1—4a*) f(a?)]

App=Ap3=Ag=Ags=

16(1— a®)?
with
costa -1
—' a
olelfozz
fla)=
coshta -
—' a
ax/aif 1
Appendix B

Consider a transversely isotropic fourth-rank tenQopof the
following type:

Qiji = QK 8 S+ Q2 (8 851+ 3 5j)

whereQ{Y andQ(? are the second-rank tensors aff is sym-
metric. The inverse of the tens@r takes the form from Sup9]:

(3)

1
_ IK
QijklI:_ > 6ij Ok T —7 (8iGj1 + i Sj)
2Qf? 4Q%
where the second-rank tensQf can be calculated from
1 2 1 1 -1
ﬁ) Q(ll)+ ZQ(11) Q(Zl) (31)
3 1 1 2 1
QY= @ Qb +2Q% Q%
(3)
Qs Qi Q% Q55 +2Q4%
QY
X1 Q7 (=123
Q3
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Numerical Simulation of Steady
amnon 3. meir § | jquid-Metal Flow in the
raul®.Semd A Presence of a Static Magnetic
s | Field

232 Parker Hall,
Auburn University, AL 36849-5310
We describe a novel approach to the mathematical modeling and computational simula-

tion of fully three-dimensional, electromagnetically and thermally driven, steady liquid-

Sayavur I. Bakhtiyarov metal flow. The phenomenon is governed by the Navier-Stokes equations, Maxwell's equa-
tions, Ohm’s law, and the heat equation, all nonlinearly coupled via Lorentz and
Ruel A. Overfelt electromotive forces, buoyancy forces, and convective and dissipative heat transfer. Em-
ploying the electric current density rather than the magnetic field as the primary electro-
Department of Mechanical Engineering, magnetic variable, it is possible to avoid artificial or highly idealized boundary conditions
Auburn University, for electric and magnetic fields and to account exactly for the electromagnetic interaction
202 Ross Hall, of the fluid with the surrounding media. A finite element method based on this approach
Auburn University, AL 36849-5341 was used to simulate the flow of a metallic melt in a cylindrical container, rotating

steadily in a uniform magnetic field perpendicular to the cylinder axis. Velocity, pressure,
current, and potential distributions were computed and compared to theoretical
predictions.[DOI: 10.1115/1.1796450

1 Introduction fields and buoyancy effects due to temperature fluctuations in the
anelt are frequently neglected, and so is the electromagnetic inter-
action of the melt with other conductors in the vicinity.

There is, for example, a substantial body of analytical and nu-
erical work devoted to the electromagnetic stirring of round
rands of liquid metal by the rotating-field method; see Moffatt
[12], Spitzer et al[6], or Davidson and Hunf13] for seminal
stldies. In this method, a rotating magnetic field is generated in an
inductor, surrounding a stationary column of liquid metal. The

traveling magnetic field induces eddy currents in the melt, and it is

Pave long bgenl a?plled in L_ndu?trlal (éevll\cﬂ:es, such ‘35 'Bdt':“%‘e interaction of the magnetic field with these currents that brings
urnaces and electromagnetic stirr¢fs6]. More recently, bo about the stirring effect. If one assumes a circular-cylindrical ge-

static and.rotatlng fields haye garnered much attention as a megﬂFetry and averages the electromagnetic body force azimuthally,

of controlling the melt flow in crystal-growth procesdés-11]. e problem becomes axisymmetric and thus, spatially two-

In ".’1” of th_e_se and many other processes, the ﬂOW_ of a metalfic ensional. Its numerical solution then amounts to solving the

melt is modified by means of Lorentz forces, resulting from t%tionary Navier-Stokes equations in two dimensions, under a
a

Numerous industrial processes involve the flow of a liqui
metal in the presence of an applied magnetic fi§tkdticmagnetic
fields are used, for example, to dampen undesirable melt flow.
such as buoyancy-driven convection, in metal casting and cryst;
growth processe§l,2]. When applied in conjunction with DC
currents, static magnetic fields can also be used to activate
drive liquid-metal flows; this is exploited, for example, in MHD
pumps and reactor cooling blankgss4]. Rotatingmagnetic fields

interaction of an applied magnetic field with impressed or inducggl 1 gistribution of time-averaged Lorentz forces. The latter are
currents i_n the melt. Qualitqtive anq_qua_ntitative undfarstanqm_g termined from an asymptotic solution of the magnetic induction
the ensuing flow patterns is of critical importance in achievingg,,ation under appropriate boundary conditions for the magnetic
optimal operating conditions. Efficient and accurate experimentaliy ‘witkowski et al.[10] investigated the validity of azimuthal
and computational techniques are needed to measure and 0 BRgaging and found the deviation from axisymmetry to be small
dict v_eIocnty, current, and temperature distributions in the mel, yer suitable assumptions on the flow parameters. However, sec-
Despite considerable research efforts over the past three decaeﬁaary effects due to induced magnetic fields or buoyancy forces
the methodology is still in need of development. This is due t0 thgare neglected. Fully three-dimensional computational models,
complexity of the underlying flow phenomena, which are, in gensecounting for magnetic induction and/or thermal effects, have
eral, fully three-dimensional, highly nonlinear, and characterizggqp proposed only recenflg4,15.
by the interaction of multiple physical effects. _ Although based on the same general principle, the effect of
~ Much of the pertinent literature on analytical and numericabyating the melt in a stationary, transverse magnetic field is quite
issues is based on simplifying assumptions that lead to spatiglifferent from that of rotational stirring. In particular, the resulting
two-dimensional2D) problems and at least partial decoupling ofjoy field cannot be expected to be rotationally symmetric; in fact,
the underlying PDEs, allowing, in particular, the separation he induced flow is symmetric with respect to the given axis of the
fluid flow and electromagnetic computations. Induced magnetigagnetic field rather than the axis of rotaticsee the discussion
- at the end of Section)4As a consequence, the flow is fully
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF three-dimensional, even in the simplest experimental configura-

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- . . . . . ! .
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Journal of Applied Mechanics, Department of Mechanical and Environmental En "econdary effects due to induced magnetic fields and temperature
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While the importance of thermal effects has long been recogrereV is the flow velocity,p the hydrodynamic pressurg,the
nized [2,8,9], induced magnetic fields are rarely accounted fosum of all body forces, including buoyancy and Lorentz forces.
The main problem, in this context, is the fact that electric anfihe dynamic viscosityy is assumed to be constant, while the
magnetic fields transcend the fluid region and must be determindehsity p is allowed, at least for now, to vary with temperature.
in all of space(unless one imposes idealized or artificial boundar@€onservation of mass is enforced through the continuity equation,
conditions on the surface of the fluid regjoAccounting for both, . .
magnetic induction and thermal effects leads to a fully coupled V-(pV)=0 (in the fluid @
system of equations; fluid flow, heat flow, and electromagnetiequations(1) and (2) must be supplemented with a boundary
computations cannot be separated, and the magnetic fields bedfdition for the fluid velocity. If the vessel is at rest, the usual
inside and outside the fluid must be determined simultaneouﬁu-snp condition for viscous fluids requiréé to vanish at the
with the fluid velocity and the current and temperature distribuvalls. Allowing for a possible rigid motion of the vessel, we im-

tions in the melt. pose a more general boundary condition of the form
The objective of this paper is to address these issues by pre-
senting a new approach to the modeling and simulation of steady V=V, (at the wally 3)

liquid-metal flow in the presence of a static magnetic field. Oygherev, denotes the velocity field associated with the rigid mo-
approach differs from earlier work in that it is based on the diregpn of the vessel.
numerical simulation of the full, nonlinear, three-dimensional, The palance of energy can be written as a scalar convection-

electromagnetically and thermally coupled flow problem. Thgiffusion equation in terms of the temperatifie
mathematical foundation is a mixed variational formulation and

finite element discretization of théstationary Navier-Stokes —«kV?T+pc(V-V)T=H (in the fluid (4)
equations, Maxwell’s equations, Ohm’s law, and the heat equg

- led via L q el Ve f b hereH is the sum of all heat sources, including dissipative and
tion, coupled via Lorentz and electromotive forces, buoyanqy yiative heating. The thermal conductivityand specific hediat
forces, and convective and dissipative heat transfer. One key f

. . ; EBnstant pressurec are assumed to be constant in the relevant
ture is the use of the electric current densfigther than the mag- temperature range. As a boundary condition, we assume that the

netic field as the primary electromagnetic variable. This apseqt fiux across the walls is proportional to the temperature dif-
proach, in which the induced magnetic field is computed from ﬂ?@rence between the fluid and the exterior of the vessel

current density via the Biot-Savart integral, renders idealized or '

artificial electromagnetic boundary conditions obsolete and allows —k(VT)-n=9y(T—-Tey (at the wallg (5)

us to account for both interior and exterior fields, while ef'fectiveI)L|ere n denotes the unit outward normal vector field on the sur-
confining computations to the fluid region itself. A similar, ’

“integral-closure” approach was developed by Natarajan and Efefci of thﬁ fIU|d(;$g|ony %thfe(cohnsta_n)t heat tgqnsfer coefficient

Kaddah[15-17, in the context of electromagnetic stirring and” '}'he W? S, anClext St%r.] s_bor_t e_glzj/en am |ednt|3teg1ﬁe|:atlljre.

separation processes. We refer to Meir and Schidii{19 for e electric current distribution is determined by Ohm's law,

mathematical details regarding our method and to Meir and J=0(—V¢+VXB) (in the fluid) (6)

Schmidt [20,21] for prior applications to electromagnetically . . )

driven flows. While the present numerical implementation is lim@/0ng with the continuity equation,

ited to the simulation obtationaryflow problems, our approach V.J=0 (in the fluid) 7

can be easily extended to the time-dependent (se=$22]). This

extension, as well as the incorporation of a turbulence model,Whered is the electric current density; a scalar electric potential,

the subject of ongoing research. B the magnetic flux density, and the (constank electric conduc-
The paper is organized as follows. Section 2 contains a detaildty of the fluid. Since the exterior of the vessel is assumed to be

description of the mathematical model and concludes with a caf@@nconducting, the obvious boundary condition Jais that

ful order-of-magnitude analysis. Section 3 is concerned with a e

mixed variational formulation of the problem, its finite element J-n=0 (at the wall3 ®)

discretization, and implementation issues. In Section 4 we de-The magnetic field can be decomposed as

scribe preliminary computational experiments, thus far limited to

the laminar flow regime and not accounting for temperature fluc- B=B,+B;

tuations, where our method is applied to simulate the flow of \@hereB, andB; represent, respectively, the applied field and the

metallic melt in a circular-cylindrical crucible, rotating steadily infield induced by the currer The latter satisfies Maxwell’s equa-

a uniform magnetic field perpendicular to the cylinder axis. #ons,

corresponding experimental apparatus and measurement tech-

nique are described in a companion paper by Bakhtiyarov et al. VXBj=pJ (in the fluid
[23]. VXB;=0 (in the exterioy 9)
2 Mathematical Model V.B,=0 (throughout spade

We are concerned with the steady flow of a viscous, inco
pressible, electrically and thermally conducting fluid, confined
a vessel with solid walls, in the presence of gravity, an appli
static magnetic field, and a radiative heat source; see Bakhtiyar,
et al.[23] for a detailed description of the experimental apparatus

"Eince the fluid is heated beyond the Curie points the magnetic
:gﬁrmeability of free space. In additioB; must be continuous

ross the vessel wallsonstant permeability, no surface currgnts
d vanish at infinityfinite source:

that motivated this investigation. We assume the presence of a lid [B{]=0 (across the walls 10
on top of the fluid, thus avoiding the complication of a free sur- S (10)
face; also neglected is the thickness of the vessel walls. The prob- Bi=0 (at infinity)

lem is governed by balance equations for momentum, mass, 3} any reasonably regular current distributidnEgs. (9) and
energy, along with Maxwell's equations and Ohm's law; seg() admit a unique solutior;=B(J), which is given by the

Hughes and Young24] for the physical background. _ Biot-Savart formulaia volume integral over the fluid regipn
The momentum balance is given by the stationary Navier-

Stokes equations,
—pVV+p(V-V)V+Vp=F (in the fluid) (1)

o r—s 3
B(J)(r)=—ﬂf |r—s|3XJ(S)d s (112)
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The body force= on the right-hand side of Eql) includes the linear, first-order integral operatof a nonlinear, second-order
Lorentz force JXB and the force of gravityg, whereg is gravi-  integral operatgr As a consequence, some care must be exercised
tational acceleration. We employ the Boussinesq approximationifochoosing linearization/iteration schemes for the numerical so-
account for buoyancy forces due to temperature gradients; that/igion of the discretized equations, in order to avoid the occur-
we assume thaf fluctuates in a narrow range about a referend@nce of dense matricésee Section B

o . To assess the relative importance of the various terms in the
temperature_'l’ref and t_ha}t the density, in this temperature rangeequations, it is useful to normalize the dependent and independent
decreases linearly witfi:

variables and to combine the physical parameters of the problem
p into nondimensional groups. To this end, kebe a characteristic
—=1-B(T-T) length, for example, the radius of the vessel holding the fluid, and
Pref let V be a characteristic speed, for example, the magnitude of the
Here, p.ef and B denote the density and thermal expansion coeffgiven velocityV, of the walls /o= wR in the case of a cylindri-
cient of the fluid at the reference temperature. The force of gravital vessel of radiu®, rotating with angular velocity). Given a
is then given by characteristic magnitudB, of the magnetic field3, Ohm’s law
(6) yields Jo= oV(B, as a characteristic magnitude of the current
P9=VPrer~ Bpred T~ Trer)9 densityJ. Moreover, Ampee’s law, the first equation i), im-
whereV p,«= pre g is the hydrostatic pressure gradient at the reflies that the induced field B;=5(J) is of order uRJ
erence temperature, WhilBp..(T—T,e)g represents the buoy- =xoRV,Bg. The numbeoRV, (the magnetic Reynolds num-

ancy force. Summarizing, we have ber is small under laboratory conditionsee below; conse-
quently, the induced fiel®; is small compared to the total field,

F=J3X[Bat+B(N]+VPrer— Bpred T~ Trerd (12) B=B,+B;. We may, therefore, choos, to be the magnitude of

Following standard practice, we now introduce a reduced pret[%\_e appliedfield B, . A characteristic valud of the temperature

S - o a3 reduced emperalTe- T T,y andwe. ocuoion 1 e DGl 5 ¢ ypialdeviton fom e pfer
replace the density in Eqs. (1), (2), and(4) by per. Also, for o 1 pl ? ref . ¥ v h p i Y. b
notational convenience, we drop the primepinandT' and the liquid-metal experiments, the metal is usually heated to just above

S . o : its melting-point, which may then serve as the reference tempera-
subscript inp,; that is, from now o, T, andp will denote the

reduced pressure, reduced temperature, and reference densit turre_Tref. - : . -

. ’ ; P Rlormallzmg the spatial variables B¥; the principal unknowns
spectl\_/ely.(Note that Egs(4) and(5) remain unchanged after thlsvy J, B, and T by their respective characteristic valuds, Jo
reduction, except thale,, must be replaced b¥q— Tres-) - - 5

The source terni in Eq. (4) comprises dissipative heating due— ‘TVOB(Z” Bo, andT,, the auxiliary unknowrp and ¢ by pVo
to electric currents and viscous drag as well as radiative heatiigd #R*VoJo. and the source termg and h by g=|g| and

due to the presence of heating elements. Thus, pCR™ 1V T,, we obtain the following nondimensional versions of
the momentum balance, Ohm’s law, Ames law, and the heat
H=0 312+ 3 7|VV+(VV)"|?>+h (13) equation:

whereh is a given function of position, depending on the charac- —Re 'V2V+(V-V)V+Vp=Re ' H&?JXB—Re GITg
teristics of the heating elements. For the apparatus described in 1 I
Bakhtiyarov et al[23], the following ansatz seems reasonable: Rm™*J+Vé=Rm VxB

h(ry=lox(r)exd — ad(r)] (14) VXBj=RmJ

Here, |, is the output intensity of the quartz lampgy) an em- —Pe V2T +(V.V)T=Re ! EqH&|J|2+ 3|VV+(VV)"|?) +h

pirical function describing the intensity distribution in the light )

cone, a the absorption coefficient of the fluitin the relevant Here, Re, Rm, and Pe denote the Reynolds number, magnetic

frequency range, at the reference temperafaedd(r) the pen- Reynolds number, and Blet number, respectively:

etration depth. For any pair of reasonably regular vector figlds

andJ, Egs.(4) and(5), with H given by(13) and(14), constitute

a linear, uniformly elliptic boundary-value problem, which admitThe remaining three nondimensional groups? Har, and Ec, are

a unique solutionm=7(V,J). the square of the Hartmann number, the Grasshoff number, and
We emphasize that, given any sufficiently regular velocity fielthe Eckart number:

V and current distributiod, both the reduced temperaturev,J) 1 eono I et

(the unique solution of the linear, elliptic boundary-value problem H&’=7%"*oR?Bg,  Gr=7"?Bgp’R*Ty, Ec=c 'T;'Vg

(4)—(5)) and the induced magnetic fiel8(J) (the unique solution

of the linear div-curl systen®®)—(10)) are relatively easy to com-

Re=7%"1pRV,, Rm=ouRV,, Pe=«k 1pcR\,

The relative importance of the various terms in the equations is
. X - : auged by the ratios in the first and second columns of Table 1.
pute in a variety of ways and to any desired numerical accura

In what follows we will. therefore. focus our attention on the M€ numerical values in the third column are for liquid aluminum
e y N ' at temperatures just above the melting-pdisge Table 2 the
remaining coupled, nonlinear boundary-value problem for the v

locity V, current density, reduced pressure and electric poten- orders of magnitude in the fourth column are estimates for the
tial ¢, as obtained from Eq€1)—(3) (along with (12)) and (6) experimental apparatus described in Bakhtiyarov et[a8],

(®): whereR~1 cm, Vy~20 cm/s,By~0.1 T, andT,~10 K. Conclu-
) sions, as pertaining to the laboratory conditiond 23], can be
— V3V +p(V-V)V+Vp summarized as follows.

=JIX[B,+B(J)]-BpT(V,)g (in the fluid) a. Lorentz forces and inertial forces are of comparable magni-
tude; both are large compared to buoyancy and viscous
forces, which are comparable.

o N+ Vp=VX[B,+BJ)] (in the fluid) .
(15) b. The induced magnetic field is small compared to the applied

V-v=0 and V-J=0 (in the fluid field (but less so if the vessel is rotating at high speed
V=V, and J-n=0 (at the walls c. Convective heat transfer dominates diffusibnt less so if
the vessel is rotating slowlyViscous heating is small com-
Note that the above, due to the presence of the operAtarsi pared to Joule heating; both are negligible compared to dif-
7, is in fact a system of integro-differential equatiof$ is a fusion and convection.
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Table 1 Order-of-magnitude analysis  (for liquid aluminum under laboratory conditions )

Ha?/Re Lorentz force to inertia 2.14x10° RBY/V, O(1)
Re/Gr inertia to buoyancy force 8.79x 107 V3/(RTy) o(10)
Gr/Re buoyancy to viscous force 9.34x 10? RSTO IV, 0(1)
1/Rm total magnetic field to induced field 1.56x10 Y (RV,) o(10)
Pe thermal convection to diffusion 2.50<10° RV, 0(10)
Re/(PeEcH3 thermal diffusion to Joule heating 2.02x107° To/(R?VZB2) 0(10°)
Ha? Joule heating to viscous heating 1.76x10° RZBS 0(10°)

It is, therefore, feasible to neglect Joule and viscous heatimdile f (a nonlinear forcing termis given by
when computing the temperature distribution. Neglecting tem-
perature fluctuationgand thereby, buoyancy forgealtogether,
that is, settingZ(V,J)=0, is viable only as a first approximation. f(W1,Kq),(W5,Ky))= —BPJ T(Wy,K1)g- W,
The same can be said with regard to the induced magnetic field

B(J). Under mild assumptions on the data, the original boundary-
value problem(15) is equivalent to the followingveak problem
3 Finite Element Discretization Find vector fieldsvV andJ and scalar fieldp and ¢ such thatv

. . . =V, on the boundary of the fluid region and Eq$6) and (17)
The numerical solution of the boundary-value proble) is are satisfied for all relevant test functiomg, K, g, and ¢. The

based on a mixed variational formulation in the spirit of the wellg ;145" condition fol is anessentiaboundary condition and
known Babuska-Brezzi theory; see, for example, Brezzi and Fqr-

X X o ) s ust be enforced explicitly; as a consequence, the velocity test
g%éiqb Tshu'istaft())lgntlélgt'gjnnéﬁo(r)\?i'fg?(ihgyvg?ggltgly'&]g(fg;ethfgurfunctions must vanish on the boundary. The boundary condition

y sult ! - for J is anatural boundary condition and can be recovered from
current density, g (for the pressune and ¢ (for the electric po-

tentia) and integrating the equations over the fluid region. Tth' (17). We refer to Meir and Schmidt.8,19 for mathematical

two identities resulting from the momentum balance and Ohm‘%ﬁtans’ including the choice of appropriate test function spaces

law are added together, and so are the identities resulting from d a rigorous proof that the weak problem, as stated above, is
waded together, 9! @‘q%ivment to the original boundary-value probléts).
two continuity equations. After some algebra and several integra-

; ] b . Note that Eq(16) incorporates the first two PDEs {A5), that
tions py partdusing the boundary conditionsone arrives at two is, the momentum balance and Ohm's law, while Exj) incor-
equations of the form

porates the divergence constraints \Wrand J. In the weak for-
ap((V,),(W,K))+a;((V,),(V,),(W,K))+b(W,K),(p,¢)) mulation of the problem, the pressyseand potentialp play the
role of Lagrange multipliers associated with these divergence con-
=f((V,J),(W,K)) (16)  straints. Numerically, both will be determined simultaneously
_ with V andJ, just as the pressure is determined simultaneously
b((V,J).(q,#))=0 (17) with the velocity field in the standard mixed variational formula-
wherea, (a bilinear form), a, (a trilinear form, andb (a bilinear tion of the Navier-Stokes equatiofsee, for exampld,27]).
form) are given by A finite element discretization of the weak problem is obtained
by requiring that Eqs(16) and (17) be satisfied for only a finite
ag((W1,K1),(Wy,K,))= ,if (VW1)'(VW2)+0_1J Ky K, number of test functions, namely, the basis functions of suitably
chosen finite element spaces. Also, the essential boundary condi-
tion for V must be approximately satisfied in an appropriate sense,
+ f ((KyXBg)-W;— (K XB,)-W,) for example, by requiring that =V, at the boundary nodes of the
finite element grid(assuming the use of Lagrangian elemgnts
a;(Wq,K1),(W,,K,), (Wa,Ks)) This leads to a finite-dimensional system of nonlinear, algebraic
equations that can be solved by way of linearization and iteration.
p The nonlinear equatiofil6) is linearized by replacing the first
= Ef [(W- V)W3)- W5 = (W3- V)Ws)-Wo] arguments of the forma, andf by initial guesses or previously
computed value¥ 4 and J,4 for the velocity field and current

B density. In terms of the original PDEs, this amounts to lagging the
+J {[KsX B(K1)]-Wo—[Kox B(Ky)]- W} first velocity in the inertia term(V-V)V, the induced magnetic
field B(J), and the temperature distributidiiVv,J). Lagging mag-
_ netic field and temperature also prevents the occurrence of dense
=— . + . } . )
b((W.K),(a,#)) J (V-W)q J K-(V¢) matrices despite the presence of the integral operdicasd 7.

Given an initial guess or previously computed padg;,Joq), the
linearized equations are solved to updé¥J) and to compute

Table 2 Universal constants and properties of liquid alumi- (p,¢). The solution is unique only up to additive constantgpin

num at temperatures near the melting point, 933.4 K (quoted  and¢; but this is easily dealt with by settirgand ¢ equal to zero

from Meyer et al. [25]) at one node each of the finite element grid. The process is iterated
—tonal leratiosea loval o8l m2 until the change inV,J), as measured in a suitable norm, drops

g gravitational acceleratiofsea lev . m. B H : i+

i magnetic permeabilityfree space 1.26x 10-8 H/m belo_w a given tolerance. Of course, at the beginning of each it

o electric conductivity 5 10% 10° mho/m eration, _the induced magnetic fleISKJo|d)_ and the temperature

p mass density 2.38>< 10° kg/n? distribution 7(V g4, Joia) must be dete_rmlned. T_he fielB(Jgq)

” dynamic viscosity 2.90x 10 % kg/m-s can be computed by evaluating the Biot-Savart integra) or by

c specific heatat constant pressure 1.08x 10° J/kg-K solving the linear div-curl systert®) and(10) in any other way.

K thermal conductivity 1.03x 102 W/m-K The temperatureZ(Vyq,Joq) iS obtained by solving the linear,

B thermal expansion coefficient 1.16x10 4K elliptic boundary-value probler@) and(5), with H given by (13)

and (14), for example, using a standard finite element discretiza-
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: : use continuous piecewise triquadratics for the electric potential as
Start well, but the LBB condition then requires a somewhat nonstand-

ard finite element space for the current density, this space must
contain the gradients of continuous piecewise triquadratics. Thus,
the elements used to approximate itecomponent of the current
density are piecewise linear and generally discontinuous iitlthe
Input parameters and data. variable, but continuous and piecewise quadratic in the remaining
two variables.

Basis functions for the above finite element spaces are con-
structed using standard 27-node Lagrange elements for the veloc-
ity and potential, standard 8-node Lagrange elements for the pres-
Initialize V and J. sure. For theth component of the current density, we use Hermite
elements with nine nodes, namely, those nodes of the standard
27-node Lagrange element that are not on faces perpendicular to
the ith coordinate axis; two degrees-of-freedom are associated
with each of these nodes, namely, the value of the function and the
Compute B(J) and T(V, J). value of its de_rivative with respect to thih variable.(Instead of

9-node Hermite elements, we could of course use 18-node
Lagrange elements, but we would then be unable to utilize the
same nodes as for velocity, pressure, and potenthce pres-
sure and potential can be determined only up to additive con-
stants, both are set equal to zero at one node each of the finite
element grid. The essential boundary condition for the velocity
field is enforced by settiny =V, at all boundary nodes.

With these choices, and in light of general results of finite ele-
ment theory, the discretization error is expected to decrease qua-
dratically with the grid size. For further details, including rigorous

Update V and J and compute p and ¢.

AV, AJ less error estimates and a numerical validation of the predicted qua-
No than tolerance? dratic rate of convergence, we refer to Meir and Schrii@i.
Yes

4 Numerical Experiments and Discussion

Compute B(J) and T(V, J). The methpd descr_ibed in the previous se(_:tion was _impler_‘nented

and tested in a series of computer experiments, simulating the
laboratory conditions described in Bakhtiyarov et [#@3]. Al-
though these experiments are of a preliminary nature, they dem-
onstrate the feasibility of the approach.

While the present implementation allows the computation of
the induced magnetic fiel(J), via evaluation of the Biot-Savart
integral (1), it does not yet incorporate the effect of temperature
fluctuations; that is7(V,J) is assumed to be zero. According to
the remarks at the end of Section 2, this is viable only as a first
approximation. Adding a subroutine for the computatio¥®f,J)
poses no problem in principle, but requires laboratory experiments
to validate the proposed modgl4) for the radiative heat source
(including measurements of the intensity distribution in the light
cone and infrared absorption properties of the metal samples

Besides neglecting temperature fluctuations, the computations
have thus far been limited to the laminar flow regime with small
angular velocities and modest magnetic fields. All computations
tion. Figure 1 shows a simplified flow diagram for the iterationvere done on a workstation, which, in conjunction with the sheer
scheme. Note that only andJ need to be initialized. size of this fully three-dimensional problem, precluded the use of

In order to guarantee stability and convergence of the algal but very coarse finite element grids. The simulation of more
rithm, some care must be exercised in choosing finite elemaealistic flow conditions would require much higher spatial reso-
spaces. The main restriction is that the elements used to apprdution (that is, much finer gridsand ultimately, the incorporation
mate velocity and pressure as well as those used for electric cof-a turbulence model.
rent density and potential must satisfy so-called inf-sup conditionsWe used the discretization and iteration scheme described in
or LBB (Ladyzhenskaya-Babuska-Bregzconditions. In the Section 3 on a grid of 432 elements with a total of 4225 nodes.
present implementation of the method, we construct a LipschitEhe ensuing sparse linear systems, with roughly 30,000 unknowns
continuous coordinate transformation that maps the physical deet counting the induced magnetic figldvere solved directly,
main (a circular cylinder onto a circumscribed square cylinderusing a standard linear-algebra package. Stiffness matrices and
(the computational domajipallowing all computations to be per- load vectors were computed with a high-order Gaussian quadra-
formed on a logically rectangular grid. The square cylinder isire rule on the reference element. The induced magnetic field was
decomposed into rectangular parallelepipeds of equal size. THetermined by evaluating the Biot-Savart integral via Gaussian
allows us to use standard Taylor-Hood elements for velocity amgiadrature.
pressure, namely, continuous piecewise triquadratics for the velocGiven below are the results of a simulation of one of the ex-
ity and continuous piecewise trilinears for the pressure. Theperiments described in Bakhtiyarov et [@3], where a cylindrical
elements are known to satisfy the LBB condition. It is natural toolumn of liquid aluminum is steadily rotated in a uniform mag-

Output V, J, p, ¢, B, and T.

End

Fig. 1 Simplified flow diagram for the iterative solution of the
discretized problem
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B,
Fig. 2 Geometry of the configuration (not to scale; aspect
ratio L/2Ris 4)

netic field perpendicular to the cylinder axis; see Fig. 2 for th
geometry of the configuration and Table 3 for the data and para
eter values used.

Figures 4—7 show the computed current, potential, velocity, a
pressure distributions. Clearly visible is a closed current loop p:
allel to the planey=0 (which contains both the axis of the mag-
netic field and the axis of rotatipnSignificant potential gradients
arise only near the top and bottom of the column. The veloci
field is almost purely horizontal, the pressure almost purely radi
Figure 8, depicting the flow pattern in the plame0, reveals
significant counter-rotation associated with two kidney-shape
vortices, centered on theaxis (the axis of the magnetic fieldnd

B

a
Fig. 3 Induced current and flow field

Table 3 Data and parameter values for computer experiment

R cylinder radius 1.27x102m

L cylinder height 10.16x10 2 m
® angular frequency of rotation 1.05(%0 rpm
By magnitude of applied magnetic field 01T

p mass density 2.38x 10° kg/n?®
7 viscosity 1.8x10 *kg/m-s
o electric conductivity 4.1X 10° mho/m
" magnetic permeability 1.26x10 ¢ H/m
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Fig. 4 Current density

equidistant from the center. The same general pattern is found in
horizontal cross sections along much of the cylinder axis. Due to
the no-slip boundary condition, a transition to rigid rotation occurs
near the top and bottom, but the transition layers are fairly thin
(compare Figs. 8 and)9

More quantitative information can be inferred from azimuthal
velocity profiles, parallel or perpendicular to the magnetic field.
Figure 10 shows thg-velocity along thex-axis, Fig. 11 the nega-
tive of the x-velocity along they-axis, both in the planeg=0.
Figures 12 and 13 give essentially the same information, but with
respect to the rest frame of the cylinder; that is, they show the
azimuthal components of thaducedvelocity V-V, (whereV,
is the velocity field associated with the rigid rotation of the cylin-
den. The induced velocity is generally antiparallel ¥ and of
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the same order of magnitude. As a consequence, the fluid is \ [ EEEREE T T
. H . . . N restESiss< A /
tually at rest in the region between the two vortices seen in Fic e < 7 LTS
8 and 9. Figures 14 and 15 support the observation that the (” : << o /
duced velocity does not appreciably decrease along much of ! ;:7}‘7\“
cylinder axis(it must, of course, go to zero in the transition layer: <l A
at the top and bottojn ~
The results of the simulation are easily explained, at least que —0.0508 LR )
tatively, by inspection of the leading-order terms in the Naviel . '0 01
Stokes equations and Ohm’s law. The velocity field associat 0 :
with th_e rigid rotation _of the cylinder i¥o= w(_—y|+x1). This is y -0.01 ~0.01
a solution of the Navier-Stokes equations with zero body force X

No viscous shear is associated with, and inertia is balanced by
a radial pressure gradientp(Vy-V)Vo=—Vpg with pg
=1/2pw?(x?>+y?). Due to the presence of the applied magnetic
field B,=Bgi, a currentdy=oVyXB,=—o0wByxk is induced.
This current is parallel to theaxis and concentrated in two near- . _ 2 .
wall regions centered on theaxis (see Fig. 3 it is not accom- V€N By Vi=(ow/p)"RB,, and the ratio V,/Vq
panied by a potential gradiefsinceVox B, is solenoidal. The = (9/p@) By is roughly of order one(This scaling argument
finite length of the cylinder forces return currents to flow parallétPPlies as long as the hydrodynamic Reynolds number is large
to the x-axis in boundary layeréHartmann layefsnear the top compared to unity, which is the case even for fairly smalbut of

and bottom of the cylinder: those are associated with potent@fUrse notin the limits—0,) o
gradients. The main observation is that already moderate magnetic fields

The currentd, and applied fieldB, generate a Lorentz force and angular velocities result in significant counter-rotation of the
a

. ; . - melt in the two near-wall regions, centered on the axis of the
JoXB,=—cwB2xj. This force is rotational and cannot be bal- é)lied field. where the curre%g is concentrated.

anced by a pressure gradient; it thus accelerates the fluid, resulfi
in a secondary velocity/,, antiparallel toV, (see Fig. 3 This .

explains the general flow pattefand, in particular, the kidney- 5 Conclusions
shaped vorticesseen in Figs. 8 and 9. According to the remarks at A new aproach to the mathematical modeling and computa-
the end of Section 2, it must be the inertial forg€V,-V)V,, tional simulation of fully three-dimensional, electromagnetically
which balancedyx B, . A characteristic magnitude &f, is thus and thermally driven liquid-metal flow was developed and applied

Fig. 6 Velocity field
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to simulate the flow of a metallic melt in a cylindrical crucible,
rotating steadily in a uniform magnetic field perpendicular to the
cylinder axis. A finite element based discretization and iteratio-o.015 T
scheme was designed for the numerical solution of the underlyir —0.01

0.0127

0.01

-0.01

-0.0127

Fig. 7 Pressure distribution

Fig. 8 Flow pattern in the plane
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Fig. 9 Flow pattern in the plane z=5L/12
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Fig. 10 Azimuthal velocity in the plane  z=0, along the x-axis
(parallel to the magnetic field )
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Fig. 11 Azimuthal velocity in the plane  z=0, along the y-axis
(perpendicular to the magnetic field )
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Fig. 15 Induced azimuthal velocity V—V, in the plane =z

=5L/12, along the y-axis

nonlinear PDEs. The results of preliminary computer experiments
(limited to the laminar flow regime and not accounting for tem-
perature fluctuationsvere shown to agree with theoretical predic-
tions. It was found that already modest magnetic fields and angu-
lar velocities lead to significant counter-rotation in the melt.
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Fracture Simulation Using an
Elasto-Viscoplastic Virtual
Internal Bond Model With Finite
Elements

A virtual internal bond (VIB) model for isotropic materials has been recently proposed by
Gao (Gao, H., 1997, “Elastic Waves in a Hyperelastic Solid Near its Plane Strain Equibi-
axial Cohesive Limit,” Philos. Mag. Let#Z6, pp. 307314) and Gao and Klein (Gao, H.,
and Klein, P., 1998, “Numerical Simulation of Crack Growth in an Isotropic Solid With
Randomized Internal Cohesive Bonds,” J. Mech. Phys. Sdl&f8), pp. 187218), in
order to describe material deformation and fracture under both static and dynamic load-
ing situations. This is made possible by incorporating a cohesive type law of interaction
among particles at the atomistic level into a hyperelastic framework at the continuum
level. The finite element implementation of the hyperelastic VIB model in an explicit
integration framework has also been successfully described in an earlier work by the
authors. This paper extends the isotropic hyperelastic VIB model to ductile materials by
incorporating rate effects and hardening behavior of the material into a finite deformation

framework. The hyperelastic VIB model is formulated in the intermediate configuration of
the multiplicative decomposition of the deformation gradient framework. The results per-
taining to the deformation, stress-strain behavior, loading rate effects, and the material
hardening behavior are studied for a plate with a hole problem. Comparisons are also
made with the corresponding hyperelastic VIB model behavior.

[DOI: 10.1115/1.1796451

1 Introduction bond force. By describing this bond energy in a hyperelastic
.fﬁamework of finite deformation, the appropriate stress and strain

It is well established that plastic deformation takes place i asures. such as the Green-Laaranae strain tensor and the sec-
regions of high stress concentrations and that fracture at the cradgasures, < grange st .
d Piola-Kirchoff stress tensor, can be derived. The macroscopic

tip is preceded by some degree of plastic deformation. To be m escription of the continuum is determined by the Cauchy-Born

realistic the numerical simulations of crack initiation, propagatiorr, 91 of | elasticity. b . h X .
and branching must, therefore, include the elastoplastic behavig}e [9] of crystal elasticity, by equating the macroscopic strain

of the material. Among the finite-element-based numerical mo@hergy function at the continuum level to the potential energy
els, which are becoming widely accepted, is the cohesive surfatered in the cohegve bonds at the microscale. The de;crlptlon of
modeling of fracture. Many researchers, including Barenpigit the bond lengthl in terms of the Green-Lagrange strain tensor
Dugdale[2], Willis [3], Xia and Shi4], and Xu and Needleman Provides the link between the two scales.
[5], to mention a few, have worked on propagating and advancingKlein and Gao[10] have described the application of the VIB
this methodology. The fundamental basis of these models liesMipdel(based on the hyperelastic framewptd fracture initiation
defining discrete cohesive surfaces in which the traction and sep&d propagation and have further studied the crack dynamics us-
ration at the boundaries are described by nonlinear cohesive laig. this model. An implicit second-order integration scheme was
These models do not require any separate fracture criterion. Hoyged to simulate quasi-static and dynamic loading problems.
ever, these surfaces, which lie in between element boundaridsang et al[11] implemented this model, using an implicit inte-
must be defined a priori, and separate cohesive elements muspgtaion scheme, in a UMAT subroutine in ABAQUS2]. The
introduced in between boundaries of the regular finite elementsoftening region of the cohesive models presents a major issue
In contrast to the approach described above, [6ad and Gao with the numerical implementation, using implicit integration
and Klein[8] proposed an approach called the Virtual Internadchemes. Thiagarajan et 3] found that the explicit integration
Bond (VIB) model, wherein theonstitutive modedlirectly incor-  scheme is better suited for the finite elem@) implementation
porates a cohesive-type lain the VIB approach, the continuum of the VIB model. The model was implemented using the user
is treated as a random network of material points, interconnectsgbroutine VUMAT in ABAQUS. The influence of mesh shape
by bonds, which obeys a cohesive law. The bonds are physicadlyd size, loading rate, and other related issues were studied for
described by a bond enerdgy(l), wherel is the bond length, and both quasi-static and dynamic impact loading cd4&$. The ex-
its derivative with respect to the bond lendii(1) is the cohesive perimental verification and validation of the VIB model was stud-
ied for the case of dynamic fragmentation of brittle materials un-
“Corresponding author. der impact loading by Thiagarajan et El4].
MECHANIGAL ENGINEERSTor pUblication n the ASME GURNAL oF AppLIEDME. _ 111e WOTk presented here stems from the previous work by the
CHANICS. Manuscript receiverc)i by the ASME Applied Mechanics Division, Januar)?‘umors and is m_Otlvated by _the _Obser_vatlon th_at Itis necessary to
21, 2003; final revision, November 13, 2003. Editor: H. Gao. Discussion on the pag&corporate plastic deformation in regions of high stress concen-
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appligeations. There are two basic approaches of incorporating plastic-

Mechanics, Department of Mechanical and Environmental Engineering University éé ; f it _
California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepﬁ inta the VIB model. One is at the atomistic level by the con

until four months after final publication of the paper itself in the ASMBianaL o Sideration of individual disloqationémillions of them) and other
APPLIED MECHANICS. microstructural features. This method is numerically daunting
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even with the current level of supercomputers. The second ag
proach, which is adopted in this research, is to incorporate plas /le'—_r /
ticity and/or viscoplasticity at the continuum level by using well- T
established plasticity and viscoplasticity models. .
The incorporation of viscoplastic effects into the VIB model is
done within the framework of the multiplicative decomposition of
the deformation gradierfi=F°FP proposed by Le¢l5] and ad-
vanced by numerous authors. This description is outlined in a late F
section. The fracture simulation of a ductile material is studied by
treating it as an elasto-viscoplastic solid. The elastic behavior i
modeled as a hyperelastic VIB material and the plastic and/o

viscoplastic response is defined in the so-called intermediate col s ]
figuration. The model is studied using 6061 Al for which the vis- Undeformed Configuration A
coplastic material properties are available. o) /
In this paper, Section 2 gives a brief description of the well- /
known finite deformation kinematic formulations in order to es- 1=
tablish the scientific basis for the choice of the intermediate con 00y

figuration. The elasto-viscoplastic constitutive formulation for the
intermediate configuration is then described in Section 3. Sectippy 1 Multiplicative decomposition of deformation gradient F
4 describes the details of the explicit integration scheme detailth its effect on shape and microstructure

and Section 5 describes the numerical finite element implementa-

tion, along with the results from various case studies. The conclu-

sions are presented in Section 6. framework where both elastic and plastic strains can be of finite
magnitude. The kinematics involved in the formulation of finite
2 General Kinematic Formulations elastic and_ _inelastic deformati(_)ns are _based on the _multiplicativ_e
decomposition of the deformation gradient and described in detail
The choice of an appropriate strain and strain-rate measurepisiow.
critical to the elasto-viscoplastic formulation of fracture for duc-
tile materials using the VIB model. At the outset, various kine- 2.3 Multiplicative Decomposition of Deformation Gradi-
matic frameworks, both small strain and finite strain, are dent. Theeffective decouplingf the elastic and plastic laws can
scribed below along with the possible situations to which thdje achieved by using the unstressed configuration for deformation
may be applied. The choice of the kinematic formulation that ghanges. It is assumed that yielding is not affected by the hydro-
best suited for the elastoplastic VIB model is then described $tatic Cauchy stresses and that the elastic constants are not af-
detail. fected by plastic deformations. In this paper, capital-letter sub-
. ) scripts are used for the initial configuration while lowercase
2.1 Small Strain Formulation. For problems where total gypscripts are used for the deformed configuration.
strains are small, the additive decomposition of total stréffis A muyltiplicative framework for large deformation inelastic be-

the order of 0.00Lare given as havior is adoptedi15—21] as follows:
€= e te] D F=F%FP  detF®,detFP>0 -
where the elastic strains are of the order of 0.001%). F,=FSFP,
1 |

The uniaxial strains for ductile materials can reach the order of

unity due to plastic flow, especially in metal-forming problems. InvhereF is the deformation gradienE® is the elastic deformation

these cases the elastic stra{0s00J) are very small compared to gradient and" is the plastic deformation gradient. As shown in

the total strains and can be neglected. The hydrostatic stres¥ig. 1, such a characterization allows for the definition of an

such cases does not affect yielding, and only the deviatoric partjafaginary intermediate relaxe@tress-frep configurationQ. Q,

the stress causes yielding. The plastic flow can be expressed as,&0 are the configurations at time-t, andt=t,,, respec-

functional as shown below: tively. In this paper any quantity with an overbay refers to its
=1, (a,0) @) value in the intermediate configuration. The intermediate configu-

ne ration is commonly considered as a stress-free configuration ob-
As the elastic strains are neglected, the total strain rate cant@fed by elastically unloading the body from the current configu-
expressed in terms of the derivatives of the velocity field as fofation. It can be physically considered to represent the total effect

lows: of dislocations without any lattice distortiorisnapped byFP),
e =P ©) while the lattice distortions and rotations transform the intermedi-
ne ate configuration to the current configurationapped byF®). The
1/ dv; dvj basic kinematic variables associated with the three configurations
“2lax T (4)  are now described.
Final deformations are obtained by integrating E4.over time. ~ 2.3.1 Undeformed Configuratiof20. The primary kine-

This formulation is well known as the rigid plastic model andmatic tensors associated with the undeformed configuratign

although the total strains are finite, there is no need to use fintée the left Cauchy-Green deformation tensband the Green-
strain kinematics. Lagrange strain tensdt, which are expressed as follows:

2.2 Finite Deformation Theory. The finite deformation C=F-F or C,=F;F; (6)
framework is applicable to cases where the total strains are finite 1~ 1~
and the magnitude of elastic and plastic strains are comparable. E=3(C-G) or Ey=2(Cy=GCy) ™
Examples of these include cases where the inertia forces are highereG is the metric tensor in the undeformed configuration. In
due to rapid loading as in explosive and impact loading. Elastibe Cartesian coordinate syste®j;= &,; where §,; is the Kro-
strains of the magnitude of 25% or more have been reported foecker delta. Since the plastic deformation gradient maps the ini-
explosive loading[16], which would necessitate a kinematictial configuration to the intermediate configuration, the plastic
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parts of the left Cauchy-Green deformation ten&r and the whereL® and LP are the definitions of the elastic and plastic
Green-Lagrange strain tensBP can be expressed as follows: ~Velocity gradient tensors arfof, D?, W¢, WP are the elastic and
T o bep plastic parts of the stretching-rate and spin-rate tensors, respec-
CP=FPLFP or CP=FiF} (8) tively. In theory it can be assumed that not only the symmetric
P_ Ll ~p_ p_1/~p _ part D" but also the skew symmetric paw/P is governed by
BP=3(C"=G) or Ej=3(Cii—Gn) ) constitutive equations. For rate-dependent matefiadg, these
From the above definitions, the elastic component of the Greerenstitutive equations can be expressed as
Lagrange strain tensor is defined using the additive decomposition .
[22] as DP=F°DP(F*Fe, a)F® (25)
E°=E—EP (10) L
— WP=FeWP(FeTF®, o) F® (26)
2.3.2 Intermediate Configuratio).__The Green-Lagrange
strain in the intermediate configuratida can be defined as a where « is a set of parameters that describe structural changes
push-forward transformation & usingFP as follows: caused by lattice defects. Wand'@5] representation theorem

_ i P— i i i in-
E_pr TEpe 1) %/elilgc?ryv 0, thereby ignoring the effect of the plastic spin-rate

—E°+EP 12) 2.4.2 Intermediate Configuration.Since the velocity gradi-
ent has a covariant-contravariant character, using an appropriate

where pull back from the current configuration, the expression for its

Ee= X |:eT.|:e,|) (13) representation in the intermediate configuration results in
Er= i —pr Y (14) L=F¢ 'LF® @7)
The deformation gradients®, FP may not strictly be continuously 1o ool o
differentiable mappings. They have sometimes been described as =F® Fe+FPFP =L°+LP (28)

point matrix functions. _ _
whereL® andLP are the elastic and plastic velocity gradient ten-

2.3.3 Current or Deformed Configuratiofl. The deforma- sors. The rate of deformation tensors in the intermediate configu-
tion gradients mapping the initial and the intermediate configurgstion can be expressed as

tions into the current configuratio(Fig. 1) are the totalF and
elasticF® parts, respectively. Consequently, the primary strain ten-

: : uently, D=symniL)=%(C°L+LTC®=F¢TDF® 29
sors associated with the current configuration may be expressed as ymmL)=2( ) (29)

b=F-F" or by=F;F; (15) De=symniL®)=3(C°L°+L°TCO)=F°D°F*  (30)
e=3(g-b™") or e;=3g;—bj" (16) DP=symmiLP)=3(CeLP+LPTC®)=F°™DPF®  (31)
bé=F%FeT or bf=F{F 17)

3 Elastic-Viscoplastic Constitutive Assumptions

e_Lliq_pe1 e_1l _pe1l

e=2g7b" ) or &=y by ) (18) In the approach proposed in this paper, the hyperelastic-
whereb andb® are the total and elastic right Cauchy-Green dasiscoplastic response of the VIB model is based on the following
formation tensors and and e® are the total and elastic Eulerianassumptions:
strain tensors, respectively. The additive decomposition of the Eu-

lerian strain tensor leads to 1. The intermediate configuration is assumed to be the basis for

the definition of the plastic variables. As the intermediate

P=e—¢€° (19)

Following Marsden and Hugh¢&3], the tensore ande” may be
referred to as the push forward, usifgy of the tensor& andEP,

configuration is considered to be a fixed configuration asso-
ciated only with lattice deformations, the elastic bonds be-
tween the particles are not affected. This configuration is
obtained by elastically unloading the material from the cur-

respectively. rent configuration. The original hyperelastic VIB model is

2.4 Rate of Deformation and Spin Tensors. The velocity hence set up in the intermediate configuration.

gradient, rate of deformation, and spin tensors can be expressed i- Theflow ruleis specified in terms of the plastic part of the

the current and intermediate configurations as described below. velocity gradient_P. This is assumed to be a function of the
Piola-Kirchoff stress and other internal variables.

. The solid is considered to be isotropic in the intermediate
configuration leading to the assumption that the plastic part

- of the spin tensor is zeroN?=0).
LZQZFF =D+W (20) 4. A unified viscoplastic model is assumed, where inelastic
strains include plastic and creep strains, by specifying a

2.4.1 Current Configuration. The velocity gradient of a par-
ticle defined in the current configuration is expressed as

w

D=symnilL) (22) single set of flow rules and evolutionary equations.
5. The stress rate is assumed to have no effect on the evolu-
W=skewL) (22) tionary equations, i.e., instantaneous plasticity is neglected.

whereD is the rate of deformation or velocity tensor representing 6. Plastic deformations are assumed to be incompressible or
the stretching part an®/ is the spin rate tensor. By substituting detF?)=1.
the multiplicative decomposition of the deformation gradient in 3.1

: . . o Intermediate Configuration Formulation. Based on
the above equation, one can derive the following expression:

the hypothesis of formulating the hyperelastic part of the elasto-
L=(F°F® ')+ (F&FP-FP .F® ')=(L®)+(LP)  (23) Viscoplastic VIB formulation in the intermediate configuration,
the final kinematic quantities used in this formulation are summa-

=(D*+W¢®)+ (DP+WP) (24) rized as follows:
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E=Fe.FP The modulus derived from this potential satisfies the major and
minor symmetriesAjx. = Ak =Ask=AkLiy, as well as the

L=FF l=D+W Cauchy symmetryA, k. =AkjL - This results in only one isotro-
- . PR — pic elastic constant being needed. This is due to the fact that the
L=(F®F® ")+ (F*FP-FP "-F® ")=(L®)+(F°LPF® ') Cauchy symmetry is satisfied by the fourth-order isotropic elastic-
ity tensor only for the case of=u, where\ and u are the two
_1 e pP— e e p p s
=L%+LP=(D*+ W) +(D"+WF) Lame constants.
L=F° 'LFe=F® 'Fe+FPFP '=L°+LP 3.2.1 Adaptation to the Proposed Modeln the proposed
= lelrie model, since the intermediate configuration is considered to be a
L®=F -F fixed configuration associated only with lattice deformations, the
1 elastic bonds between the particles are not affected in this con-

LP=FP-FP figuration. Hence, the elastic VIB response in the intermediate

3.2 Hyperelastic Constitutive Equations. The original Vir- configuration can now be expressed as

tual Internal BondVIB) elastic model has been formulated in the . aZ(E&) _ ﬁE
reference configuratiof6,7,10. The Cauchy-Born rule of crystal = —— or §=— (39)
elasticity is used to derive the overall constitutive equations by JE® IER,

equating the ir)ternal stra.tin energy of the bonds to the poten .- ereS is the equivalent of second Piola-Kirchoff stress in the
energy stored in the continuum due to external forces. The mma ermediate configuration

and the deformed configurations are defined using the Lagrangian
coordinates X=X, and the Eulerian coordinateg=x(X,t) 3.3 Viscoplastic Response Formulation. The intermediate
=x;(X,t), respectively. The deformation gradieRt and the configuration can be uniquely described by the plastic part of the
Green-Lagrange strain tens@ are used in the basic elasticdeformation gradienEP, and the evolution equations can be set
description. up to describe it using an appropriate flow rule. The two internal
Consider an arbitrary microstructural bond at an arfy@d ¢,  variables, namely, the backstressand the effective accumulated
where ¢ is the angle between the bond and the vertical positiygiastic straine?= [},éPdt, and the evolution equations in the rate-
z-axis, andé is the angle in the horizontal plane with respect tgependent form are described here. The constitutive equations for-
the positivex-axis (in polar coordinates respectively. The unit myjated here is based on the elasto-viscoplastic response of a
vector along this direction is given aSmaterial following thel, flow theory.
&=(sin fcos,sindsin ¢,cosd) with respect to the undeformed  The expressions for the deviatoric form of the second Piola-
configuration. The stretch of this bond can be given as Kirchoff stress and the backstre§s the intermediate configura-

I=1, ’—1+2§|E,J§J (32) tion) can be expressed as follows:
W_co_liccece!
The macroscopic strain energy density function is derived using $l=s-3(sC%C (40)
the Cauchy-Born rulg9,26] as proc il %(E: Ce)Ce_l (1)
P(Ep)=(U(l)) (33) and the hydrostatic pressugeis given by the equation B

where( .. . .) represents the weighted average with respect to theS:C®, wherel is the determinant of the deformation gradient.
bond density functiorDy. U(l) is the potential energy function ) . . S . . )
between each bond. Assuming that all bonds have the same initial '€/d function. The yield function in the intermediate configu-
lengthl,, for the general case this is given as, ration is described as

()= fo JO ~Da(0,p)sinododd G o theJ, flow theory the yield function takes the form
The termDy( 6, ¢)sin(6)déd¢ represents the number of bonds per (1_>=E§q— K?=0 (43)

unit volume between the bond angle#,4+d6) and (¢,¢

+de). For isotropic solids the bond density function is taken asWhere the equivalent stress in the intermediate configuration is

constantD,. Hence the macroscopic strain energy density fun fven as . . o
tion can be now given as qu: 3(s?-ad):('-a?)cece (44)
27 (7 . .
_ ; Flow rule. The flow rule is expressed as the evolution of the
v(Ew) Dofo jo U(Dsin6déde (35) plastic part of the velocity gradient as follows:
For a two-dimensional isotropic solid subjected to plane stress, the LP=FPFP '=DP+WP (45)
bond density function can be expressedDag 6— (7/2)] and e —
the strain energy density function becomes =Nn(S,a,€”) (46)
2w where n is a second-order tensor representing the direction of
l/f:Dof u(hde (36) plastic flow. Adopting the associated flow rule, this direction is
0 normal to the yield surface. Using E@4), the plastic flow direc-
From the strain energy density functig the symmetric second tion can be expressed as
Piola-Kirchoff stressS;; and the elastic modulud, ;. can be 3
derived as follows: = —(-a%cece (47)
204
S= Ad or u:ﬂ (37) and the evolution of the effective plastic strain rate is then given
JE =N as follows:
Pip . O(S,a,e)
Akl=—=— 38 P=\=ov-—"""7
DKL= GE 9, (38) eP=\ . (48)
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wherey is the viscosity parameter of the matefialso referred to . 35(*53
as the fluidity coefficient The plastic part of the spin tensor = _e”l

— *
(WP=0) is not considered. These considerations result in a re- I Eiyq (56)
duced form of the flow rule shown below —

— J
NP — *(Su)wlz_ﬁ
DP=\Asymnin) (49) FES
Hardening rule. The evolution of backstress is given by a Step 5. The trial backstress is then updated by the following
kinematic hardening rule as follows: equation:
&=).\F(§,E,?) (50) Y=ot A€, h, (57)

Step 6. The equivalent plastic strain, actual equivalent stress,
and internal scalar or tensor variables can then be solved using a
Newton iteration. The equivalent plastic strain increment can be

expanded as
4 Integration Procedure o —
9 . . . . L Az&l:Atfp(*Sﬂv*F1p+1vA;F+11at+1) (58)
The details and issues involved with the numerical |mplemea%;

whereh is the hardening function.

tation of the model proposed above are described in this sectid® equivglent _%Iaztic §trair;‘inltilrement|:ian EE& is solr\]/e_d from N
The steps outlined here are presented in a format that is suitall§ St€PS described using the Newton-Raphson technique with an

for implementation using the ABAQUS subroutine VUMAT. |pinitial guess of zero. This value is incremented until Esp) is

the material model, which involves the integration of the Const§_atisfied to some acceptable tolerance. The algorithm described

tutive equations, the following data are given as input frorﬁbove is a combination of both explicit and implicit steps.
ABAQUS: F;, F,. 1, At, which represent the deformation gradi-, . .
ents at the previous and current time step and the increment5of Numerical Implementation

time, respectively. The elastic and plastic deformation gradients afThe numerical implementation of the finite deformation visco-
time t denoted byFf andFP, respectively, and the effective plas-Plastic VIB model, described in the above sections, has been
tic straine® are designated and computed as state variables witfi§$ted on a plate with a center-héRWH) problem. A number of

the material model subroutine. The Cauchy stressrom the ISSU€S, such as crack initiation and propagation, stress-strain be-
previous time step is also returned back by ABAQUS for use ffavior of cracked elements, development of plastic strain in ele-
needed. The Cauchy stress tensor at titael), o, ;, along with Ments, time of solution, etc., have been studied. The results are
the updated values &, ., FS. . . €P are calculated and stored atpresgnted in this paper. .Slmullatlons have also been run using the
the egd of the current time ts+tép € elastic VIB model described ifi13,14 and compared with the

viscoplastic model.

In the simulations, 6061 Al has been used with a Young's
4.1 Numerical |ntegration Procedure Modulus of 70 GP_a and a Poisson ratio of 0.3. The material has an
initial yield stresso =135 MPa. The size of the quarter plate is
taken as 108100 mm. The plastic flow for this material is de-
Scribed by a power law given by the following equati@T]:

_ o=a+b(c+k)? (59)
xED D A EP
Fni1=exdAeninalFy (1) where the material constants wit=25 MPa, b=466 MPa, ¢

The tensor exponential function in EGi1) can be represented = 0-003, and the exponent=0.293. « is the equivalent plastic
by a series representation as shown below strain. The fluidity coefficienty used in the effective plastic

strain-rate equatio48) is 5000 MPa/s.

Step 1. The flow rule is integrated using iamplicit exponential
approximation keeping the flow direction and the plastic modulu
fixed during the current time step, as follows:

_ 1 n 5.1 Plate With Hole Problem: Unidirectional Displace-
quA]_Z n! [A] (52) ment Loading. The loading cases studied for this problem are
shown in Fig. 2. The displacement at the top edge of the plate is
Considering the first two terms of the expansion of &) and increased linearly in all cases with the rate being controlled by the
using the series representation, the flow rule and the resulting trial
plastic deformation gradient can be expressed as given below

_ ——r—— T

_ P 0.5 P

*FR =l +Aztp+1nt]|:tp (53) s
045 ~——a— Casc | d

wherel is the second order identity tensor.
Step 2. Thetrial elastic deformation gradient for the current
step is computed as follows:

04

035
03

-1
*F$+1:(F)t+1FP+1 (54)

EITERUREER, FRRTIINANT FUNTUN)

0.26

\
LY

-1
* FieJ: (FiK)Hl(FkJ)PH

Step 3. The Green strain can then be computed as shown below

0.2
0.16

U2 (Displacement at top)

IR T T IR T T

_ 0.1
1 T
*Ete+1: 5[*F$+1*F$+1_|] (55) 0.05
Step 4. Tharial elastic second Piola-Kirchoff stredbased on ) e .0125. NP 015 Lo .07._5, R
the computation of new bond lengths in the intermediate configu- " Time (seconds)
ration and assuming that the hyperelastic potential is based on the
elastic stretch onlyis calculated using the following equation: Fig. 2 Loading cases studied for plate with hole
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L.

Fig. 3 Final deformation for elastic VIB model

(case 2)

2

L.

Fig. 5 Final deformation for viscoplastic VIB model

final displacement value. All displacements are given during a real
time of 1 s. The four cases correspond to a maximum displace-
ment(U2) of 1.5, 2.5, 3.5, and 5.3 mm, respectively, of the top of The stress-strain behavior comparison of a critical element is
the plate. Both the elastic VIB model and the elasto-viscoplastéudied by plotting the stress along the loading directigpwith

VIB (EPVIB) model have been run on the same data set.

(case 3)

the logarithmic strainLE,,, for the left-bottom corner element

For case 1(U2=1.5 mm), no cracking was observed for both(the first element at the edge of the hol€he results have been
the models, and hence, the results are not shown graphically. Fgiesented comparing the elastic and the viscoplastic response for
ures 3 and 4 show the deformation of the VIB and EPVIB modelgarious loading cases. For loading case 3 the response is shown in

respectively, for case @12=2.5 mm). A fully cracked band at the
bottom edge can be seen for the elastic cd&g. 3) while no
cracking is observed in the EPVIB cadeg. 4). For subsequent
load cases the elastic deformation pattern is not shown as 1
bottom edge is fully cracked in all cases and is similar to th¢
shown in Fig. 3. Figure 5 shows the final deformation for loadin
case 3(U2=3.5 mm with the EPVIB model. A small crack is
seen to develop at the bottom left edge with two or three elemer
showing cracks. Figure 6 shows the deformation pattern for case
(U2=5.3 mm at time 0.7 s from which it can be seen that the
crack tip located at about one-third of the base length from tt
edge of the hole.

Figure 7 shows the stress distribution along the path defined
the bottom edge of the platéor loading case % showing the
stress values with increasing time, after cracking. The peak stre
is indicative of the current location of the crack tip, shifts to the
right. After the crack has fully propagated throughout the bottor

edge, the stresses in these elements drop significantly, as showL
1

Fig. 7 at time step$=0.9s. Figure 8 shows the plot of crack tip

location with time up to the time of 0.875 s. It was observed

Step: 1 Prame: 34

earlier that at 0.9 s the crack suddenly propagates throughout 64 Final deformation for viscoplastic VIB model  (t=0.7 s)
bottom of the plate. case 4)
e+ T - T T T T T
L = p=050s E
- E 1—1]_?;3
L =iy —
Bt . amd p= RN
o T ™ c =078
Lol F = t=0.B0s 1
Xa \ M 1=0.6258
GeslB]= Y5 Y . +—a t083 s -
= Y Y T S t= 0675
%"' 3 __“.\_\___\‘ ey - :'U.“:'l:s
: i ~ady T ;-_'-'-"-_:—77-.---.1-—'-.-_'-?—;'-:'—:.1.-_
deibf- o e e ke e s S
I| | P TE T N AT NN T w W e !
/
¥,
4 Qe HIE =
r/r ..'r
-
X S ¥ 3 1 P T AL T i

L.

Fig. 4 Final deformation for viscoplastic VIB model

(case 2)

Journal of Applied Mechanics

-

4
Distance from hole edge

Fig. 7 Stress (o) distribution along bottom edge of plate
(after cracking )
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Crack tip location (from edge of the hole)
&
T

.

:

S

Fig. 9. The peak of the viscoplastic response is higher than t|10

0.7
Time of loading (seconds)

Fig. 8 Plot of crack tip location with time

behavior exhibited by the material.

Figure 10 shows the plot of the equivalent Mises stress with t
equivalent plastic strain, for the left-bottom corner element. Thé
intent of this figure is to study the effect of rate of loading on th
development of plastic strains. After yielding, for loading casesé];a
and 2 equivalent plastic strains are allowed to develop as

0.9

% w o = LI 0 53 ik 4

T

UZ =015 Cass |
U2 =025 Case 2
==+ U2 = 035 Cans 3

X YT
Logarhmic Strain (LE_yy)

Fig. 11 Comparison of viscoplastic model stress-strain curves

jti

ding rates are fairly low. In cases 3 and 4, which are simulated
elastic response and is due to the incorporation of the hardenfig® hlgher Iogdlng rate, Fhe equwalent Mises stresses developed
P P 1R higher while the plastic strains developed are lower compared
t%loading cases 1 and 2. The sudden drop in the stress in loading
Q ses 3 and 4 are a consequence of the cracking of the element.
Figure 11 shows the comparative response for various loading
ses for the viscoplastic model for the left corner element. The
stic response, which is not shown here, for these loading rates
s observed to be identical for all the loading cases up to the

7E+08

6E+08

L LR R

SE+08

(Pa)

34E+08

Stress,

3E+08
2E+08 F

1E+08 |-

Elastic VIB Model (Case 3)
- = = ~ Viscoplastic VIB Model (Case 3)

RS ENUWi IRETE RN NS ERNEE SN SUNEE BN

0.2 04
Logarithimic Strain (LE yy)

Fig. 9 Stress-strain curve for left-bottom corner element

3)

——s U2 =053 Casa 4

= LT = 0,35 Casa 3
-t U2 = (.25 Covsn 2
& = U2 =0.15 Case 1

Teell

Equivalent Mass Siress (Fa)

Fig. 10 Mises stress-equivalent plastic strain plots for left-

corner element
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(case

point of maximum stress. The deviations in the softening region
are due to numerical issues. For the viscoplastic m¢figl 11),

as the loading rate increases the peak stress and peak strain sus-
tained appears to decrease. This might indicate that, for higher
loading rates, the tendency to fracture is higher as plastic strains
do not have time to develop.

The influence of material parametegisuch as yield strength,
fluidity coefficient, and hardening coefficigrin fracture proper-
ties, particularly, the cohesive strength and strain at the cohesive
strength, have been studied. Figures 12—14 show the stress-strain
behavior of the left-bottom corner element of the plate for differ-
ent values of yield strength, fluidity coefficient, and hardness co-
efficient, respectively. The loading rate was kept the same in all
these simulations.

From Fig. 12, which shows the variation for different yield
strength values with the hardness and fluidity coefficient remain-
ing the same, it can be seen that cohesive strength is not affected
very much by the change in yield strength. The cohesive strain for

BeHIE T T T 3 T T I
— o -B5MPa | |
. a, =110 MFs
et I8 - r—IHjMPﬂ.
-+ I —
e nr- 184 MPa
£
2eHIE | .
s
; | L. 1 gy eyou,
] ol oz os 04

a3 [ L]
Logarathimic Strain ILEﬂ'In

Fig. 12 Comparison of stress strain curves for different yield
strengths
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1
Step: Step 1 Incremsnt  54617: Step Time «  1.000

Deforwed Var: U Deformation Scale Pactor: x = +1.0008s00 y = +2.000a+00

Fig. 13 Comparison of stress strain curves for different fluid-

ity coefficients
y Fig. 15 Cracked pattern for biaxial load case with elastic VIB

model

yield strength of an 85 MPa value is lower compared to the yield

strength values of 110, 135, and 185 MPa, which have very sm“fig_ 6 of Gao and Kleifg]). Figure 18 shows the comparison of

lar cohesive strain values. the Mises stress and the equivalent plastic strain plots. Since the

Figure 13 shows the variation of the stress-strain behavior fQr . A .
cohesive stress for the biaxial case is lower, the overall develop-

the left-bottom corner element with varying fluidity coefficient . - L
values. It can be clearly seen that as tr):e ?Iuidity )(;oefficient irmem of the equivalent plastic strain is also lower.
creases, both the cohesive stress and the cohesive strain values
decrease, indicating that the there is a faster tendency to fracture.
Figure 14, which shows the variation of the stress strain curves for
different values of hardness coefficientindicates that the hard-

ness coefficient has negligible influence on fracture.

5.2 Plate With Hole Problem: Biaxial Loading. The PWH
problem was repeated with a biaxial load. The magnitude of load-
ing was similar to that of loading case 3 of the uniaxial case with
the loading now applied in two directions. A uniform velocity in
both thex andy directions was applied over one second. Figures
15 and 16 show the final cracked configuration for the elastic and
viscoplastic cases, respectively. A crack emanating from approxi- ] 4
mately the center of the quarter circular arc and propagating at a
45-deg angle can be clearly seen. The elastic model cracks earlier
than the viscoplastic model case and also propagates much further.
From Fig. 17, which shows a comparison of the stress and the 2
logarithmic strain for the biaxial and uniaxial cases, it can be seen
that the cohesive stress for biaxial stretching is lower and occurs
at a lower strain value when compared to the uniaxial case. This
observation is consistent with the theoretical derivation shown 'igg

1
Step: step 1 Incremsmt 54074: Step Time s 1.000

Ouformed Var: U  Deformation Scale Factor: +2.0008+00

.16 Cracked pattern for biaxial load case with viscoplastic

VIB model
| - LI [ S o S S e o e S e e e e e
p—r ] ] TE+08 |-
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Fig. 14 Comparison of stress strain curves for different hard-
ness coefficients
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Fig. 17 Comparison of stress and logarithmic strains for the
elastic and viscoplastic models
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A Superposition Framework for
Discrete Dislocation Plasticity

A superposition technique is introduced that allows for the application of discrete dislo-
cation (DD) plasticity to a wide range of thermomechanical problems with reduced com-
putational effort. Problems involving regions of differing elastic and/or plastic behavior

M. P. 0’Da are solved by superposing the solutions to i) DD models only for those regions of the
o y structure where dislocation phenomena are permitted subject to either zero traction or
W. A. Curtin displacement at every point on the boundary and ii) an elastic (EL) (or elastic/cohesive-

zone) model of the entire structure subject to all desired loading and boundary conditions.
The DD subproblem is solved with standard DD machinery for an elastically homoge-
neous material. The EL subproblem requires only a standard elastic or elastic/cohesive-
zone finite element (FE) calculation. The subproblems are coupled: the negative of the
tractions developed at the boundaries of the DD subproblem are applied as body forces in
the EL subproblem, while the stress field of the EL subproblem contributes a driving force
to the dislocations in the DD subproblem structure. This decomposition and the generic
boundary conditions of the DD subproblem permit the DD machinery to be easily applied
as a “black-box” constitutive material description in an otherwise elastic FE formulation
and to be used in a broader scope of applications due to the overall enhanced computa-
tional efficiency. The method is validated against prior results for crack growth along a
plastic/rigid bimaterial interface. Preliminary results for crack growth along a metal/
ceramic bimaterial interface are presentddOl: 10.1115/1.1794167

Division of Engineering,
Brown University,
Providence, Rl 02912

1 Introduction solves boundary value problerfisvp) for isotropic elastic bodies
containing mobile dislocations, which carry the information about

. The proliferation_ of increasingly smaller structures has h.ig&)'lastic deformation. No assumptions about the material plastic
lighted the necessity of developing accurate modeling technig Ohstitutive response are necessary although a set of constitutive

for material deformation at these scales. Currently, micron sc es governing dislocation motion, nucleation, and annihilation

analysis is important for micromachines and microelectronic CoMze required. The DD method has the benefit of being a true
ponents, as well as for the fundamental modeling of fracture prg- :

cesses. A wealth of experimental evidence has shown that in me éﬁhanlsm-based theory of plasticity; plastic flow arises directly

specimens having characteristic dimensions less than w00 dislocation motion. The DD method has recently been ap-
. L . ; lied to study flow in composites of varying microstruct
plastic flow exhibits a size effect: smaller is stron§&s2]. Clas- P y b ying s,

. : > > crack growth in plastic material®], fatigue crack growtf10],
sical continuum plasticity does not include a length scale, preclu Ad size effects in model Al/Si alloyd1]. The DD method has
ing any size effects. Thus the application of classical plastic cor, hroven useful in acting as a numerical experiment for com-
stitutive laws to micron scale specimens is questionable. Theison with various nonlocal theorié6,12). One limitation of
micron-size scale effectively lies in an intermediate regime that{e method is its significant computational cost, particularly for

too large for fully atomistic modeling, but small enough that inbodies containing elastic inhomoageneitl@@ and/or large num-
dividual dislocation effects are important and cannot be averaggg : ng ; g (o3 g

ac’(ilurately predlc} deflorrlna;l_o.r: atthsmallerhscales. devel OIciuently, many interesting physical problems that demand noncon-
umerous nonlocal piasticity theories have been developedyp,,m treatments have yet to be examined within the powerful
an attempt to reproduce size effe€&-5]. These theories intro- PD framework
du|(|:e alength scgl_elthat ams X’ account for t?]e effect of geometriy o 0 2 new superposition technique is presented that allows for
cal y n%c?ssary bls _ocatlons.t Z _cotntlnu'uin t ?_o_rtles,lmo;t non5"computationally efficient solution of elastically inhomogeneous
cal models can be incorporated into existing finite elem®& Hp proplems. The problem of interest is solved by superposing
architecture with only slight modifications. However, there remaifq, ¢5tions to)ia DD model of only that portion of the structure
§eyera| drawbacks to nonlocal_ formulat_lons. Like classical pl /here dislocation phenomena are permitted subject to special
ticity, these are phenomenological theories that do not account 95, qary conditions and)iian elastic(EL) model of the entire
the funda_rr_lent_al basis of plgstluty, i.e., the motion of d'S‘IOC""UOn§'tructure subject to all desired loading and boundary conditions.
The specification of the various length scales, usually chosen b)ﬂqe DD subproblem is homogeneous and solved with standard
fit to experimental data, is also an outstanding idsile DD machinery, including a contribution to the Peach-Koehler

An alternative technique is the discrete dislocatiddD) forces on the dislocations comin
X g from the EL subproblem. The
method of Van der Giessen and Needlerign The DD approach EL subproblem is solved with a standard elastic FE calculation

Comributed by the Abpiied Mechanics Division ofiE A . including special body forces that emerge from the DD problem.
ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF ; ; ; ; ; At

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- This technique IS baSI.Ca”y a special appllcatlorj Qf the .EShery
CHANICS. Manuscript received by the Applied Mechanics Division, February 24Mn€thod [13]. IF is similar to the coupled atomlstlc/cont!nuu.m
2003; final revision, October 30, 2003. Associate Editor: E. Arruda. Discussion énethod of Shilkrot et al[14], although here the formulation is
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journab)jre|y continuum in nature. The new technique also simplifies the
Applied Mechanics, Department of Mechanical and Environmental Engineerin At ; _
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will éppllcatlon of the .DD method to other problems becau_se It sepa
accepted until four months after final publication of the paper itself in the AsmEates _OUt a generic DD SUb_prOblem that can bef .conS|dered as a
JOURNAL OF APPLIED MECHANICS. material constitutive law. Finally, the superposition method is
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tively. The problem of interest is solved as the superposition of a
problem containing dislocations in an infinite body of homoge-
neousmatrix material, yielding the displacement, strain, and stress
fieldsl, €, ando, and a complementary problem that corrects for
the actual boundary conditions and the presence of the inclusion,
yielding the fieldsl, €, and o The fields in the problem of inter-
est are then obtained by superposition as

N UDD:I:I"‘G EDD:‘E“Fg O'DD:‘&“‘(} in V (l)

T=T°'T The elastic fields of an isolated dislocation in an infinite body

are known analyticallyf16] and given byu', €, ¢'. Again by

Fig. 1 General discrete dislocation boundary value problem superposition, the™() fields fromny dislocations are given by

(fields u pp, opp) is written as the superposition of: (i) disloca-

tion fields in infinite space of homogeneous matrix material - S S . )

(G,0) and (i) corrective fields to account for the inclusion and U:E u' 522 € o= 2 o (i=1,...n9 (2
I I

proper boundary conditions  (0,0) i
These fields produce tractions and displacements at the real

boundary of interest given by

ideal for using the DD machinery in a parallel-computing envi- =T on S,
ronment. The technique is validated against prior results on two-
dimensional(2D) plane-strain crack growth along a rigid/elastic- u=U on S

plastic bimaterial interface, and preliminary results on the fracture .

of more realistic elastic-plastic/elastic bimaterial interfaces is prétherer is the outward normal t& )
sented. The superposition formulation and examples discussed Ne corrective field is designed such that when superposed with
will be limited to 2D plane strain. Fundamentally, the technique i€ infinite space dislocation fields, the desired boundary value
equally valid in 3D, although the DD mechanics becomes consiBtoblem is obtained. The governing equations for the corrective

®

erably more complex15]. fields are thus

The formulation is presented in dyadic notation. Ve_ctors and V.o=0 e=V{ inV 4)
tensors are given by bold faced symbols, denotes the inner prod- A .
uct, and: the trace product. With respect to a Cartesian legsis o=Lie in Vy (5)

a‘b:aibi y AB:AIBl y and (ﬁB)I :Li'kl Blk! W|th Implled ~ A ~ .
summation over rereJated indices. Latin indices run from 1 to 3, o=LFe+(LF-L)Te in Ve (6)
Greek indices from 1 to 2 only. The gradient operator is denotgg@bject to the “corrective” boundary conditions
asV. The fourth-order identity tensor i& oA ~

The remainder of this paper is organized as follows. Section 2 ro=T=T,—T on § @
contains a concise overview of the standard DD formulation for - ~
inhomogeneous bodies. Section 3 presents the new superposition u=u,—U on S,
technique. The material parameters, validation, and preliminagince the 7) fields are singular only at the dislocation cores and
bimaterial results are presented in Section 4. Section 5 discussgge dislocations occur in dipole pairs or terminate on traction-
other applications of this formulation, and summarizes our resultfee surfaces, the™) fields on the boundar$ and the boundary
Computational efficiency for problems involving a nonlinear coconditions(7) for the corrective field problem are smooth, and
hesive zone requires special techniques in the EL subproblem. Theés the corrective field problem can be solved with the conven-
Appendix describes an efficient technique for solving the incr¢ional FE method.
mental FE equations for aelastic bimaterial model with a non-  wjth the dislocation structure and all fields known at some
linear cohesive zone, which is used to solve the EL subproblemiistant, the evolved structure and fields are desired after an incre-

the bimaterial interface crack growth problems. ment in applied loading. Based on the known dislocation struc-
ture, the boundary field8l and T are calculated. The corrective
2 Discrete Dislocation Methodology FE problem is then solved for an increment of applied loading.

i : With the total fields determined, the evolution of the dislocation

The standard DD formulation for the inhomogeneous problegrycture is accomplished by évaluation of the Peach-Koehler
of an elastic-plastic body containing an elastic inclusion has begf}ce on each dislocation and &@pplication of the rules for dis-
derived by Van der Giessen and Needlerfighh The derivation is |ocation motion, nucleation, and annihilation. The updated dislo-
briefly reviewed here, with a focus on when the implementatioghtion structure and new fields are now known, and this procedure
becomes computationally expensive. This motivates the develgg-repeated for all subsequent increments. The Peach-Koehler
ment of the new superposition technique, presented in Sectiont3.ce 1) on thelth dislocation is computed as

The discrete dislocation formulation models edge dislocations

as line defects in an isotropic elastic material, constrained to glide
on a fixed slip plane. Long-range dislocation interactions occur
through their continuum elastic fields. Short-range interactions are
governed by constitutive rules for dislocation motion, nucleationvheren!" is the slip plane normal ank{" is the Burgers vector
and annihilation. In addition, dislocations can become pinned @t the Ith dislocation. A key point is that the method does not
obstacles and are released when the resolved shear stress osdhe for equilibrium dislocation distributions. The dislocation ve-
dislocation exceeds the obstacle strength. Nucleation occurs lbyity is linearly related to the Peach-Koehler force; no dissipative
the expansion of Frank-Read dislocation loops, which in 2D imechanism to slow the dislocations is included. At any instant, the
represented by the creation of a dislocation dipole. dislocation structure is a snapshot of the constantly evolving dis-

The general discrete dislocation boundary value problem liscation structure. Since an equilibrium solution is not being
shown in Fig. 1 for a body of volum¥, subject to boundary sought, no self-consistent iteration between the two subproblems
conditionsu=u, onS,, andT=T,0onS;. The body is composed is necessary. The FE framework used here is that of Cleveringa
of an elastic-plastic “matrix” regionVy, and an elastic “inclu- et al.[9], which is quasi-static and uses a virtual work expansion
sion” region Vg with tensors of elastic modulfl and £E, respec- to step forward in time without iteration.

fh=p(

&ij+;| aff))b}” 8)
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The solution to the full problem of interest is then obtained by
superposition of the DD and EL subproblems as

U=UpptUg. €=€ppte O=0ppt oL )

Superposition is permitted since, in the region where superposi-
tion is being used, both problems are linearly elastic at any in-
stant. All plasticity is completely contained in the motion and
position of the dislocations within the underlying elastic material
T,5=0 and, therefore, does not preclude the application of superposition.
Although termed an “elastic” subproblem, the EL subproblem
need only be linear in the region where the discrete dislocation
into two subsidiary problems: discrete dislocation (DD) sub- superposition is be'T‘Q applied. That _superposmon y|e!ds the cor-
problem solved with the standard formulation subject to ge- rect bour_ldary conditions for the d_es!red_problem during any in-
neric boundary conditions, and elastic ~ (EL) subproblem, which ~ crement is clear from the schematic in Fig. 2: the boundary con-
contains all specific boundary conditions and loading, solved ditions are satisfied exactly, the linear field equations in each part
with standard elastic FE of the problem have been solved via FEM, the tracti®fisand
—T* cancel upon superposition, and the boundary condition
Upp =0 has no effect on the displacement of the bound&yas
.y R £ ~ Eoril o~ calculated in the elastic subproblem.

The additional ternp= (L™~ L):e= (L™ L "—T): o in Eq. (6) The EL subproblem influences the dislocation structure and its
that corrects for the presence of the inclusion is known as Hgo|ytion because the Peach-Koehler force is calculated on each
polarization stress. In an incremental FE scheme the polarizatigQocation using the full fieldo minus the dislocation self-
stress must be computed at each inclusion integration point, Whiﬁ"t‘eraction, which thus includes the contributie, . In all ap-
requires the stress field of each dislocation to be evaluated at thﬁﬁ@ations, it must be remembered that the dislocations are driven
points. This is a major computational limitation when applying thgy the full, true field and not simply the fieldsy, calculated in

DD method to elastically inhomogeneous structures. As the nUl pp subproblem. The expression for the Peach-Koehler force
ber of dislocations becomes large and/or the number of inclusignipis superposition framework is

elements increases, evaluationpotan dominate the FE calcula-
tion. For this reason most of the DD literature has focused on
homogeneous materials. This motivates our development of a new
DD technique.

Fig. 2 New superposition framework showing decomposition

=3+ o roft]o a0
J#1

which differs from the corresponding expression for the standard
- o formulation (8) by the inclusion of theog| contribution.
3 Superposition Method for DD Plasticity Before proceeding to validate and use the new superposition

The new superposition technique is shown schematically in Figiéthod, some comments are warranted. Operationally, at each in-
2. The general problem is exactly the same as in Fig. 1, howeveiement the new superposition method requires two FE calcula-
a different decomposition is used. The desired boundary valfigns: one for the corrective fields in the DD subproblem and one
problem is solved as the superposition of a DD subproblem sug! the entire EL subproblem. The overall DD subproblem is
ject to generic boundary conditions and a fully elagft) sub- solved W|t_h standard_DD machine(glescribed in Sectlon)Zanq _
problem subject to all actual boundary conditions. as the region is elastically homogeneous, there are no polarization

The DD subproblem models only that part of the structurgiresses. The new superposition methpd is thus advantagequs in
where dislocations are permitted to exist; the regions of elasftastically innomogeneous problems with large numbers of dislo-
inhomogeneity are not modeled in the DD subproblem. The ggtions and/or many inclusion elements. The calculatiop &f
neric boundary conditions of the DD subproblem are chosen gliminated at the cost of an additional FE calculation for the EL
Upp=0 and Tpp=0 on S, and S;, respectively. Additionally SuPproblem. _ _ _
Upp=0 is prescribed on the boundaBy between the matrix and "€ DD subproblem is largely independent of the particular
inclusion. Thus, the only information about the full problem thaproblem under study. Aside from adding the fietd, to drive the
is used in the solution of the DD subproblem is the geometry gfslocations, the DD subproblem may know nothing, or only little,
the plastic region and the knowledge of whether displacement Ut the actual problerfigeometry and loadingunder study. If
traction boundary conditions are applied on boundaries shared{f§ Plastic zone of the problem is constrained to occur within a
the DD subprobiem and the full problem. The incremental soldi!it€ region of space, then the DD problem can be further con-
tion of the DD subproblem is then obtained exactly as describdged within that box, with no knowledge whatsoever about the
in the previous section, i.e., as the superposition of an infinifell geometry. In this sense, the DD subproblem serves as a
space dislocation problem and a corrective problem. An outconfdack-Dox” constitutive material law for the plastic flow of the
of the solution of the DD subproblem at any instant is a tractiopfastically deforming material. The DD subproblem is, however,
T* along the boundarg, , which is used in the EL subproblem aslimited to small strains. _ _
described below. Because the DD subproblem is largely disconnected from the

The EL subproblem models the entire structure and is subject&tu@l problem of interest, the decomposition of the problem also
all the true boundary conditions @ The region of the structure Provides opportunities for parallel coding for a wide variety of
containing dislocations is modeled as an isotropic elastic materiBfoblems, as will be discussed further in Section 5.

Information about the plastic deformation in the plastic region o S . .
the material is transmitted to the remainder of the structur Application to Bimaterial Interface Fracture

through the addition of a body force T* along S, in the EL Crack growth in plastically deforming materials is an attractive
subproblem, which is the negative of the tractidfi obtained application of the DD methodology. It is well known that in con-
from the DD subproblem. The EL subproblem can be solved linuum plasticity the maximum opening stress ahead of the crack
standard FE methods. In the absence of nonlinear regions, suchigss, at most, about five times the yield strength. Such low near-
a cohesive zone surface, the EL subproblem is fully linear and ttip stresses are unable to cause crack growth in many cases in-
FE equations can thus be solved very quickly because inversiorvoiving nonductile fracture modes. Furthermore, for brittlelike
decomposition of the entire elastic stiffness matrix must be afracture occurring by cleavage of atomic planes, the fracture pro-
complished only once at the start of the calculation. cess zone is smalhanoscalg and the peak stresses required for
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Fig. 3 Decomposition of the bimaterial fracture problem into DD and EL subproblems

material separation are large. Continuum plasticity is not expectprobviding insight into the size and evolution of the dislocation free
to handle the high local stresses and stress gradients prevailiagion. Furthermore, fracture is an outcome of the DD solution
around the crack tip in such situations. Cleveringa ef%lthus and does not require any a priori modeling changes.
applied the DD methodology to crack growth in a homogeneousThe elastic-plastic/elastic bimaterial interface problem and its
elastic-plastic material and predicted R-curve behavior for the odecomposition using our superposition framework are shown
set of crack growth. Their results demonstrated that dislocatischematically in Fig. 3. Two materials, an elastic-plastic upper
organization on the scale of microns can generate the high stredsai§-space and an elastic lower half-space are separated by an
needed to grow the crack. On the other hand, the dislocation striterface that is described by a cohesive zone m@@gM). The
tures also generated stress fields away from the crack tip that weverall material is loaded by displacements corresponding to the
in generally good agreement with the continuum fields predictetsired elastic K-fieldsee below. Far to the left, the cohesive
by using a perfectly plastic constitutive law. zone is fully open and the crack surfaces are traction free. Far to
The bimaterial interface fracture problem is also suited towatte right, the cohesive zone is essentially closed and the displace-
treatment via the DD methodology for similar reasons. At thments are continuous across the interface. Due to the existence of
continuum level, the fields around a semi-infinite interface cratke cohesive zone, there is no crack-tip singularity in this problem.
separating two dissimilaglastic half spaces were given by Riceln decomposing this problem, the DD subproblem is used to
[17]. More recently Tvergaard and Hutchingddi8—20 and Tver- model the elastic-plastic upper half plane and the EL subproblem
gaard[21-23 have explored the effects of plasticity in one omodels the entire body as an elastic/CZM problem. The boundary
both materials. Tvergaarf23] has shown that for an elastic- S, is taken to be the entire lower boundary of the DD subproblem,
plastic/elastic bimaterial, the toughness increases with increasireg, the entire upper crack surface in the EL subproblem. This
modulus of the purely elastic material. When the purely elast@hoice gives a smooth tractioh* along the entire boundarg,
material is at least twice as stiff as the elastic-plastic materighat is exported to the EL subproblem. Choosing a more tradi-
fracture is largely suppressed when the peak cohesive strengthiasal crack boundary condition of zero traction along the open
roughly four times the yield stre$&3]. This is expected since the crack and zero displacement along the originally closed crack
cohesive strength approaches the maximum possible openimguld yield a singularity in the tractio™* at the original crack
stress of the continuum model. Continuum models have been atig-in the DD subproblem. This would be difficult to resolve and
mented by additional assumptions about the near-tip behavibandle properly in the superposition framework. The latter bound-
Thus Tvergaardi21,22] modeled brittle fracture with the disloca-ary conditions would also unnecessarily bias the entire problem
tion free zongDFZ) model of Suo et al.24]. The DFZ model for toward the original crack tip.
cleavage crack growth assumes that the crack tip does not emif\s the bimaterial specimen is loaded, dislocations generated in
dislocations, stays nanoscopically sharp, and is surrounded byha plastic material may pass out of the traction-free and/or par-
thin elasticstrip with the far-field region governed by continuuntially open regions of the cohesive surface. This behavior is en-
plasticity. The elastic singular field gives rise to high near tifirely physical, as the surface and cohesive zone in regions where
stresses and plastic flow provides dissipation. Fracture in the elas-stiffness is becoming small, absorb the dislocations. The occur-
tic strip region is governed by linear elastic fracture mechanicence of this phenomenon in the new superposition technique re-
(LEFM); crack growth is characterized by a critical stress interguires comment. The DD subproblem contains all the disloca-
sity at the crack tip. The DD model, in contrast, makes no assuntmns, but subject to the boundary conditiog, =0 everywhere.
tions about a dislocation free region, but such a region majowever, the Peach-Koehler force on a dislocation is always
emerge naturally from the solution to the boundary value problemyaluated using theotal fields, and hence, the dislocations move,
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correctly, as if in the full problem. The zero displacement boundrom stability considerations. Instead the time step must be small
ary condition imposed in the DD subproblem is not actually seemough to resolve,,., which is the intrinsic time scale of the
by the dislocations. Thus, a dislocation can experience a drivipgoblem.

force to move it out of the DD subproblem domain through the In the EL subproblem, we use the coupled normal-shear cohe-
surfaceS, . Physically, this leaves a step having magnitude of trgive law relating the displacement jurdpacross the interface to
Burger’s vector alongS,. In terms of the DD superposition of the tractionT introduced by Xu and Needlemd@5]. The trac-

Fig. 1, theu displacement field has a step where the dislocatidipns are obtained from a potentiglas T=d¢/JdA, with

exited the surfacédue to the existence of the other half of the

dislocation dipole that remains inside the materialecglling Eq. b=t & ex;{ _ ﬁ) [ {1—r+ ﬁ} 1-q
(1), to satisfy the imposedpp =0 constraint orf,, theu correc- nen Sn onjr—1
tive field must have an equal and opposite step at the same point

on S, . Thus, the DD subproblem of Fig. 3 is no longer smooth, r—q\ A, Atz
and there is a singularity in the tractidi at the point alongs, —[q ( ) } ) (11)
where the dislocation has passed through. It is not possible to 2

accurately resolve the* singularities associated with dislocationyhere 5, and 8, are the normal and tangential characteristic

surface steps o, , but an exact resolution isot required. If |engths, respectively, and the work of normal and tangential sepa-
identical meshes are employed in the overlapping regions of thgion are

EL and DD subproblems, which is also desirable for other rea-

sons, then thapproximate, nonsingulafE tractionT* in the DD \f

subproblem is exactly cancelled by the field™* applied in the $n=€Tmadn, 1= Tmaxdt 5

EL subproblem. The field-T* in the EL subproblem creates the

physical surface step in the problem, resolved to the accuracyV¥h€reoma and 7 are the normal and shear cohesive strengths,
the FE mesh. In other words, part of the tractibh in the DD ~respectively. The normal-shear coupling is included through
subproblem serves to generate an elastic fielaéliminatethe Parameters
surface step, and the step is threcreatedby the application of A*
—T* in the EL subproblem. Comparison of the new superposition q= ﬁ =_"
technique to the standard DD method below shows that the sur- én’ On
face steps are handled precisely via the superposition.

+
r-1

ex
O

where A} is the value ofA, after a complete shear separation
4.1 Model Parameters and Loading. The results presented with T,=0. The characteristic lengths are taken to &g= &;

here are based on the geometry and dislocation parameters prev®.5nm, and the interface strengths asg,,,—=0.3 GPa and

ously used by Cleveringa et al. and Deshpande eff%al0] to  7,,,,=0.699 GPa. Thenp,= ¢,=0.408 Jm?, giving q=1. The

study mode | and fatigue crack growth, respectively. In fact, wearameter is taken to be zero.

have used the actual code of Deshpande €18, modified to Assuming small-scale yielding, the remote boundary conditions

include o, from the EL subproblem to the P-K force, thus treatare characterized by the bimaterial elastic K-field. The displace-

ing the entire DD code as a “black-box.” We consider a specimement field for the upper half plane 49|

of 1000<1000 um, and take the origin of ary-coordinate sys- 612+ (0= m)— T

tem to be at the center of the sample. The initial crack tip is . _ K] | R [(3—4v)é

located at the origin and assumed to be ofEr0) for y=0, X 17727 2, coslime) N 27 1-2ie

<0 and a cohesive zone describes the interface propertigs for

=0, x>0. The sample is meshed with 12020 bilinear quadri-

lateral elements; displacement boundary conditions correspond to N 1—2ie

an applied remot& field. The properties of the metal, i.e., the

elastic-plastic upper half plang % 0), are consistent with Alumi- Where K=K, +iK,, and R=x?+y2 The form for the lower

num (E;=70 GPa,r,=0.33). The elastic modulus, of the ce- half plane is similar. The elastic mismatch is included throegh

ramic (y<0) will be varied(with »,=0.33). Dislocation activity given as

in the upper half plane is restricted to aX55 um “process

g i0/2— e(6—m)—iy )
—isin 0é0/2+e(6+v)+iz//} (12)

window” of 80X80 elements, graded around the crack tip. The e= im 18

slip plane geometry is representative of an FCC type single crys- 2m \1+p

tal, with three slip systems oriented «60°, —60°, and 0° rela- where

tive to the crack planey=0, spaced at 100 and initially

dislocation-free. Only edge dislocations are considered, with Bur- 1 p(1-2vp) — pup(1—2vy)
gers vector of magnitudb=0.25nm. The dislocation glide ve- ) (1= ) + (1= v7)

locity is linear in the Peach-Koehler force with viscous drag co-

efficient B=10*Pas, and climb is not permitted. DislocationThe mode mixity is described by a phase anglsuch that
nucleation occurs by the expansion of Frank-Read sources, ran- ) o

domly dispersed in the process window with densjiy,. _Im[(Ky+iK)L™]

i 5 . tany=————

=66/um-. Nucleation occurs when the Peach-Koehler force at a R (K, +iK,)L*]

source exceeds a critical value gf, b for a time period oft,,¢ ) ] ]
=10ns. The value of,, is chosen from a Gaussian distributionwhereL is a reference length used to characterize the remote field
with mean strength,,.= 50 MPa and standard deviation 8,2,. and varies withr as

Dislocations of opposite sign are annihilated when they come —

within a critical distance of B. The process window also contains y=y+eln(r/L) (14)

a random distribution of obstacles with densjty,s=170/um”  The remote loading is thus characterized|§y, ¢, andL. Physi-

that pin dislocations until the Peach-Koehler force reaches thgjly,  measures the ratio of shear to normal stress on the inter-
obstacle strengtf,,s=150 MPa. To fully resolve the dislocation face a distancé from the tip, as predicted by the elastic solution
activity a time step oAt=0.5 ns was used, which necessitates tt{qg]. We takeL=10um, which is on the order of the process
use of a high loading rate d€ =100 GPar{¥s. Since an itera- window size. Tvergaar{i23] defines a reference stress intensity
tive numerical scheme is not used, the time step is not choswtor

(13)
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Fig. 5 Normalized applied stress intensity factor |K|/IKq ver-

sus crack extension Aa for various substrate moduli
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K(): El + E2

(15)

—1/2 1/2
2,

(1—[32) varying elastic modulus. The ratio d&,/E;=6 corresponds
) ) ) roughly to Aluminum on SiC, while the rati&,/E;=2 corre-
wherel, is the work of separation of a mode-independent cohgponds to Aluminum on Si. With increasing stiffness ratio, the
sive law. Withg=1 (as is the case herehe cohesive lawll) is  bimaterial interface shows a rapidly increasing toughness. For the
mode-independent, thus we d&f= ¢,= ¢, in (15) to calculate E,/E,=« specimen the simulation was stopped before a failure
the referenceo. point was reached. Figure 6 shows the opening stvessand
&Iislocation positions at a load near the failure point Eor/E;

4.2 Validation. The superposition technique was validate 1, 2. and 6, and at a high load for thi&/E,—c specimen.

by comparing to existing results obtained with the standard DD - . ) .
method for the problem of an elastic-plastic half-space on a rig hel? E,/E;=1 hrelatlvelyé f]?W dislocations are nu?:leated, t_hel
substrate. Use of a rigid substrate permits the DD problem to BEACK reémains sharp, and iracture occurs in an almost entirely
solved only in the upper half-space, so that the standard metho é%“e manner, with negligible toughening. That failure occurs at
appropriate and efficient. In both cases, exactly the same mate I”?0>1. IS ﬁue to thﬁ ne?Iect of the shear toughniss cl)Ef the
was modeled, i.e., the exact same random distribution of sourdgigrface in choosing the referenég, [see comments after Eq.
and obstacles was used for both methods. Figure 4 shows £ ]. The ther R-curves all .eXh'b't regimes of toughening ar_1d
crack growth resistance curve and the evolution of the crack opepUrts of Er'ttle crack extensmrklk. The perlod(sj wh<|eqre a Ialzgg in-
ing displacement with load level as obtained from the standafF@Se INK| occurs over a smala correspond to the crack tip
method and the superposition method. Excellent agreement!iiijd repeatedly activating oner several nearby sources. Crack
both quantities is obtained. Due to the chaotic nature of the df¥unting follows as one dislocation of a dipole pair passes out of
crete dislocation simulations, as discussed by Deshpande etldf c_rack surface, \.Nh'le the other sllps_ away_from_ the crack sur-
[26], the fields are expected to agree within 10%. The variations ific€ into the material. Eventually the dislocations in the material
the R-curves are well within the range of chaotic effects. It irovide @ backstress sufficient to shut down the sasroer a
worth noting the excellent agreement in the crack surface featufi-tip dislocation configuration generates high stresses resulting

associated with dislocations exiting through the crack surface '8s2 SPurt of crack growth. This semi-brittle extension occurs with

the deformation proceeds. Simpler problems involving single dié.relatively small increase in appligl|. This brittle extension is

location sources are essentially exactly reproduced. These resGifR€" Stopped when the new crack tip field activates other nearby

fully validate the superposition technique and its numerical implé_ource_s, or if §uff|C|entIy w_eak sources are not ”e?fby and/or the
ack is growing very rapidly the extension continues and the

mentation. The superposition technique, including the treatment$f¢X g 4 X >
perp d 9 ecimen fails. When comparing the R-curves of Fig. 5 it is worth

dislocations passing through surfaces with fixed displacem ing that since the applied loading was definedyby0 at L

boundaries of the DD subproblem, can thus be extended to i ! . .
analysis of new problems with confidence. =10um the variation in substrate modulus results in varying

amounts of shear closer to the crack tip. The variation of phase
4.3 Results. Here we present some preliminary results omlong the interface is particular to the inhomogeneous crack prob-

the fracture toughness versus elastic mismatch for a bimatefidn, and such mixed mode effects will be examined in detail in a

interface. The experimental results of Liechti and Clga] and future publication.

the simulations of Tvergaarn®3] both demonstrate a strong de- The evolution of the opening stress and dislocation structure for

pendence of the R-curve on the elastic mismatch and phase angeE,/E;=2 specimen are shown in Fig. 7. In Fig(ay at

of the applied loading, with significantly less-tough behaviolK|/K,=0.966 the crack tip is sharp and very few dislocations

found for modest ratios of elastic mismatéh/E; as compared to have been nucleated. Whgf|/K,= 1.208 the majority of the slip

the rigid substrate case. Thus, the standard DD method for filseoccurring on two slip planes with-60° orientation. As one

rigid substrate problem is expected to greatly overpredict tougtipole slips into the material, the other glides toward the crack tip,

ness relative to realistic metal/ceramic systems and cannot be passes out, and blunts the crack. As loading continues, additional

tended to realistic systems without high computational cost. ~ sources become activated; Kf/K,=1.449 one or two-60° slip
Figure 5 shows the crack growth resistance curves for bimagganes have a cluster of dislocations near the initial crack tip. At

rial specimens of Aluminum, as modeled above, on substrates|Kf/K,=1.691 the crack has extended roughly 0,88 and new
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Fig. 6 (Color online ) Dislocations and normalized opening stress 05,/ uX10° in a 10X13 um region near the crack tip for
various substrate moduli just prior to failure (see triangles in Fig. 5 ): (a) E,/E;=1 with |K|/Ky=1.118, (b) E,/E;=2 with
|KI/IKo=1.811, (c) E,/E;=6 with |K|/K,=2.304, and (d) E,/E,;=« with |K|/K,=2.286. The crack opening profiles for each
case are plotted below the x axis. All distances are in microns.

sources are activated. A snapshot just before failure of this speglastic energy resides in the plastic material, and the deformation
men is shown in Fig. ®) where|K|/Ky=1.811. drives a high degree of plastic dissipation and, hence, a high over-

The model DD parameters used for Aluminum generate a yieddl toughness. As the substrate becomes very soft, all of the energy
stress of about 60 MP28]. As discussed above, the normal cois stored in the deformation of the substrate, preempting plastic
hesive strength is 300 MPa, thus,,,/0,=5. In the continuum flow and dissipation in the plastic material and causing completely
models of Tvergaarf23], such a large ratio of cohesive strengttbrittle fracture.
to yield stress essentially precludes crack growth, except when thé'he preliminary DD results can provide insight into the rel-
substrate is very softH,/E;=1). In the DD model, however, evance or necessity of the dislocation free zone concept to bima-
brittle fracture is reached in all cases except that for the rigierials. Excluding theE,/E;=1 specimen, which has such few
substrate, as seen in Fig. 5. This highlights the dual role of disldislocations that it exhibits almost completely brittle fracture,
cations in elastic-plastic fracture: the motion and interaction dfiere is no consistent observation of a DFZ throughout the load
dislocations provides dissipation and increased toughness, but liisory. WhenE, /E;=2 a strip approximately 0.Lm from the
dislocations also generate local stresses reaching the cohesige crack surface does not contain dislocatigsse Fig. 7. This
strength and thus driving crack growth. The latter effect is missing expected as nearby dislocatiof@ a +=60° plang will be at-
in standard continuum simulations. Qualitatively, however, theacted to the free surface and pass out. However, foEthé
R-curves found here do agree with those found by Tvergaard at&, 6, « ratios, particularly at elevated loading, a DFZ is not
lower ratio of omac/oy=3 (Fig. 4. in[23]). observed down to the resolution of this analysise Fig. 7; the

The trend of increasing toughness with increasing substraténimum near-tip element size is 0.@8n and the intrinsic cohe-
modulus can be justified by the following qualitative analysis. Theive length scalé.(= o nax5,/E) for the problem is 0.1m and
work of the applied loading is apportioned between the elasto “crack-tip” phenomena are not resolved below this scale. In
deformations of the substrate and plastic material and the dissipadition, the crack profiles in Figs. 6 and 7 all exhibit significant
tion due to plastic flow. The plastic flow itself is driven by theblunting before failure, which is inconsistent with the DFZ as-
stresses, and hence stored work, in the plastic material. Thus, wattmption of a nanoscopically sharp crack. However, the prelimi-
increasing rigidity of the substrate, more work is put into theary DD results suggest that crack growth is due primarily to high
plastic material and a larger fraction of that work is dissipated hbyear-tip stresses, resulting from the applied load and near-tip dis-
plastic flow. In the rigid limit, all of the deformation and storedocation structures, and not the blunting of the crack as the cohe-
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Fig. 7 (Color online ) Dislocations and normalized opening stress 05,/ wX10% in a 8 X6 um region near the crack tip for
E,/E,;=2 at four stages of loading (see circles in Fig. 5 ): (a) |K|/K,=0.966, (b) 1.208, (c) 1.449, and (d) 1.691. The crack
opening profiles at each load are plotted below the x axis. All distances are in microns.

sive zone absorbs dislocations. The results here also support th&€he existing DD method involves continuum representations of
observation of Wei and Hutchins¢@9] that even when a DFZ is many atomistic phenomena, including nucleation, glide, pinning,
appropriate, it may be so small that a nonlocal plasticity theory &1d annihilation. Work is currently in progress on incorporating
required to match to the large gradients present in the elastic DRdditional physical features of dislocation behavioe., junc-
strip. tions, source generation, and stage |l hardening the 2D for-

This represents a preliminary overview of the elastic-plastighulation [30]. The superposition technique can assimilate any
elastic bimaterial problem. A much more detailed analysis will bsuch changes without difficulty because it is unaffected by any of
performed in a future publication, including examination of theéhe inner workings of the DD method.
influences of Ji cohesive law detailge.g., shear versus normal The superposition method can also be used to handle problems
strengths and shear/normal couplinig) the ratio of the cohesive containing multiple plastic domains. In such problems, each plas-
strength to yield stress; and)iimode mixity of the remote load- tic domain requires its own DD calculation and generates tractions
ing, an analysis of the underlying dislocation structures and thdir on the relevant surface that are incorporated into the single
relationships to observed trends, and a study of statistical effed$. subproblem. Upon solution of the full EL subproblem, the

stress fields are exported back to the DD calculations in each
. . . domain. Some physical applications of this approach are to metal/
5 Discussion and Conclusions ceramic multilayers, polycrystalline structur@sach grain treated

We have presented a general new technique for the efficig@parately, see Fig)8and layered metal/metal structures where
extension of the DD plasticity method to problems with elasti¥ariations in elastic and plastic properties exist from layer to layer.
inhomogeneities. The usefulness of the method lies in its isolati&®r the polycrystalline structure of Fig a separate DD subprob-
of the DD part of the model from many of the particular featurelem is constructed for each grain. The tractiofs in the EL
of the problem under consideration. The DD calculation only reubproblem are calculated at the appropriate boundaries in the DD
quires information about the geometry of the region where dislsubproblem; boundaries common to two grains will h@¥econ-
cations may be present, and is supplied, via the superposititrbutions from each grain.
with driving forces on the dislocations coming from the elastic The superposition method also serves as a basis for parallel
subproblem. This construction effectively allows for the use DBomputations. The DD probl€s) can be divided into any number
plasticity as a “black-box” constitutive input in any desiredof subregions, either for physical or mathematical convenience.
region. Each subvolume DD calculation requires only the calculation of
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sub-problem and jithe fields of the EL subproblem. The system
DD sub-problems EL sub-problem  of equations for the DD corrective fields is completely linear as
the cohesive zone is included only in the EL subproblem. The
entire stiffness matrix is constant, can be decomposed once, and
stored. The incremental solution for the corrective fields is thus
very efficient.

Standard equation solution techniques are, however, largely in-
efficient for the EL subproblem, which has two linear elastic re-
gions joined by a nonlinear cohesive zone. When only a small
g subset of the global stiffness matrix is nonlinédiose associated
with the cohesive dof partial decomposition can provide a fast
T incremental solution. This allows the stiffness decompositipn

to the first nonlinear dof to be computed once and stdeexit is
invariany. In all future increments only the remainder of the stiff-
ness matrix must be decomposed. Clearly for a fixed number of

u=0onall P
boundaries

grain 1

L~ grain3 dof, the closer to the end of the matrix the first nonlinear dof
P appears, the greater the benefit of partial decomposition. In the EL
subproblem, optimum node numberiflgft to right, top to bot-
F|g 8 Schematic of the superposition technique app“ed to a tom) places the nonlinear dof in the middle of the unknown nodal
2D polycrystalline structure. Each DD problem is independent dof vector. Even using partial decomposition, over half of the
and thus the computation is easily parallelized. global stiffness matrix must be decomposed during each incre-

ment. Due to the large model sizeach elastic region has over

20,000 dof and number of increments required, this is not prac-
dislocation/dislocation interactions within that volume. All othefical. Instead we use static condensafidh to obtain a system of
dislocation interactions are fully accounted for through the extefguations for only the nonlinear cohesive dof. Once this system is
nal (EL sub-problem fields and exported tractions. Since eac/golved, the remaining elastic dof are obtained by matrix multipli-
subvolume DD calculation is self-contained, these calculatiogdtion with an appropriate numerical Green’s function. This re-
can be performed independently and simultaneously on separd¢ses the size of the system of equations to be solved by two
processors. For instance, for the polycrystalline model in Fig. @ders of magnitude, greatly increasing the efficiency of the EL
each grain can be handled simultaneously on a separate proce$$tproblem incremental solution. o
Dislocations passing from one subvolume to another are handled’he FE equations are developed from the minimization of po-
seamlessly just as we have treated dislocations passing througRial energy. At timet an elastic body with a cohesive surface
cohesive surface in the bimaterial problem. Sc, subject to only displacement boundary conditions, has poten-

In conclusion, the DD model allows, in principle, for the stud)}'a| energy

of numerous problems where the characteristic dimensions are on

- . . L 1
the order of tens of microns, at which scales continuum plasticity nv== U'i(jt)eijdv_ T(Vu,ds, (A1)
is unable to reproduce observed size effects. The new DD super- 2 Jv Se

posmon_technlque developed here extends_the pra_ctl_cal rangeTﬂfe discretizations of the displacement, velocity, and strain fields
application of the DD method to problems with elastic |nh0mogeér

neities, multiple plastic domains, and larger physical sizes. Pre-

liminary application to bimaterial interface cracking shows the y,=N,U,, Ui=vi=Ni|U|=Ni|V|, €=U ;=N; U,

power and generality of the approach. Future work will address ’ ’ (A2)

the detailed analysis of crack growth along bimaterial interface
as well as other problems to which the general DD approach
well suited.

ereU, andV, are nodal displacements and velocities, respec-
tively, N;, are the shape functions, and capital indices refer to
nodal quantities. Using this discretization in E41) gives
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Appendix: Static Condensation of FE Equations Y Y 5

This appendix describes the implementation of static condensa- — f T,0,dS,
tion, which provides for an optimally efficient solution of the EL Se
finite element equations. The incremental FE equations are de- ) N
rived from an expansion of the principle of virtual work, then th&ewriting the rate of change of cohesive tractionTas dT; /dt
elastic degrees-of-freedofdof) are condensed out, leaving a sys= (dT; /du;)(du; /dt) = —kf;u; allows the cohesive stiffness con-
tem of equations for only the cohesive dof. This reduces the siébution to be written ak5=[s N; kiiN;;dS;. Using the dis-
of the system of equations to be solved by two orders of magniretization(A2), Eq. (A4) becomes
tude for the present bimaterial model.

In the superposition method, two finite element solutions arell**4V= 2K, ;U ,U;— FSUS+ At[K,;V,U, + KEVSUC— FOVE]
required at each increment for the corrective fields of the DD (A5)

+At

(A4)

Journal of Applied Mechanics NOVEMBER 2004, Vol. 71 / 813



The standard FE equations could be obtained at this point tgns span onlyunconstraineddof, while summations over con-
minimizing potential energy with respect to nodal displacements{rained dof are written explicitly. The implementation of this con-
e, d-[(tJrAt)/dUKzo_ Here, we use static condensation, which j¥ention is best illustrated with a brief example. Consider the sums
based on a careful labeling of nodal vectors and matrices accokds V5 and 2, Kf3V3, which according to our convention span
ing to dof being elastici.e., linear, not on the cohesive zorm  unconstrained and constrained cohesive dof, respectively. The key
cohesive(nonlineaj. Then the elastic dof will be condensed outpoint is that the matriXf (vector V) has sizengxn. (ng) and
so that we are left with a system of equations for only the nonligontains constrained and unconstrained dof, which are inter-
ear cohesive dof. spersed irregularly. When performing the s(tower unconstrained
The total number of doh is composed of elastic and cohesivejof) KEVS, we must inquire at every as to the existence of a
dof ne and n;, respectively. Any dof can also be classified agonstraint on that particular dof. Only Jfis an unconstrained dof
belonging to material luppey or material 2(lower). Using this is the multiplication performed and the product added to the total
notation, the global displacement vectdrcan be written as a for a givenl; if Jis a constrained dof, then it is skipped over and
composition of subvectors does not contribute to the sum. It is essential to recall this con-
vention in the following formulation.

yew The equilibrium Eqs(Al11) and (A12) are rewritten as
ye . ye . ue®
0= oo |- Ol v=|lea] e KEVG= KIS~ 3 TR (A13)
ye® t
whereU, or any vector, is split into “local” vectordJ® and U® KEO/C— — KO/ iTc_Rc Ald
formed by the union of subvectors as shown and having respective I WAL (Al4)

dimensions ofh, andn,. . . _
The global stiffness matrix can be similarly decomposed im;ghereR' Is a nodal force vector anty, is an equilibrium correc-
ion, specifically,

submatrices as

KK 0 RE=) KEVS+ S KV (A1)

K= Kce(l) K cc Kce(2) (A?) Nec Nee

ce(2) eg2)
0 KT K TE=KEUSHKIUST Y, KEUSH S, KEUS  (A16)
The relevant local matrices are defined as Nec Nee
Keel) 0 Kead) c ecy /e 1K CC\/C
_ _ Ry= K5V5+ KiyV5, Al7
Kee= 0 Kea) | Kec= Kec(Z)}x | gc JIVy nzcc 13YJ ( )
Kcez[Kce(l) Kce(2):| (A8)

A TP=KFUS+KSUS—F{+ > K5fUS+ X KU (AL8)
Note that when indicial notation is used to represent a local array, Nec Nec

the superscripts denote the range of the indices, &g, has Now Eq. (A-13) can be solved foW$ in terms ofV$ as
dimensionsn,xn.. The cohesive stiffnesk[; necessarily has

contributions from the cohesive zorand the elastic material. e_ _ ee\ —1pea cii eey—1Te_ [poee\—1pe
These contributions can be separated as Vie= = (Ki) K Vs At( )T (Ki) Ry
b - (A19)
KEp= K+ K3 (9)

— which is used in Eq(A14) to provide the system of equations for
whereKi5= [y N; ;;CijaNi 30V is the elastic stiffness contribu- the unconstrained cohesive def
tion to cohesive dof. Local matrices®® and K°® couple elastic

and cohesive dof, by constructidtfe=(K®9T. KCC_ Kec(Kee)—Lykec chi Kec(Keey-ite_ e
The only stiffness submatrix that changes during the incremen- (K1~ Kiai(Kio) K IVs= g [Ki(K) T Tl
- ce X - ) c
tal procedure iy, and all of its variations are containedH; . +KE(KEE)“IRE—RS  (A20)

All other stiffness submatrices are strictly a function of elastic
constants and undeformed geometnyesh and are thus invari- where the term in brackets on the left-hand side is an effective
ant. Rewriting Eq(A5) in local form gives stiffness matrix (. Xn.) and the right-hand side is an effective
(HAD _ Le s 181 184 1€ 1] 181 LI ey €1 1C_ =6 |C nodal force vectori;). Both are known at the beginning of each
11 2KFUTUS+KFUSUT+ 2KFUTUS - FiUj increment, so the system of Eq#20) can be solved fow$. The
+ At[KERUBVE+ K SOVEU S+ KSeVSU S+ kaCVSUf unknown elastic velocity vector'S is obtained by matrix multi-
plication from Eq.(A13)

—FrVvr] (A10) 1
The FE equations are derived by applying the equilibrium Vi =— (K} KPVS— E(Kﬁf)flTF—(Kff)*lRf
conditions, dI/dUg =0 and dI/dUg =0, giving (A21)
1 The elastic dof have been condensed out of the system of Eqgs
e e__ __ eqC__ e e ecy |c .
KisV3=—KiV5 At [KigUs+Ki5Us] (AL1) (A20) to be solved. EquationA21) involves the numerical

1 Green’s function, which, given the cohesive velocity vec)f@r,
KSo/C= — KCeve— —_[KSUS+ KU —F9 (A12) outputs the elastic velocity vectafy . An obvious drawback is
13V WYIT A LRI Ry I . . . 1
the fact that the inverse of the elastic stiffness matixy)

At this point, it is necessary to treat constrained and uncofust be computed before any incremental solution can begin. This
strained dof separately. Thus all elagiiohesive dof n, (n,) are is a huge(symmetrig matrix, but not banded. Before the incre-
classified as either constrained,;(n,) or unconstrained mental scheme begins, the elastic stiffness matiik must be
nes(Ner). For the remainder of this section all implicit summainverted, which is significant overhead. Once this has been done,

814 / Vol. 71, NOVEMBER 2004 Transactions of the ASME



i inli ; i ecreeey—1ec 14] Shilkrot, L. E., Curtin, W. A., and Miller, R. E., 2002, “A Coupled Atomistic/
much of the matrix multiplication, i.e., KES(KEE) *KeS, (14 P

_ _ . Continuum Model of Defects in Solids,” J. Mech. Phys. Soli68, pp. 2085—
KES(KER) 71, and KiS) KPS in Egs. (A20) and (A21) can be 2106, Y PP

done once and stored. This allows the incremental solution t@as] weygand, D., Friedman, L. H., Van der Giessen, E., and Needleman, A., 2002,
proceed with optimal efficiency. The static condensation was veri-  “Aspects of Boundary-Value Problem Solutions With Three-Dimensional Dis-
fied independently of the DD machinery and was in exact agree- location Dynamics,” Modell. Simul. Mater. Sci. Endlf, pp. 437-468.

ment with the standard FE method [16] Hirth, J. P., and Lothe, J., 1968heory of DislocationsMcGraw-Hill, New
' York.
[17] Rice, J. R., 1988, “Elastic Fracture Mechanics Concepts for Interfacial
References Cracks,” ASME J. Appl. Mech.55, pp. 98—103.
[1] Stolken, J. S., and Evans, A. G., 1998, “A Microbend Test Method for Mea_[ls] Tvergaard, V., and Hutchinson, J. W., 1992, “The Relation Between Crack
suring the Plasticity Length Scale,” Acta Mate6, pp. 5109-5115. Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids,”

[2] Fleck, N. A, Muller, G. M., Ashby, M. F., and Hutchinson, J. W., 1994,  J- Mech. Phys. Solids0, pp. 1377-1397. -
“Strain Gradient Plasticity: Theory and Experiment,” Acta Metall. Maté2,  [19] Tvergaard, V., and Hutchinson, J. W., 1993, “The Influence of Plasticity on

pp. 475-487. Mixed Mode Interface Toughness,” J. Mech. Phys. Solitls,pp. 1119-1135.
[3] Fleck, N. A., and Hutchinson, J. W., 1997, “Strain Gradient Plasticity,” J. W. [20] Tvergaard, V., and Hutchinson, J. W., 1994, “Effect of T-Stress on Mode |
Hutchinson and T. T. Wu, eds., Adv. Appl. MecB3, pp. 295-361. Crack Growth Resistance in a Ductile Solid,” Int. J. Solids Strugt,,823—

[4] Gurtin, M. E., 2002, “A Gradient Theory of Single-Crystal Viscoplasticity 833.

That Accounts for Geometrically Necessary Dislocations,” J. Mech. Phys. Solf21] Tvergaard, V., 1997, “Cleavage Crack Growth Resistance Due to Plastic Flow
ids, 50, pp. 5-32. . . s . Around a Near-Tip Dislocation-Free Region,” J. Mech. Phys. Solids,pp.

[5] Arc1harya,fA‘.:, andIBalssam, J. L., 200:3, “Lhattlclec(;&mpatlbllltg and S Gradient 1007-1023.

Theory of Crystal Plasticity,” J. Mech. Phys. Solid&, pp. 1565-1595. “ - f

[6] Shu, J. Y., Fleck, N. A., Van der Giessen, E., and Needleman, A., 2001[,22] ;\fggﬁrgh\l/at;g:?é ,Eﬁ?;te:r: PFl’istslcnSydci)ggcIeavlaggsfﬁilz Growth Resis-
“Boundary Layers in Con-Strained Plastic Flow: Comparison of Nonlocal and[zs] Tvergaard. V. 2001 ! “Féesistaﬁce )(/:LIII’VQS fc;rpl\el.ixed Mode I.nterface Crack
Discrete Dislocation Plasticity,” J. Mech. Phys. Solid$, pp. 1361-1395. 9 P TN ) ; o

[7] Van der Giessen, E., and Needleman, A., 1995, “Discrete Dislocation Plastic- ~ Growth Between Dissimilar Elastic-Plastic Solids,” J. Mech. Phys. So#8s,
ity: A Simple Planar Model,” Modell. Simul. Mater. Sci. En@, pp. 689—735. pp. 2689-2703.

[8] Cleveringa, H. H. M., Van der Giessen, E., and Needleman, A., 1997, “Com{24] Suo, Z., Shih, C. F., and Varias, A. G., 1993, “ATheory for Cleavage Cracking
parison of Discrete Dislocation and Continuum Plasticity Predictions for a  in the Presence of Plastic Flow,” Acta Metall. Matet1, pp. 1551-1557.
Composite Material,” Acta Mater45, pp. 3163—-3179. [25] Xu, X.-P., and Needleman, A., 1993, “Void Nucleation by Inclusion Debond-

[9] Cleveringa, H. H. M., Van der Giessen, E., and Needleman, A., 2000, “A ing in a Crystal Matrix,” Modell. Simul. Mater. Sci. Engl, pp. 111-132.
Discrete Dislocation Analysis of Mode | Crack Growth,” J. Mech. Phys. Sol- [26] Deshpande, V. S., Needleman, A., and Van der Giessen, E., 2001, “Dislocation
ids, 48, pp. 1133-1157. ) ) Dynamics is Chaotic,” Scr. Mater45, pp. 1047—-1053.

[10] Deshpande, V. S., Needleman, A., and Van der Giessen, E., 2002, "Discre{e7] Liechti, K. M., and Chai, Y. S., 1992, “Asymmetric Shielding in Interfacial
Dislocation Modeling of Fatigue Crack Propagation,” Acta Mat&0, pp. Fracture Under In-Plane Shear,” ASME J. Appl. Mec®, pp. 295-304.
831-846. JZS] Deshpande, V. S., Needleman, A., and Van der Giessen, E., 2003, “Discrete

[11] Benzerga, A. A., Hong, S. S., Kim, K. S., Needleman, A., and Van der Giesse| . . . . . ; n
E.. 2001, “Smaller is Softer: An Inverse Size Effect in a Cast Aluminum Dislocation Plasticity Modeling of Short Cracks in Single Crystals,” Acta

Mater.,51, 1-15.
Alloy,” Acta Mater., 49, pp. 3071-3083. ST . B
[12] Bittencourt, E., Needleman, A., Gurtin, M. E., and Van der Giessen, E., 2003{129] Wei, Y., and Hutchinson, J. W., 1997, “Steady-State Crack Growth and Work

“A Comparison of Nonlocal Continuum and Discrete Dislocation Plasticity of Fractur_e for Solids Characterized by Strain Gradient Plasticity,” J. Mech.
Predictions,” J. Mech. Phys. Solid§1, pp. 281-310. Phys. Solids45, pp. 1253-1273.

[13] Eshelby, J. D., 1961, “Elastic Inclusions and Inhomogeneiti@dgress in  [30] Benzerga, A. A, and Needleman, A., work in progress.
Solid Mechanics, Vol. JIl. N. Sneddon and R. Hill, eds., North-Holland, [31] Bathe, K.-J., 1982 Finite Element Procedures in Engineering Analysis
Amsterdam, 89-140. Prentice-Hall, Englewood Cliffs, NJ.

Journal of Applied Mechanics NOVEMBER 2004, Vol. 71 / 815



End Effects in Prestrained Plates
Under Compression

The decay of end perturbations imposed on a rectangular plate subjected to compression
is investigated in the context of plane-strain incremental finite elasticity. A separation of
variables in the eigenfunction formulation is used for the perturbed field within the plate.
Numerical results for the leading decay exponent are given for four rubbers: three com-
pressible and one incompressible. It was found that the lowest decay rate is governed by
a symmetric field that exhibits different patterns of dependence on the prestrain for com-
pressible and for nearly incompressible solids. Compressible solids are characterized by
low sensitivity of the decay rate to prestrain level up to moderate compression, beyond
which an abrupt decrease of decay rate brings it to zero. Nearly incompressible solids, on
the other hand, expose a different pattern involving interchange of modes with no de-
crease of decay rate to zero. Both patterns show that the decay rate obtained from linear
elastic analysis can be considered as a good approximation for a prebuckled, slightly
compressed plate, which is long enough in comparison to its width. Along with decaying
modes, the eigenfunction expansion generates a nondecaying antisymmetric mode corre-
sponding to buckling of the plate. Asymptotic expansion of that nondecaying mode near
the stress free state predicts buckling according to the classical Euler formula. A consis-
tent interpretation of end effects in the presence of a nondecaying mode is given.
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1 Introduction ellipticity of the governing equations. Due to the existence of a

Studies of axial decay rates of incremental end disturbanc%lérely real eigenvalue in the solution, the discussion in Section 5

. L P devoted to consistent interpretation of that eigenvalue followed
expose con3|de(able sensitivity of the decay rate to th.e |'n|t|al prl%-/ implementation of the solution to the question of validity of
strain level applied to a platel—4]. These works are limited to Saint-Venant's principle

semi-infinite plates subjected to tensile loads. Sensitivity analy5|sIt was found that for a plate, in the prebuckled state, Saint-

does not reflect explicitly on the question of validity of Saintj[
Venant’s principle in a prebuckled plate.

The main objective of the present study is to extend previo
analyses of incremental version of Saint-Venant’s principle in ten-
sion to plates under compression. Here we consider the caseyrEfO

0 constitutive parameters. The smallest decay rate belongs to the
symmetric field and remains practically the same up to a moderate
lt%mpression level.
Buckling conditions are naturally unveiled by the analysis as a
> . X e fe real eigenvalue. At low levels of prestrain, asymptotical ex-
fmlte compressive Ipad app"‘?d oa recta_ngu_lar finite plate su ansion for the real eigenvalue generates the Euler formula for
Jected to plane strain constraint. Some objection to such anal [Fekling. The constitutive sensitivity of the buckling load at high
can rise due to possible buckling of the plate. Nevertheless, E&mpressive loads is demonstrated.
importance stems from the existence of many structures sustaining
compressive loads to which Saint-Venant's principle might be
applied. o 2 Perturbed Field Equations and Ellipticity

The approach and formulation in the present paper follow those . . o i
given by Durban and Karp4]. The governing equations are sum- Cons_lder a fln_lte plate of initial width a_md Iengtrh-lg and 2_0_,
marized in Section 2 followed by verification of their ellipticity "€SPectively, uniformly stretche@n tension or in compression
for the four hyperelastic materials examined. Mathematical fopder plane-strain conditions in the axial directiprby uniform

mulation leads to an eigensystem, for the two velocity comp&ireSso applied at the endszg&0,2L) (see Fig. 1 The current

nents, that admits a separation-of-variables solution for the eigdfdth and length of the plate are2and 2., respectively. The

fields. These are concisely recapitulated in Section 3. Axial dec@ji@! stretchk (L=A\L,) is considered as a controlled variable.
is exponential with the decay rates obtained as eigenvalues of fSUme now an incremental self-equilibrating load is superposed
transcendental equations. on the uniform stress at one of the eridson both thus inducing
Numerical solutions for the lowest exponential decay rates afeduasi-static perturbed velociyy within the plate. We wish to
detailed in Section 4 for four hyperelastic rubbers examined [{@mine the(plane-strain instantaneous response of the pre-
Blatz and Ko[6], Storkers[7], and Ogderi8]. Calculations have S rained plate to that incremental disturbance. The faces H

been performed over a range of prestrain within the limits gemain free of tractions in both prestrained and disturbed states.
The perturbed velocity vector is written ésee Fig. 1 for the
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CHANICS. Manuscript received by the Applied Mechanics Division, April 21, 2003; - '

final revision; June 13, 2003. Associate Editor: M.-J. Pindera. Discussion on tv‘a,] ;
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal 0 ere both VelOCIty components w depend Only orx and z

Applied Mechanics, Department of Mechanical and Environmental Engineerinﬁpord'nates' The nonzero Eulerian strain rate components follow

University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will b@ the form
accepted until four months after final publication of the paper itself in the ASME 1
JOURNAL OF APPLIED MECHANICS. ex=Uy Yxr=2(U,+W,) g,=W, (2.2)
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x4 Four constitutive models for hyperelastic solids are examined.
The response of all four solids is represented by the strain energy
function[12]

2H

Fasans
-
y

V24

1
W= E AT+ AT -3+ = ~(7"M-1)| (28)

wheren 1, N\, )\3 are the principal stretches afiek \ ;Ao\ 5 is the
g M’M’M‘T'M‘ﬂ volume ratio. The summation is carried over pds m; which,
; | g like n, are known material constants. Details of the derivation of
K stress-stain relations and the instantaneous moduli are given in
[4].

The specific models considered in this study are two highly
compressible solids; the Blatz-K8K) foam rubber due to Blatz
and Ko[6] with the single term representation

BK m=-2 C;=—22 n=05 (1,=025 (2.9)

and the compressible vulcanized natural foam rubber due to
Storkers[7] (Stl) with two-term representation

Stl m=-m,=45 C;=185 C,=-9.2 n=0.92

o VW (v6=0.324 (2.10)

The nearly incompressible synthetic foam rubber is due to Btora
Fig. 1 Plate, of current length and width 2 L and 2 H, respec-  grs[7] (St2) with two-term representation
tively, subjected to uniform tension (o>0,A>1) or compres-

sion (o<0,A<1) stress in plane strain conditon  (A,=1) with St2 m=-m,=3.6 C;=2.04 C,=-0.51 n=25
boundaries x==H free of traction
(v9=0.49 (2.11)

and the noncompressible rubber is by Ogf&hOG) with three-
term representation
The incremental material response is governed by three in plane

2L

AN AN AN SNARNNSNNSNSNNN
N

relations suggested by HilB] OG m;=13 my=4.0 mz=-20
. . . C,=69 C,=1.0 C3=-122 n—x (1,=0.5
ox=ag,tCe, T,=2uYyy 0,=(C—0)eytbe, (2.3) (2.12)

v v HereC; have dimensions of 1G N mm™2.
where (o'X,TXZ,O'Z) are the objective Jaumann stress rates andElllpt|C|ty of the governing equation.4) will fail when [9]

(a,b,c,u) denote instantaneous material moduli, derivable from

the strain energy function for hyperelastic solids and dependable d*=abap (2.13)
on the uniform prestrain conditiofdetailed in[4]). whered is defined by
Equilibrium of stress rates requires, in view @.1) and(2.3), _ 2

that the velocity components w satisfy the set of two equations d=ab+tapf—(cta) (2.14)

(9] For BIatz-_Kc_) sol_id, that condition can be solved analytically to
AUt BU ,+ (C+ a)W ;=0 (2.40) yield the limit points

A=(7+4V3)"%8~0.3724, A=(7-4v3) %8~2.685

(C+a)u,xz+ O‘W,xx+ bW,zz:o (24-)) (215)

with Additional inquiry into the ellipticity regimes detailed by H[19]

reveal that for the BK rubber plate, strong ellipticity is maintained
a=p=30 B=ptso (29 inthe range
The boundary conditions for a plate with long faces free of trac- 0.3724 1\ <2.685 (2.16)

tion are given by{10] ) _ )
in accordance with the more general result given by Knowles and
v v Sternberd 13]. For the three rubbers given 1(9.10—-(2.12 con-
ty=o0yi+ (7~ 0Yyk=0 at x==*H (2.6) dition (2.13 is evaluated numerically leading to the conclusion
wheret, is the traction rate at the surface normal to xheoordi- that strong ellipticity is maintained for Stl rubber providsd

” L >0.334, while no limits on a strong ellipticity have been found
nate. Condition(2.6), by substitution of(2.2) and (2.3), can be S . X
expressed by velocity components as for St2 and OG solids in the region examined.

auy+cw,=0 X H ”7 3 Eigenfunctions and Eigenvalues

U,tw,=0 abx== @.7) Separation of variables solution (#.4) is sought via the rep-
Solution of the equilibrium equatior(@.4) along with the bound- "€sentation
ary conditions(2.7) generates eigenfunctions with associated ei- imkz imkz
genvalues. The eigenfunctions can be regarded as a “spectral foot- u= U(x)exp{ W) W=W(x)ex;{W
print” of the plate from which the actual response is composed.
The actual response is determined by the particular boundary digiereU(x) andW(x) are the transverse profiles representing the
turbance at the ends=0, 2L, not prescribed her¢see recent eigenfunction and is the associated eigenvalt@mplex in gen-
paper by Ling et al.[11] and references cited therein for reconeral). While solution(3.1) is written in an exponential form ig,
struction of actual response out of end data the possibility to obtain a harmonic, nondecaying response is

B.1)
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included (via real eigenvalue The notation in(3.1) is slightly tablished. Nevertheless, it is conceivable that an arbitrary instan-

different from the one employed in common studies of end efaneous surface disturbance at the ends will contain a combination

fects due to the factorw/2 in the exponential argument. Theof these eigenfunctions. In that sense it has been argued by Karp
present formulation, however, is in agreement with the notatia@nd Durbarj18] that an eigenvalue with smallest{kh provides a

in the literature of wave guides and with some of the stabilitiower bound on the axial decay rate of end disturbance at any

studies. Thus, according {8.1), the imaginary part of the eigen- given prestress. Regardless of the completeness question, it has
value In{k} represents the decay rate of the correspondifmeen shown by Durban and Stroriga that the eigenfunctions of

eigenfunction. a plate with facesx=+H free of traction are self-equilibrated, a
Inserting (3.2) into the equilibrium equation$2.4) results in property of central importance in the analysis of validity of Saint-
two coupled ordinary differential equations Venant's principle.
wk\? wk ; i
aU”—,B(% U+ti(cta) %)W,:o (B.2) 4 Numerical and Asymptotical Results
With the known dependence of the instantaneous moduli

k 7k\ 2 (a,b,c,u) on the prestretch, the eigenvalue are calculated
i(c+a) n U’+aW"—b(%) W=0 (3.20) numerically by solving the transcendental equatigBs8) for
stretch\ as a controlled variable. The standard Muller method is

where the prime denotes differentiation with respect.tBue to employed to yield a finite set of the smallest complex eigenvalues
the symmetry of boundary conditions around thg plane, the in a prestrain range of 05\ <1.5. The eigenvalues are ordered
solution of (3.2) is commonly separated into symmetric and antiin increasing order of theifpositive) imaginary part, namely,

symmetric fields(indicated respectively by subscripssand a) 0=Im{ko} <Im{ky}<Im{ko}<--- 4.1)
= 0. 1 2 .

given by
Due to intersection of modes with the increase of prestfiain
+A, sin?‘( an-_kx) (3.39) comprgssion and. in tgnsi)qrthjs labeling and ordering, adopted
2h from Linear Elasticity, is consistent only near the stress-free state.
In what follows, the labeling of the eigenvalues in the stress-free
+ Ay, cos)‘( rzﬁ_kx) (3.30) state _acc_ording t()4.1)_ is rgtained in all regions, even tho_ugh that_
2h ordering in some regions is no longer valid. The discussion here is
limited to two first eigenvaluek, andk,, for the antisymmetric
and symmetric fields, respectively. Additional eigenvalues are pre-
wkx k sented as an exception, in cases when the intersection of modes
Ua=Ag3 COS'{ Flﬁ) +A, COS”{ Fzﬁ) (3.43) makes other eigenvalues to expose a lower imaginary part.

) kX
Us=A;sin FlW

wkx
WS: Al 1 Ccos F 1?

and

7kx 7kx 4.1 BK Rubber. Figure 2 shows a variation of the first two
W,=A37; sin?-(l“l— + A7, sin)—(l‘z—) (3.40) eigenvalues with prestrain for the BK solid in the extended
2h 2h range of prestrain 05\ <2.3, including the tension range. For

HereA,, A,, A;, A, are integration constant, andT, are the ©ase of reference, the plot in Fig. 2 is subdivided into the follow-

roots of the characteristic equation of the D) ing three regions:
aal*—dIr2+bg=0 (3.5) a. The vicinity of the stress-free state €.8<<1.5
) ) b. High compressioin <0.8
with solutions c. High tensiom\>1.5

d—\/d?>—4abap d+\d?-4abap “Region A. To begin with, we notice the continuity of the
r,= — T,= N — eigenvalue on the transition from tension to compression through
2aa 2aa the stress-free state= 1. That continuity is observed for all com-
(3.6)  plex eigenvalues, not shown in Fig. 2. At the stress-free state, all

where eigenvalues coincide with the linear elasticity values obtained
o from the Fadle-Papkovich equati¢h9]. First symmetric eigen-
i(al'y—p) value is
M=T (et a) p=1,2 3.7)
p(Cta) 72k, = 1.1254+12.1061 4.2)

Compliance with boundary conditior®.7) generates two tran- First antisymmetric eigenvalue,, is purely real in the range of

scendental equations for the eigenvakue Ap<<A<1 wherel is a stretch at whick, reaches peak valug,
7k Q,\*?t wk and coincides with the trivial solution of the Fadle-Papkovich
tan)‘( F17) - (Q_ tan)‘( F27) =0 (3.8) equation at = 1. That eigenvalue admits asymptotical expansion
2 in the vicinity of the origin—near the stress-free state for a small
where the plus and minus signs correspond to symmetric and @igenvaluelk|<1. Asymptotic expansion, according to the lines
tisymmetric fields, respectively, and given by Durban and Karp4] for tension, can be generalized to
include compression to yield

_alj+icy,

"ol —ko~[i V3R] (4.3
Trancendental equations equivalent (&8 have been derived
previously by Durban and Strond&,3]. Similar equations have where, A=\ —1 with |A|<1. Extending that relation to compres-
been derived by Ogden and Roxburdh4,15 in the context of sion supports the numerical result according to which the eigen-
analysis of stability of plates, allowing only purely real eigenvalvaluek is purely real in compressiom\(<0) and purely imagi-
ues to be considered as a solution. nary in tension A>0). In that sense, this eigenvalue has a

Each Eq(3.8) generates an infinite number of eigenvalues withontinuous nature in transition from tension to compression ex-

accompanying eigenfunctions. While in the linearly elastic caggessed by4.3), similarly to all other eigenvalues. The numerical
the completeness of the eigenfunction set is proved by Buchwatsults in Fig. 2 neak =1 are found to be in a good agreement
[16] and Gregory[17], for the incremental case it is not yet eswith the asymptotical relation given b.3).

p=1,2 (3.9)
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Fig. 2 Two lowest eigenvalues (multiplied by factor #/2) in tension (A>1) and in
compression (A<1) for the BK rubber (2.9). k, and k, are the antisymmetric and
the symmetric eigenvalues, respectively.

Region B. At high compress_,ion, the imaginary part &f T =X—iY T,=X+iY (4.8)
reaches zero at a prestraig, while the real part reaches a peak . .
ko. The values of these parameters, and k,, are derivable Where the real and the imaginary parts have an elegant expres-

along the following lines. sions
We begin with the observation that the imaginary parkpis 1 bg d 1 bg d
perpendicular to the axis at the peak point, . That perpendicu- X2=_ oy y2—_( N (4.9)
larity (dk/d\ =) is exposed by all higher eigenvalues, as well as 2\ Vaa 2aa 2\ Vaa 2aa
by the imaginary part of the antisymmetrig and can be ex- por BK solid, these expressions have a simple form
pressed alternatively by
, 1 8R—1—-R? , 1 8R—1—-R?
dx Xe=—|1+ —u ===
K- 0 (4.4) 2 6R 6R
(4.10)

The relation between the eigenvaléeand the prestretcin is
given implicitly by the transcendental equatidd.8). For the
present purpose, it is convenient to rewrite the transcendenta
equation(3.8) in an equivalent form

whereR=\ "85
sing expression§4.8) in (4.7) lead to

x<Q1—Q2)Si”’( 2 W?k) . iY(QﬁQZ)Si”r( 2 %k) -

) K
F(A,k)E(Ql—Qz)sm?{(FﬁFz) 7} (4.11)
‘ The real part of that expression, representing the slope of the
. ™ curve, will be zero for ank provided
+(Q1+Q2)3lm{(rl_rz)7 =0 (45 y
Usi his implicit f ionF dition (4.4) i ival Q™ Q270 (4.42)
er']ré?tiénls implicit functionF, condition (4.4) is equivalent to Substituting expressiof#.9) and the instantaneous modalib, c,
w in expression(3.9), condition(4.12) takes the form
IF (N, k) 2
— =0 (4.6) 3RZ—12R+1 4.1
R(1+R) :
That condition applied t¢4.5) reads . . . .
Solution of that quadratic equation leads to the prestrain for BK
. Kk rubber
(I'1+T5)(Q1—Qy)sin (r1+r2)7
R=2— \@:xpmo.sgm (4.14)

k
t(Fle)(QlJer)sim{(l"ll"z) 7}20 (4.7) at which the real part of the symmetric eigenvalue has a peak

value and the imaginary part reaches zero. That value is in a good
which should hold for ank. For Blatz-Ko rubber, that condition agreement with the numerical result in Fig. 2.

can be simplified noticing the complex nature of the roots of the The peak value of the eigenvalue at this prestretghcan be
characteristic equatiof8.5) in the entire range of prestrain underobtained directly from the transcendental equatidrs). Under
consideration. These roots are designatefbas the requirement expressed B4.12), Eq. (4.5 is reduced to
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Eigenvalue n/2%k

Fig. 3 Two lowest eigenvalues (multiplied by factor a/2) in tension (A>1) and in
compression (A<1) for the Stl rubber (2.10). k, and k; are the antisymmetric and
the symmetric eigenvalues, respectively.

- Region C. At high tension, the symmetric eigenvallg
Sin"{(rl—rz) 7}=0 (4.15) reaches zerdboth real and imaginary pajtsit a prestrain,
=3%4~2.28 corresponding to necking under uniaxial plane-strain
Using the complex notation d#.8) in Eq. (4.19 gives a simple tensjon reported previously by Durban and Kth That necking
condition phenomenon is absent in St1, St2, and OG rubksae 4] for St1
/ k and St2 resulisand given here for BK rubber for the sake of
Sin*( i2y 7) =0 (4.16) completeness.

Observing that at the critical prestrain given @14 the eigen- 4.2 St RL_’bber' The first two ei_genvalues for Stl rubber
value is reak=k,, condition(4.16 reduces to for the prestrain range 0B\ <1.5 (regions A and B are plotted

in Fig. 3. It can be observed that the St1 rubber shares with the

sin( 2Y77_kp) -0 @.17) BK rubber the pattern of the eigenvalue dependence on the pre-
2 ’ strain in both regions A and B. The eigenvalues at the stress-free
. . state are, again, identical to those obtained in Linear Elasticity and
which yields agree with the asymptotical relati@a.3).
T nmr Detailed analysis reveals that for Stl rubber, the régtsI',
Ske=5y n=123... (4.18) are complex fom <0.734, making the peak analysis given above

for the BK rubber applicable here as well. Numerical evaluation

For the appropriate value of at the prestrain given by4.14  of Egs.(4.12 and(4.18 yields the critical prestrain and the peak
calculated from(4.%), we find that the peak value for BK solid is ya|yes for the St1 solid to be

m

7 kp=3.694 (4.19)
It is conceivable from Eq(4.5), as well as from Fig. 2, that the N.~0.6045 —k ~5.16 (4.20)
critical prestrain\, and the peak valuk, are both common to P 2P

symmetric and antisymmetric modes. The observable deviation of

the peak value in Fig. 2 from the correct one given(8yl9 is 4.3 St2 and OG Rubbers. The first two eigenvalues for the
due to numerical sensitivity to conversion criteria in the vicinitynearly and completely incompressible solids, St2 and OG, for the
of that singular point. Identical peak valugs14) and(4.19 for prestrain range 05\ <1.5, are given in Figs. 4 and 5, respec-
BK model are obtained by Durban and Strorj§¢ based on an tively. The incompressibility of the OG solid i(2.8) is approxi-
assumption that the symmetric and the antisymmetric modes jfated by takingn=200. As expected, the eigenvalues at the
tersect at that point. Beyond the peak value, the symmetric eigliyess free state,=1, are identical to those obtained for com-

gg?ﬁ#éslio%;?g real while the antisymmetric elgenvaldg pressible solids discussed above. That constitutive insensitivity
' coincides with asymptotic relatiorg.3) and with the numerical

1The integem used here and in the sequel should impose no confusion with tﬁ&su'ts obtained in I__|near Elast|C|_t(yhe Fadle-Papkowch equa-
material constant used in EqR.8—(2.12). tion does not comprise any material parameters
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Eigenvalue n/2*k

Fig. 4 Two lowest eigenvalues (multiplied by factor #/2) in tension (A>1) and in
compression (A<1) for the St2 rubber (2.11). ky and k, are the antisymmetric and
the symmetric eigenvalues, respectively.

The pattern of the branches of the eigenvalues for both St2 angl. Moreover, the lowest symmetric eigenvalue in region B is
OG solids are similar, though differs from the pattern obtained f@urely imaginary and intersects the imaginary partkgfat \
the compressible solid§igs. 2 and R Both solids do not exhibit ~0.75. That means that beyond the streick0.75, the decay
a peak at high compression in the range examined. Indeedte for St2 rubber is governed by an eigenvalue that does not
the rootsI'y, I', for these nearly and completely incompresappear to be the first in the stress-free state. For OG rubber such
sible solids are real, making the analysis of the peak valimtersection occurs at lower stretch, not shown in Fig. 5. It should
not valid. Both materials lack a purely real symmetric eigerbe noted that the higher eigenvalues, not shown in figures here,

value at high compressive prestrain levels, exhibited by the syfpehave qualitatively in the same manner askheigenvalue for
metric eigenvalue for BK and St1 solids beyond the peak prestragach solid.

6.0
5.5 /

1 Pure Im{k} (sym)
5.0 4 \ Pure Im{k,} (asy)
454\

4 \\
4.0 S

Eigenvalue n/2%k
w
o
!

Fig. 5 Two lowest eigenvalues (multiplied by factor #/2) in tension (A>1) and in
compression (A<<1) for the OG rubber (2.12). k, and k; are the antisymmetric and
the symmetric eigenvalues, respectively.
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Fig. 6 Purely real eigenvalue in compression for the four rubbers BK, St1, St2, OG,
and the classical Euler formula for buckling of a pinned-pinned column

5 Discussion On the other hand, for small prestrain levedg,is given by(4.3)
The characteristic decay rate of end effects is governed by t%d can be written in the form
eigenvalue with the lowest imaginary pafe.g., Refs[20] and 2 =
[19]) and associated with the lower bound for validity of Saint- ko~i — 3E (5.3)
aw

Venant’s principle. However, the eigenvalue with the lowest
imaginary part iskg, which is purely real in the compression . PR

range of region A. Therefore, before the question of validity onVh'Ch by substitution in.2) leads to

Saint-Venant’s principle in compression can be addressed, an in- -

terpretation of that purely real eigenvalue in the present study is acr~n2WEl n=123... (5.4)
suggested in the sequel. (2L)

hereE is Young’s modulus andl is the inertia of the plate for
nding. Expressio(b.4) is the Euler formula for the buckling of

olumns of length R with pinned ends. The possibility to recover

e Euler formula from the eigenfunction analysis with the same

possible, as a function of the aspect ratio of a coluefit.. It Poundary conditions at the ends has been demonstrated by

turns out that the real eigenvalisg in the analysis given here is LeVinson[21] (as well as by many following worksalong some-

equivalent to the aspect ratio of the colutdfi in the bifurcation What different arguments.

analysis. Indeed, some versions of the real brandk,pfand the An illuminating observation in the present context is an equiva-
y lent derivation of the beam theory out of the eigenfunction analy-

purely realk, beyond\, depicted in Figs. 2-5, have been ex-~ - )
posed in several previous papers, in the context of bifurcatiGiP for @ plate in tensiof4]. It was demonstrated there that the

analysis(e.g., Refs[15], [21-23 and recently Ref[5)). relation (4.3 is d_grivable from beam theory for a canti[ever tq
The equivalence between the real eigenvilyand the aspect which a self equilibrated system of loads and moments is applied

ratio of a plateH/L can be unveiled by simple consideration. Th&t the free end. _ ) _

purely real eigenvalue in solutiof8.1) represents displacement, According to these lines, the real eigenvalue can be interpreted
harmonic in the axial direction, with no axial decay. Boundar§S @ criterion for the onset of antisymmetric instabilibyickling
conditions for sliding end€no tangential traction and no axial ™" @ given geometryrepresented here b through(S.2)] with

displacementlead to a solution of the equilibrium equation in the2PPropriate boundary conditions at the ends. The purely kgal
for the four solids is replotted jointly in Fig. 6 along with the

5.1 Buckling. Incremental analysis of a prestrained state,
posed in Sec. 2, is commonly employed as a bifurcation analy
The objective of such analysis is to obtain the loci of a critic
prestrain level,, at which an adjacent equilibrium first become

form classical Euler buckling condition. If one wishes to find the stretch
) L \p, at which instability first occurs, the aspect ratio of the
sm( Wﬁko) =0 (5.1)  column—H/L first should be fixed. Assuming sliding ends, the
appropriatek, is calculated from expressiab.2). Entering Fig. 6
which is reduced to with that value returns the prestrain at which the first mode buck-

ling will occur. It is interesting to note that the more compressible
solids sustain higher levels of compression before buckling can
occur.

Following the reasoning given above, it can be argued that for

?Recall the exchange of the imaginary and the real parts here due to differ&@Me material p.ropelrties and geometit, only complex eigen-
notation in(3.1). values are possible in the ranyg<\ <1, where\, is the buck-

H
koznt n=123... (5.2)
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Fig. 7 Leading decay exponent in compression for the four rubbers BK, St1, St2 OG,
and for a variation of Bk rubber  (BK-Var) with compressibility constant  n=25

ling stretch corresponding to that geometry and material properessible solid$St2, OQ suggesting that compressibility is a ma-
ties. In other words, the eigenfunction expansion shows that, fojaa property in pattern determination. Nevertheless, it is conceiv-
plate of infinite length, a real eigenvalue is possible for any conable that additional material properties might have a nonnegligible
pressive load. In a finite plate, on the other hand, that real eigesffect as well.

value is excluded in the rangg<\ <1 by virtue of the boundary  For Saint-Venant's principle to be applicable to a finite plate, it
conditions at the perturbed ends and becomes possible only imnecessary to verify the smallness of the decay length in com-
N<\p. Thus, the region,<\ <1 is considered as a prebucklingparison to the length of the plate. One possible way to assess the
region to which the question of validity of Saint-Venant's prinapplicability of Saint-Venant's principle is by evaluating the dis-
ciple might be relevant. tancely o; at which the end disturbance decreases by 99%. From

. . . ) th ition is gi
5.2 Saint-Venant's Principle. By excluding the sole real (3.1) that condition is given by

antisymmetric eigenvalue from the set of eigenfunctions in the 7 loo1
prebuckled state, an infinite number of complex eigenfunctions eXF(' Ewkl) =0.01 (5.5)
are left, representing axial decay of end disturbance. Therefore,
the lower bounds on the decay rate are estimated by the fivgherek, has been chosen as a lower bound for the decay length.
symmetric Indk;} and the antisymmetric Ifk,} eigenvalues in Substituting a typical value Ifa/2k,}~2.106 fork, in the region
region A and B, respectively. These two eigenvalues are recapiu8<A <1 [from (4.2) or Fig. 7)], we find that
lated in Fig. 7 for the four solids defined 168.9—(2.12. It can be
concluded from Fig. 7 that for BK and Stl rubbers, the lowest - 4.6 H~2.2H (5.6)
imaginary part in the rangk, <A <1 belongs to the symmetric 00172 1061 ' '
eigenvaluek, . These solids are characterized by an approximat - .
constant decay rate up to moderate compression lexet0(8) eé)lly t"“l“'““%h”f‘e aﬁectﬁd re(iglfhn to_b_e n?} lar%ﬁr mﬁn 1|/ 1t0 Of.”t%e
with an abrupt drop of the decay rate, reaching zero at a critiddfit€ 'ength from each end, the minimat length of the plate will be
prestraink . 2L>22H (5.7)

The nearly incompressible solids, St2 and OG, on the other ] ) ) ]
hand, exhibit an increase of decay rate in compression. For the $gcording to(5.2), in order to avoid buckling of such plate, the
solid, the rate of decay drops with further compression (Prestrain should be smaller than the critical value corresponding
<0.75) to the decay rate of the order of the decay at the stre&@-
free state K~2) due to interchange of modes. Similar interchange
of modes is exhibited by OG solid at higher compression, not ko=—= (5.8)
shown in the figures.

The _difference b_etweer] th(_a patterns of compressible solid_s qﬂgerting(S.B) into (4.3) results in
nearly incompressible solids is interesting on two grounds. Firstis
the very exposure of different behavior. Second is the absence of 1/ 1\ 7\?
such substantial difference in tension. As a further examination of A~ 3 (1—1) (E)
the constitutive sensitivity of that pattern, a calculation has been
made for a modified BK solid with a compressibility constant which corresponds to stretob~0.993.
=25 (identical to the compressibility of the St2 solidith other Any attempt to avoid buckling by increasing the aspect ratio
constants if2.9) unaltered. The decay constant for that hypothetH/L will be followed by decreasing the region in the plate, that is
cal solid is plotted on Fig. 7, designated by BK-var. The pattern ofot affected by end disturbances, loosening the validity of Saint-
that solid resembles the pattern characterizing the nearly inconenant’s principle to that geometry. It can be noticed fr(&6),

(5.9)
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Numerical Prediction of

Cavitating MHD Flow of

Electrically Conducting Magnetic

Fluid in a Converging-Diverging
M | Nozzle

Department of Intelligent Machines and System

. Engingering, The fundamental characteristics of the two-dimensional cavitating MHD flow of an elec-

Hirosaki University, trically conducting magnetic fluid in a vertical converging-diverging nozzle under a

3, Bunkyo-cho, strong nonuniform magnetic field are numerically predicted to realize the further devel-
_ Hirosaki 036-8561, Japan opment and high performance of a two-phase liquid-metal MHD power generation system
e-mail: ishimoto@cc. hirosaki-u.ac.jp using electrically conducting magnetic fluids. First, the governing equations of the cavi-

tating flow of a mercury-based magnetic fluid based on the unsteady thermal nonequilib-
rium multifluid model are presented, and several flow characteristics are numerically

calculated taking into account the effect of the strong nonuniform magnetic field. Based
on the numerical results, the two-dimensional structure of the cavitating flow and cavita-

tion inception phenomena of the mercury-based magnetic fluid through a converging-
diverging nozzle are shown in detail. The numerical results demonstrate that effective
two-phase magnetic driving force, fluid acceleration, and high power density are obtained
by the practical use of the magnetization of the working fluid. Also clarified is the precise

control of the cavitating flow of magnetic fluid that is possible by effective use of the

magnetic body force that acts on cavitation bubbl¢®OI: 10.1115/1.1794164

1 Introduction also concluded that stabilization of two-phase flow is possible by

The fundamental investigation of cavitating flow or two-phas&ective application of the magnetic force of the fiUig,15].
flow phenomena of magnetic fluid with electrical conductivity i¢\ccording to these previous studies, it is likely that high perfor-
very interesting and important, not only for the basic study dhance of power generation systems is possible by applying the
hydrodynamics of magnetic fluids, but also for finding solutions tCMF to a working fluid in the two-phase LMMHPL4] power
problems related to the development of practical engineering generation system.
plications of two-phase electromagnetic fluids, such as the two-In the application of the two-phase flow of the magnetic fluid to
phase liquid metal MHD(LMMHD ) power generation system an actual fluid transport apparatus, it is important to determine a
[1-6]. In this regard, a fluid-driving system using two-phase flowsimple and effective method to generate the two-phase flow state
or cavitating flows of magnetic fluid has been proposed by one gy the improvement of the total performance of a fluid driving
the author§7-9]. stem using multiphase flow. However, conventional two-phase

5
The idea of using a two-phase flow system originated from t . : )
two-phase LMMHD power generation system, which was prg- w systems essentially require a powerful heat source or gas

posed and developed by Petrick and BranoEr After their |_nJe_ct|on equipment to produce t_h_e boiling two-phase flow or gas-
proposal, the present authors reported the results of a theoreti%id two-phase flow state. Additionally, research on methods for
study that demonstrated the possibility of using an electrical{}e Production of the two-phase magnetic fluid-flow state have not
conducting magnetic fluiECMPF) [10-13 as a working fluid in been precisely focused, and only a few studies have so far been
a boiling two-phase LMMHD power generation systdi4], made on the basic mechanism of the cavitating flow due to the
where it was shown that a better driving force or pressure rise thdifficulty of confirming for experimental and theoretical results in
that of the conventional LMMHD system was obtained by usinfigh-speed two-phase magnetic fluid flow with phase change.
ECMF as the working fluid due to the practical application of the |n order to overcome these difficulties, we contrived a new type
magnetization of the fluid. . , of LMMHD power generation system with a two-phase fluid driv-

Furthermore, theoretical and experimental studies on the bagig and acceleration system by using cavitating flow of ECMF as
characteristics of tvvo.-p.hase flow of magnetic fquI were cory working fluid. This system is characterized by its utilization of a
ducted, and the possibility of flow control or effective driving- o-phase maanetic driving force and no-heat sources or no-
force generation by magnetic force in the new energy conversi b gnetic 9 .

additional gas-injection devices are required, except for a

system using boiling two-phase flow was confirmi&gB]. It was ‘ ° ) )
converging-diverging nozzle. Based on an advanced mathematical

Contributed by the Applied Mechanics Division ofif AMERICAN SocieTy or  Model, which takes the effect of two-phase electromagnetic body
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OFAPPLIEDME-  force acting on cavitating magnetic fluid flow state into consider-

CHANICS. Manuscript received by the Applied Mechanics Division, June 13, 2003;: ; ; ot
final revision, March 1, 2004. Associate Editor: B. A. Younis. Discussion on th%tlon’ we herein deveIOp a new method for analyzmg cavitating

paper should be addressed to the Editor, Prof. Robert M. McMeeking, JournallW. Such an electrically conducing magnetic fluid is usually pre-

Applied Mechanics, Department of Mechanical and Environmental Engineeringared by dispersing fine irofire) particles in a liquid metal, such

University of California-Santa Barbara, Santa Barbara, CA 93106-5070, and will be g . .
accepted until four months after final publication of the paper itself in the ASM S mercury[lO,lJ]. To prevent solidification of particles and to

JOURNAL OF APPLIED MECHANICS. maintain homogeneous dispersion, the particles’ surfaces are
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Fig. 1 Principle of cavitating MHD power generation system
using electrically conducting magnetic fluid (ECMF) flow. Mag-
netic body force F,=uoM-VH=F, in the case without cavita-
tion, and Fy=(1—ay) uoM-VH<F, with cavitation (H is the vec-
tor of magnetic field and M is the vector of magnetization ).

tion system. It seems reasonable to suppose that the presently
proposed cavitating MHD-ECMF driving system is most appli-
cable to utilize in a pre- or post-power generation system for the
conventional LMMHD systems. Accordingly, to combine the
. L . .present ECMF system with the conventional system, the total two-
coated with a thin film of tin. Thus, the ECMF behaves as fluif3se MHD performance of the hybrid power generation system
having magnetization. o will be drastically improved.

The principle of such a two-phase !_MMHD flu'|d-drIVIng_Sy5' . In the present study, numerical analysis is extended to the case
tem proposed by one of the authors is schematically depicteddfmercyry-based electrically conducting magnetic fluid as a basic

converging nozzle, although the Lorentz force acts in the Oppo%rking fluid in a two-phase LMMHD power generation system.
direction of the mainstream. Cavitation inception is induced in t ecifically, the two-dimensional high-speed cavitating flow char-
downstream throat of a diverging nozzle due to a pressure deseristics of ECMF in a vertical converging-diverging nozzle un-
crease. Furthermore, the flow is additionally accelerated not onj¥ 4 strong nonuniform traverse magnetic field are numerically
by the pumping effect of the cavitation bubbles, but also by t&ejcted to realize the further development and high performance
rise of magnetic pressure induced by the unbalance of magnefiCine two-phase fluid-driving system and to realize high power
body forces that act in the single- and two-phase flow regiogg ity in the application of ECMF to two-phase LMMHD power
under a nlonu.nlform magnetic .f'eld.' - eneration systems. The governing equations for cavitating flow
Cavitation is usually found in high-speed liquid flows a_roun%f ECMF based on the unsteady multifluid model in the general-
obstacles, such as the impellers of fluid machinery. It is W&leq cypvilinear coordinate system are presented, and then several
known that cavitating flow causes many adverse effects includigjtating flow characteristics are numerically calculated, taking
ma_lterlal erosion, noise, and performar_lce _degradatlon In t_urbo 0 account the effect of the strong nonuniform magnetic field.
chinery. In the magnetohydrodynamic field, the experimentgye nymerical results of the cavitating flow characteristics of the
study on cavitation of mercury flow in a horizontal venturi changcpvE are compared to those of mercuefectrically conducting
nel under magnetic field has been condu¢t). In this research, onmagnetic fluitiand to those of the boiling two-phase flow of
the effect of the magnetic field on mercury cavitation or tWoE M.
phase pressure loss has been precisely investigated. The main
finding of the experiment is that the cavitation inception can be
easily generated by applying the magnetic field especially in case
of the abrupt diverging channel flow. Nevertheless, the effecti .
method for magnetic control in regard to the cavitation incepti Numerical Method
or the improvement of pressure loss has not been sufficientlyThe numerical model used in the analysis is schematically de-
clarified. picted in Fig. 2, and the total system of the computational domain
In the usual fluids engineering field, the cavitation is somethirand numerical grids used in the present analysis is depicted in Fig.
that people like to avoid in the fluid machinery implementatior8. The ECMF flows between parallel insulated plates under the
However, the unique feature in the present research is that #Eplied nonuniform magnetic fieldd and homogeneous electric
cavitation phenomenon is positively utilized to improve the fluidfield E. The mainstream is in a vertically upward direction. The
driving effect of conventional two-phase LMMHD power generamagnetic field, the electric field, and the mainstream of the work-
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Outlet The nonuniform magnetic field is applied in thieirection, which
(Atmosphernc is transverse to the mainstream of working fluid flow. In numeri-
FJTESSUEL..;U C cal modeling under this condition, the following assumptions are
| employed to formulate the governing equations:

1. The cavitating flow is a two-dimensional unsteady internal
flow.

2. The magnetic field and electric field are not influenced by
the existence of the gas phase.

3. The applied electric field is homogeneous and steady.

4. The polarization of the liquid and gas phase is neglected.

5. The induced magnetic field in the flow is much smaller than
the applied magnetic field (J<1).

6. The energy exchange between the liquid and gas phases is
taken into account.

7. The liquid phase is incompressible fluid.

Computational
domain

i |

Magnetic fluid
flow i

-Cavitation
hubhles
Throat
Here, we mention additional explanations concerning the above
assumptions. The magnetic Reynolds numiRy= amuf(in)D]
in the present analysis is,[R0.075. Accordingly, the induced
magnetic field in the flow can be neglected because the typical
MHD approximation of R<1 is satisfied in the numerical con-
dition. The liquid-phase compressibility does not so strongly in-
fluence the two-phase MHD flow characteristics compared to the
gas-phase compressibility. It seems reasonable to suppose that the
compressibility of the cavitating flow is mainly dominated by the
gas-phase compressibility. Also, the total cavitating flow is re-
garded as weak compressible flow because of the dispersed gas
phase, which has strong compressibility. Consequently, we as-
sumed that the liquid phase is an incompressible fluid of constant
density. Furthermore, we assumed that the aspect ¢agémht/
width) of the flow duct is small, the electrical conductivity of the
segmented electrode is sufficiently large, and the boundary layer
{a) Geometry of computational (b) Computational grids of insulator side wall is sufficiently thin, which does not influence
domain the mainstream. These assumptions introduce the validity of nu-
) ) ) ) ) merical condition for the two-dimensional floy21,22. If the
z:]gélfsissmemat'c of computational system used in numerical aspect ratio is large or the applied magnetic field is an unsteady
traveling induction field, then three-dimensionality in the MHD
flow should be considered.

P In general, it is known that the electric current in the conducting
electrode is installed on the duct side. In the initial stationa id has to go around the nonconductlng par'tlcl.es, such as vapor
state, the flow duct is filled with pressurized mercury-based magPPles|23—23. The deformation of the electric field by the non-
netic fluid, and flow immediately occurs when the outlet D-C i§onducting particle generates inhomogeneity of the electromag-
opened. Magnetic fluid is continuously introduced at high spedtic force. According to this effect, the additional flow fields are
via the inlet section A-B, the flow is accelerated at the point of tHe€ated surrounding the particles. As a result, it has been previ-
converging-diverging nozzle, and the inception of cavitation @USly studied and determined that electromagnetic expulsive force
induced by a pressure decrease. The model for analysis simuldgegenerated and that this force contributes to the migration of
the high-speed cavitating flow of magnetic fluid passing througtenconducting particle§23—-25. The hydrodynamic velocity
the converging-diverging nozzle in a vertical duct. dealt with in the electromagnetic separation of the metallurgy pro-

. . . cess represented in the previous rese§2d is on the order of
2.1 Governing Equations. In the present numerical formu- g\ era|(4m/g), and the handling particle diameter is less than 30
lation of the cavitating flow characteristics of magnetic flgld, Wem. Thus, it may be possible to suppose that the nonconducting
e_xtend the_ general tWOTﬂUI(_i model to the new vapor-liquid mu Harticle migration by the electromagnetic expulsive force is domi-
tiphase fluid model taking into account the effect of the stro nt in the limited condition of the extremelv slow velogity field
nonuniform magnetic field for analysis, which is based on th A € limrted co on of the extremely Slow velocily Tie
unsteady thermal nonequilibrium multifluid model by Kataok hd small pgrtlcle .dlameter. However, the gas- and. Ilqyld-phase
mean velocity, which deal with the present analysis, is on the

[17], and Harlow and Amsde[i8]. In the numerical model, the i i ) .
condition of the working fluid with the cavitating magnetic fluid®'der of 1.0-7.am/s), and the velocity magnitude is quite large

flow structure can be approximated to form a homogeneously df2mpared to the condition for research on electromagnetic sepa-
persed bubbly flow. In the process of modeling, to consider t#@tion, which requires thg cpn5|derat|on of electromagngtlc expul-
effects of the rapid evaporation and condensation of magne$i®® force. Also, _the cavitation bubble expands to the c_ilameter of
fluid, we apply the rapid phase-change model of Yamamoto et aPout 0.30 mm in the present two-phase flow analysis. Accord-
[19] and Young[20] to the cavitating flow of magnetic fluid. ingly, the electromagnetic expulsive force and the induced migra-
The calculation is carried out using the two-dimensional geneion of bubbles by the force are neglected in the present analysis.
alized curvilinear coordinate systef®, 7) as shown in Fig. 3¢ Under the above conditions, the governing equations of the
and 5 denote the longitudinal and transverse coordinate, resp&avitating MHD flow of ECMF, taking into account the effect of a
tively. £ denotes the orthogonal coordinate in relation toglaed nonuniform magnetic field based on the unsteady two-
7. It is assumed that the flow field is homogeneous indlde@ec- dimensional multifluid model, are derived as follows.
tion and is symmetric to the central axis D-A as shown in Fig. 2. The mass conservation equation for a gas phase is

Magnetic fluid
flow

Inlet
(High pressure)

ing fluid are orthogonal to one another. A minutely segment
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9 , Additionally, B+ in Eq. (9) denotes the viscosity of the two-
E(agpg)+Vj(agpgug)=Fg (1) phase mixture flow that includes small dispersed bubtiesvas
evaluated using the following formula for the viscosity of a
The mass conservation equation for a liquid phase is suspension29,30:
J ) o -2
E(mmHVj(mme):Fl 2 Br= 1—(@” B, ay<05 (10)

where oy and «; are the gas- and liquid-phase volume fractio

respectively. The relationshipy+ ;=1 is assumedul, and uf

are the gas-and liquid-phase contravariant velocity, respectivel
Equations for the electromagnetic field are

"Io consider the effects of additional forces that act on the bubbles
and the effects of radial expansion of the bubbles, the equation of
¥notion for the gas phase is replaced with the translational motion
of a single bubblg31]. Therefore, the Eulerian-Lagrangian two-
1 . way coupling model[32,33 is applied to predict the two-
Ee”k(Vij—VkHj)=J'T (3) dimensional cavitating flow characteristics.

The equation of motion for the gas phase is

i i )
i " a-lM i ” : de—UIg——FiJrFi—Fi—Fi —Fg+Fiw+Fi
B =puo(H'+ M) (5) 3TPNg gt T T g P FvmT FBT FLMT FLs
| o (11)
Jr=or(E'+e"u;Bry) (6)

h h itional f t i i follows:
where the subscripl denotes the two-phase flow; denotes the where each additional force term s derived as follows
electrical conductivity in the two-phase region and is defined by 4 )
the following equatiorj26]: szgﬂRgg”VjM (12)

2(1—ay)
Or=O T ) 4
2+ i i
o Fy=37R3peGi (13)

where ¢, is the electrical conductivity of the base liquid. The

high-void fraction region is especially found in the limited region 1

of wall vicinity where the cavitation actively generates. The re- Fl=Z, Culul—ull(u—u') wR2 14
gion is constructed of closely aggregated small-bubble clouds and Sl oltg ~ Uil (Ug ~up) 7Ry (14)
not by large single bubbles. Also the two-phase magnetic body

force effectively performs compared to the Lorentz force in the i 4 _Jd o 3 . i dRy
region. Therefore, the Eq7) is generally applicable to approxi- Fym=Cum-pig 7Ry g (Ug—u) + 5= (Ug—u) —=|  (15)
mate the electrical conductivity in the whole two-phase flow field 9
except for the limited region of high. d
The strength of the electric field” is determined from a load t_(uig_u:)
factorK of the outside electric circuiK is defined by the follow- i _ep2 A | 97
ing equation: 5= Ry J’O [y dr (16)
E” ) T
K== (8) Flw=7R3p1e™ (Qg;— Q) (Ugk— ) (17)
uf-BS
— . . . . BiR )
where uf is the cross-sectional mean value of the longitudinal |s=6.46 9 ele(ng_Q”)(ugk_ uw  (18)

liquid-phase velocity component . In the present analysis, it is VI(Qg—= Q)|
assumed that the load factir of the electrode is always in the
condition of K=—0.5. It is also assumed that the direction of
currentd' is a negative transverse coordinatespfTherefore, the
Lorentz force always acts as a flow resistance. In this numerical
model, the case of-1<K<0 corresponds to the MHD power whereF}, is the force due to the liquid-phase pressure gradrpt,
generation system, and the casekok —1 corresponds {0 the s the gravitational acceleration forde} is the drag forceE!,, is
electromagnetic pump. the virtual mass force considering the expansion of a bubble, and

ShT;:W?Sr%e?;%rgh:%?t?g i;ogxtzlggé%ggirs]g t\ig-'\p/)lrfasfg)\fl}/ovt\: iB is the Basset history term, which takes into account the effect

case, and the combined equation of motion for a total gas affithe deviation in flow pattern from steady staf. is the
liquid phase is derived by the following equation: Magnus lift force caused by the rotation of the bubble as reported

by Auton et al[34]. F| 5 is Saffman’s lift force[35] caused by the
d i i P i velocity gradient of the liquid phase.;ds the drag coefficient,
5t (@gpgUgt aipiU) +Vj(agpgUgg + aipiuiuy) Cyw is the virtual mass coefficienRy is the equivalent bubble
; ) . - _ ) diameter,Q)' is the contravariant angular velocity, aad is the
=—g'1Vip+ uoMIVIH + e ™I jHy+ Brg™* VWU, contravariant vorticity. d/ddenotes the substantial derivative.
The equation for the angular velocity of a bubble is derived as

11
QI=§wI=Ze”k(Vju|k—Vku|j) (19)

+ %(IBTV] Vkulk)gIJ + alplglr (9) follows [35]:
where the second and third terms on the right-hand side of%q. .
represent the magnetic body force term and the Lorentz force term d_Q'g _ 158 qi—gq 20
in the two-phase flow, respectively. Especially in the case of the dt R$~pg( ' ) (20)
ECMF flow, the Lorentz force is given by the cross producf'of
andH' [27,28. The energy equation for the gas and liquid phases is
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9 , whereh,=c,T; k=g,l. The detailed constitutive equations for
a(ampmemHVj(ampmemug) interfacial energy transfer terms in E@5) are given by following
extended empirical formuld$6,37:
= P Pt T+ 27 | ' =K(Tg~To (@)
at where k@ is the interfacial heat transfer rate between gas and
—V(amdhy) + an®p, (21) liquid phases and is given by following equatidi3$]:
k0= ak)+ ak{”
In the above equation, the subscriptdenotes the gas phasmn ( E i
=g) or liquid phase fi=1). h{’ andh{" are the enthalpy of the k(i):8'067)\9
gas phase and the liquid phase at the interface, respectfelis 9 Ry
the gas-hqund_lnterfamal_ area _concentratlon per unit volume. . 1.0+037 Ré,‘5°~ Pr?,'?’s
I'ghl) andI'\h{" are the interfacial energy transfer terms due to kil = = -
the liquid-vapor phase changey’ andq(’ are the heat transfer e @7)
terms of mutual interaction between the vapor and liquid inter- 2.0Rg|ug—uj]
face.q' is the contravariant heat flow vector, afidis the energy RQ/:T
dissipation function, as described below: o\ B
pl* Pl
qim: _)\mgijVij % N

It is assumed that the energy transfer is caused by the heat transfer
(22) between the isothermal spherical bubble and the surrounding lig-
uid. Assuming a spherical bubble with equivalent radRys the

2 . S
&= _§ﬂm(viulfn)2+23msgmsfm

. 1 . )
s}mzz(Vju'm+Viu£n) expression of the interfacial area concentration per unit volume
a() is obtained by the following equatidri.7]:
where the present sufficient conditions of two-dimensional flow 0 3ay
with small magnetic Reynolds number (R 1) contribute to de- a “R. (28)
crease the effect of energy loss due to Joule heating. The induced 9

current is not so large as to increase the Joule heating becausfggeneral, the interfacial transfer terms are proportional to the
the condition for load factor ok = —0.5. Also, since the initial interfacial area concentration(". Therefore,a is one of the
fluid temperature(573.15 K given is sufficiently higher than mostimportant parameters in th_e two-fluid model. Assuming that
room temperature, the effect of temperature increase causedtiy vapor gas phase follows an ideal gas law and that the relation-
the Joule heating is small compare to the total unsteady tempe3alP between gas-phase presspgeand densitypg obeys poly-

ture profiles influenced by the convection, conduction, dissipatiofiopic change, the following equation by Hirt and Rom¢és]

and energy exchange between gas and liquid phases. Thereftfgults:

the effect of Joule heating in the energy equatid) is neglected. pa(kq—1)eq=[pg—Cipi(a* — ag) ek
Assuming that the mass of each vapor bubble and of the con- oo ¢ g o i 9 e
densed liquid droplet in each computational location is constant Ag=Qge:  ag=ag
results in the following mass conservation equation for number (29)

ag<agy: a; =g
wherec,q is the sound velocity in the mercury at the initial state
4 ) (c10=1321.0 m/s), andy denotes the threshold of the void frac-
+Vj(§7TRENkPkU{<> =Ty tion (agc=0.005) [38].
The constitutive equation for gas-phase generation deligity
defined by the following equation:

densityN, :

Jd (4

E(gWRENkPk

k:e: Rk: Rg y Nk: Ng y pk:pg , UL: U:g f Fk:Fg
k=c: R=R;, Ny=N =p,, u=ul, I' =T Fg=Tge—lgc (30)
k= Ry Nk 1y Pk=Prs U=, L=
(23) wherel'ye andI'y. denote the gas-phase evaporation density and
] ) ~gas-phase condensation density, respectively. By introducing con-
where subscripk denotes evaporationk-e) or condensation sgjtutive equations fof 4, andT'y., also to consider the effect of
(k=c). . . o , the surface tensiomy, in the cavitation inception process, we ex-
The governing equations of cavitating flow mentioned abov@nd the classical nucleation theory for water droplets from sub-
are constructed by Eulerian-type equations for the liquid phaggoled vapor to the mercury-based magnetic fluid. Namigfy,
and by Lagrangian-type equations for the gas phase. andI', are assumed to be proportional to the degree of subcool-
ing and superheat. Furthermore[f, (k=e,c) is expressed by
the sum of the nucleation rate of the evaporated bubble or the
condensed liquid droplet and also by the increase in mass due to

2.2 Constitutive Equations. The drag coefficient g, and
the virtual mass coefficient\&; , are defined as followg35]:

24 o 0.42 the growth of vapor bubbles and condensed droplets, the follow-
=—(1+0. N i i i :
Co Res (1+0.15 R§*®® 17 42500Rg ™™ ing equations fol g, are derlvec[19,i2q
_ 4 max de
CVM_O'S_ _ - (29 Fge=3 7'TPk'I<R§<cr)+47"'13|<2 NkiRﬁiWI
pilug—u;|D ( ) =1 2
TR R A ST A L 22
- ) KT1+0 |\ amd)  p 3kgTy
The energy balance condition through the interface of the gas and
liquid phases is expressed by the following equation: _ 2(kg—1) Ah [ Ah
O=——— —|=—-0. (31)
O+ TP =0 kgt1 MT|MT,
) T‘)l - (25) 2y T
| 1) S
qg + ql =0 Rk(cr)% m
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In Eqg. (31), subscriptk has the same definition as that used in Ecanalytical solution of the nonuniform magnetic field distribution
(23), Ry is the radius of a bubble or dropld®, is the Kelvin- of the Helmholtz coil[41] and the measurement results of the
Helmholtz critical nucleate radiukg is Boltzmann’s constant, magnetic field of the electromagnet, which were used in the pre-
is the nuclei generation rate of vapor bubbles or liquid dropletgious experimental stud}y7,8],

A, is the condensation coefficier®, is the nonisothermal correc- Hi=H. . exq — &2

tion factor,m, is the mass of a single molecule of mercupjis =Hunax €Xp(—&,%)

the surface tensiortR is the gas constanil is the saturation H7=H a 77*-|§;§|-exr(—§§2)

temperature, and subscripts the value at each calculation cell. (36)
Ah denotes the latent heat, which is described by the difference in & =g 7}5*

specific enthalpy between the liquid and gas phases, and is defined h 2>max

as Ah=h;—hy. The temperature difference between saturatiq;\}hereH
temperature and gas-phase temperathfie is defined asAT
=|Ts—Til. Ny denotes the number density of the generated va-
por bubbles or condensed liquid droplets at each calculation. cell”
By introducing the formulation of the growth process folV ! —
bubbles and condensed droplets, we assume that the growth [&dg@stalled in the position of the nozzle throat.

of a bubble or droplet is controlled by the rate at which the en- Furthermore, in order to consider the special characteristics of

thalpy of vaporization or condensation can be conducted awgg}’i"neé dgt?)r/]?kréti%rl]lo(\)/ii;geetl\q/lu?tjio?lysmm’ the power densSitys

from the bubble and droplets to the bulk ligyi@9]. Under that
assumption, the equation of the growth process for a single-vapor _ L) Li2BE
bubble and a condensed droplet is derived as G ork(K+Dui By 37)

max IS the maximum magnetic field strengt#; denotes
g]e normalized longitudinal coordinate, which is definedéas

&l émax; and »* denotes the normalized transverse coordinate,
hich is defined as;* = 7/ 7mayx. The Hay 0N the electromagnet

whereuf is the cross-sectional mean valueuf.

dRy P wetl ‘ _ o .
Ahpy TR 5 cpkAT“) (32) 3.2 Numerical Procedure. The finite difference method is
V2mRTy <Kk used to solve the set of governing equations mentioned above. In

present calculation, the discrete forms of these equations are
i-implicitly obtained using a staggered grid. The grid is con-
rated at the nozzle wall to capture the cavitation inception
precisely.
_ Ru(en The convective terms are discretized with a third-order QUICK
ATO=|1- R [Ts— Tyl (33) schemd42). Also, the implicit fractional-step methdd3] is used
ki for time integration. Then the modified SOL/Aumerical SOLu-
. o tion Algorithm for transient fluid flowmethod of Tomiyama et al.

3 Numerical Conditions and Procedure [44], which is superior for the formulation and solution of a gas
3.1 Numerical Conditions. As a practical example, we useliquid two-phase flow problem, is applied for the numerical cal-
the fluid properties of a mercury-based magnetic fluid with digulation. The numerical method can take into account the
persed iron(Fe) particles[10]. The relation between temperaturéNeéumann-type boundary condition in the iteration process of the
T and the normalized saturation magnetizatipM/My,) Pressure-correction equation. Also the effect of void fraction is
=g(T)] is approximated by Brillouin function based on the meamplicitly taken into account in each iteration proc¢8s]. The
sured value of the magnetization of Fe partidié6] and is de- solution procedure for the pressure correction téjnis derived

whereAT(®) denotes the interfacial temperature between the vaptg)'\‘a
phase and the condensed droplet and is derived by the foIIowiﬁgrl
equation: cen

fined by the following equation: as follows. 8p, includes the effect of electromagnetic body force,
(n) _ _
My _ o [(2Aart) (281 (T spfl = A (a)"—At-Dfy 13P .
My 90D =0 | 24, /0N 24, T. 1o o, At(Ge oy
7 (f" = At-DY) - ——| T+
1 6—6(T/T,) PiCio pr VA" Ap
— ——cot ————= (38)
2A; 2A;

whereA, is the relaxation factor and the optimized value 8f (
Ap=1, A;=1, T.=1040.2 =1.965) is employed44]. c,o is the sound velocity in liquid
(34) phase. The superscrifly) is the iteration number(n) is the nth
whereM is the saturation magnetizatiod,, is the spontaneous time level,At is the time |ncremerrlA§, Anare the cell size in the
magnetization, and’, is the Curie temperature of the ferromag< and » directions, respectivehD{ andc|¥, (m=¢,7) are de-
netic particles. The strength of magnetizatMris expressed as a fived as following equations:

combined function of temperaturg(T) in Eq. (34) and the o oV op(»
ic fi hH— (Oyihy L 9 iy 29 71
strength of magnetic fielfi(H) as DY =Vi(ey'ul") + Ng Vi(Ng ug”) + ol Tt (39)
M=f(H)-g(T)
1 Cim = Cim+ @i+ + Cim-atfm_ (M=£,7) (40)
f(H)=Mg| coth(Cy) - C_J (35) 0 for mdirectionat-side-cell boundary prescribes
_ momH o in the mdirectional velocity component
_kBTI(in) m= 1 for the other cell boundaries (same order

wheref(H) has a type of Langevin functiof, i, is the liquid- of double sign)

phase inlet temperature, andis the magnetic moment of a fer- where the subscripts: means the cell boundary at the positive
romagnetic particle. Next, in order to consider the effect of nomtirectional side of the cell- means the cell boundary at the
uniform magnetic field as depicted in Fig. 2, the longitudinahegative directional side of the cell.

distributions of magnetic field componeHt and the transverse  The liquid phase velocity at the location of bubbles is calcu-
distributions of magnetic field componeHt” are derived by the lated using an area-weighting interpolation method, which was
following equations. In introducingl” andH¢, we referred to the used in the SMAC algorithm by Amsden and Harl¢45]. To
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Table 1 Numerical Conditions have been performed on a single Pentium IV 2.7 GHz processor
of an IBM-compatible computer, and the required memory size

:‘ri]?utidrphasf density P 1-20822304 k%/l/r;? for each time step is about 1.0 GB with a grid density of 60
Ou%e‘g gf:susﬁre SI'“”) 0.101 MPg X 150. The required total CPU time has been about 120 min for
Inlet temperature T,(ie:)) 573.15 K one operating condition. During the execution of the unsteady
Inlet width of duct ) 10.0 mm  calculation, no significant differences in the mean-flow profiles
:\B/Igiirzounrit?r?;gnetic field strength Hm 461(')?)5 J/%]/.n}? are found in the 12001500 time steps. We determined that the
Magnetic moment of particle m. 7096<10 10 A.m2 cavitating flow almost reaches steady state when such flow pro-
Permeability in vacuum o 47X 107 H/m files are obtained. ) ) -

Load factor K —-05 . IIThe present calculation procedure is specifically employed as

ollows:

1. The translational velocity of bubbles is calculated by Egs.
. . . . (11) and(24).
determine the boundary conditions, the free-slip condition for pre-o  The liquid-phase velocity is calculated by E8).

scribed liquid phase-velocity is applied to the central axis D-A, 3 The phase generation density and bubble radius are calcu-
and the nonslip condition for prescribed liquid-phase velocity is  |ated by Eqs(31) and(32).

applied to the sidewall C-B in Fig. 3. Also, a fully developed 4 The void fraction is calculated by Eq@3) and (1).

velocity profile is applied for liquid-phase velocities to the inlet 5 The pressure correction terdp, is calculated by Eq(38) in
cross-sectional area of the flow duct A-B. A convective outflow — application with modified SOLA method. When the residual
condition is applied for liquid-phase velocities to the exit section  pecomes sufficiently small value, the calculation for obtain-
of the duct D-C. Adiabatic conditions are applied for thermal  jhg the new time-level solution is executed by returning

boundary conditions at the duct wall surface. The initial stationary 15 step 1 of the procedure until a steady-state flow field is
condition of the liquid phase is assumed to be the pressurized fluid  5ptzined.
state.
The conditions for numerical analysis are listed in Table 1. For
other physical properties used in constitutive equatighs, o,
N\, and vy, are given as functions of temperature. The saturation
temperatureT is given as a function of pressure. The required Results and Discussion
physical properties of the liquid phase are given by the tables of
the thermophysical properties of mercyag].
The interval of each time step is automatically adjusted duri

the computation to satisfy the CFL conditipd4]. We actually "e0Us liquid-phase pressupe contour. According to Fig. 5, the
calculated solutions on three different grid densitiesx3@0 cavitation inception ef'fectlvgly occurs at _the position c_)f the diver-
60x 150 and 10& 220 nodes ' gent nozzle throat. The cavitation inception or formation of cloud

Figure 4 shows the convergence histories for three sets of coﬁ'fi‘-\'ity in ECMF flow at the diverging nozzle throat is suppressed

putational grids. For all cases, the magnitude of the residuals fg_mpared with that of mercury flow due to the magnetic body

crease by at least two orders of magnitude within 5000 iteratio gree under a sharp magnetic field gradient, compare to that of

For a finer grid, convergences slow down, as expected. For reury flow. It was found that the growth rate of the volume
three grids, the iteration errors and uncertainties are assumed td/g&tion Of the cavitation bubble is lower than that of mercury
lIow. Focusing on ECMF flow, immediately after the flow is ini-

negligible in comparison with the grid errors. Since iterative e~ "~ . . ; .
rors are negligible, correction of solutions for iterative error is ndf2!ly induced, taking note of the primary feature of the void frac-
required. As a result, we found that each numerical result sho n proflle_under a strong magnetic field, the VQ'd fraction _pro_flle
almost the same profile; the grid independence of the numeri q)ngated in the longitudinal direction of negative magnetic field
results was confirmed. Thus, as a compromise between compdgdient because the bubbles are accelerated and migrate due to
memory and accuracy, we chose to use th& 680 structured € two-.phgse magnetic body force in the direction of the negative
grid in the £ and » directions for the calculations. The simuIationsrfnagm.e"c field gradient. The effect of two-phase magnetic body
orce is characterized by the second right-hand term in the mo-
mentum equation, Ed9).

With time elapses, because the magnetic body force based on
the transverse magnetic field gradient acts so that the bubbles
migrate from the wall into the center of the duct, it becomes clear
that the void fraction is locally increasing near the central axis.
Downstream of the nozzle throat, although both magnetic body
force and the Lorentz force act as a flow resistance, the forces are
decreased due to the gas-phase inclusion. In the two-phase flow
region, not only the decreasing effect of flow resistance due to the
Lorentz force, but also the pressure rise effect caused by the un-
balance of the magnetic body force between the single- and two-
phase flow region is obtained.

Furthermore, additional lift force operates in the direction,
which causes the bubbles to migrate in the duct-wall direction.
However, as the two-phase magnetic body force begins to domi-

Figure 5 shows the numerical results of the transient evolution
the void fractionay contour, and Fig. 6 shows the instanta-

1072

g
(=]

Residual

—————- 50 x 120 grids

1078 nate the bubbles, it is found that the large volume fraction region
60 x 150 grids of gas phase moves to the central axis of the duct. According to

............... 100 x 220 grids this result, the gas-phase motion is controlled not only by the
. . ) . ) buoyancy force, but also due to the liquid-phase pressure gradient,

1000 2000 3000 4000 5000 additional lift forces, and especially due to the two-phase mag-

lteration netic body force that acts on the cavitation bubbles.

If the phenomenon applicable to the conditions of both ECMF
Fig. 4 Convergence histories for three sets of grids flow and mercury flow is as explained here, then the gas-phase
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Fig. 5 Time evolution of void fraction distributions Fig. 6 Instantaneous liquid-phase pressure contours

volume fraction increases at the throat position and is concamegative pressure gradient. When the magnitude of the cloud cav-
trated to form a small cavity cloud downstream of the divergeiiy is above a certain size, due to the reentrant jet resulting from
nozzle due to the small vortex induced by the wake passitige boundary layer separation, the cavity becomes detached from
through the nozzle throat, which is based on the effect of thke cloud and then remains in the high-volume fraction region as
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Fig. 8 Fluctuations of bubble radius as a function of time

pression effect and magnetic ejection effect on the cavitation
bubbles, the magnitude of the cloud cavity in ECMF flow be-
comes smaller than that of mercury flow.

The pressure around the inlet section shows a little nonunifor-
mity with time due to the propagation of the pressure fluctuation
from the nozzle throat section to the inlet section of the duct. The
pressure fluctuation at the nozzle throat is caused by the effects of
sudden cavitation generation and rapid bubble growth with time,
also by the high-speed inflow of liquid phase into the throat
section.

Figure 7 shows the present numerical results of the liquid-phase
pressure rise effect of ECMF flow and mercury flow in the longi-
tudinal direction, in comparison with the previous one-
dimensional numerical result of its effect for the steady boiling
two-phase pipe flow of ECMIFL4]. In this figure, the axis of the
ordinate denotes the normalized pressure-rise paramggerand
is derived by the following equation:

« _ Picety ~ Picin)
! Piin)
Wherem is the cross-sectional mean-effective driving pressure
from which the influence on the prudence of the liquid-phase fluid
can be deducted, i, is the inlet pressure. The axis of the ab-
scissa in Fig. 7 denotes the normalized longitudinal coordinate
& (= ¢/ ¢ma0- Focusing on the present numerical result of ECMF
cavitating flow, the pressure rise effect based on the two-phase
magnetic body force under an applied magnetic field region acts
effectively with the progress of time. However, as time elapses
and the flow approaches steady state, it is found that the pressure
rise effect, which is based on cavitating two-phase magnetic body
force, decreases around the exit section of the duct. The magni-
tude of the pressure rise effect in ECMF flow is indicated to have
a larger value than that in mercury flow. Especially in the case of
mercury flow, as for the limited portion of the cross-sectional area
in a duct, there is a possibility of the pressure rise effect being
obtained, however, when cross-sectional mean valuApjf is
taken into account, thdp" in mercury flow exhibits negative
value because of the strong effect of the Lorentz force as the flow
resistance. Also, it may be possible to suppose that under the

Ap (41)

the gas phase moves downstream. Especially in the case of ECbfffimized condition possible to obtain the effective pressure rise
flow, because the two-phase magnetic ejection effect acts on tfecavitating ECMF flow, it is difficult to realize the sufficient
cloud cavity in the negative magnetic field gradient region, tharessure rise effect making use of the cavitating mercury flow.
separation of the cloud cavity is enhanced by the two-phase magComparing our previous results regarding the pressure distribu-
netic body force acting on the cavitation bubbles. Due to the sufien of the boiling two-phase ECMF floyl4] with the present
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Fig. 10 Instantaneous liquid-phase velocity vector (enlarged

numerical results, it is found that the present ECMF acceleratioew of nozzle throat section )
system, which uses cavitation, can achieve a greater pressure rise
effect. Therefore, when the LMMHD power generation system,
which uses two-phase magnetic fluid, is employed, rather highFigure 9 shows the effect of magnetic acceleration on the lon-
pressure rise effect. resulting from .the use of cavitation for tw@jitudinal liquid phase cross-sectional mean Ve|o¢jfy’as a func-
phase flow production can be obtained. _ tion of time t. In the case of ECMF flow, the fluid acceleration

Figure 8 shows the fluctuation of bubble radil) as a func- effect, which is based on the two-phase magnetic body force,

tion of the time at position Kas depicted in Fig. 33=0.5¢15), ; : : . :
which is just a quarter of the nozzle throat width, where the Cav?creases with the lapse of time. It is especially found nh‘%t

tati h . . ; Parply increases in the flow field and becomes two-phase flow
ation actively occurs. It is found that the magnitude of transien — ) .
displacement oR, in ECMF flow shows a smaller value and thatStaté. and thatij tends to express the maximum value at the exit
the size ofRy becomes homogeneous compared with that of mesection of the duct. In the case of mercury, it is found thiat
cury flow because the magnetic body force acts to suppress fhgreases with increase tnHowever, the magnitude off exhib-

expanding cavitat.ion bubbles: From Figs. 5-8, it is clarified thﬂ‘s a lower value than that aff in ECMF flow. Furthermore, it is
the decrease g, induces an increase efy and that the expan- ' ) '

sion or contraction of bubble radit, corresponds to the changefound that the rate of increase o in the £ direction of ECMF

of p; . Since the displacement magnitudeRyf has a small value, flow shows a greater value than that of mercury flow.

it is also clarified that the generated cavitation bubbles maintain alt is found that the fluctuation oﬂ|§ in mercury flow in the
small size in the vaporization process and in the initial cavitatingcinity of the inlet section sharply increases with maximum time
flow state. step because of the propagation of the velocity and pressure fluc-
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Fig. 12 Instantaneous gas-phase velocity vector (enlarged
view of nozzle throat section )

Figure 10 shows the profiles of the liquid-phase velocity
and Fig. 11 shows instantaneous liquid-phase stream lines around
the throat section in ECMF and mercury flow. The flow separation
and backward flow ofi, locally occur in the vicinity of the wall of
(b) Mercury the throat section upstream of the point of cavitation inception. In
) o ) the case of ECMF flow, the liquid phase is locally accelerated
Fig. 11 Instantaneous liquid-phase stream lines  (enlarged  4rq,ng the throat wall section, and the magnitudeubhas a
view of nozzle throat section ) | . ’
arger value compared with the case of mercury flow because of
the two-phase magnetic acceleration effect, which acts on the lig-
uid phase due to the strong magnetic field gradient. Furthermore,
tuations from the nozzle throat section to the inlet section of thgecause of the increase in momentum exchange between the gas
duct for a similar reason as the generation of inhomogeneity #hd liquid phases, the magnitude wf locally increases in the
inlet pressure. Contrarily, in the case of ECMF flow, the shaigion where the cavitation is actively generated. According to
increase in the fluctuation cm‘ff cannot be found at the inlet sec-these numerical results on velocity profile, it is found that rather
tion with time progress because of the two-phase magnetic stathian utilizing only the pumping effect of the bubbles when em-
lizing effect due to the magnetization of the flJiths]. ploying the two-phase LMMHD fluid-driving system, the method

1=0.751s t=1472s
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erated because of the two-phase magnetic driving force and
bubbles’ pumping effect acting on the liquid phase. The slip ratio
u'g/u: in the vicinity of the throat wall section tends to have a large
value. :

Figure 12 shows the instantaneous gas-phase velmgty
around the throat section in ECMF flow and mercury flow. In the
initial flow state, it is found that the backward flow 05 is gen-
erated upstream of the throat due to the effect of the separation
wake of liquid phase in the vicinity of the throat wall and that the
gas phase is dispersed throughout the downstream region of the
throat section. In the case of ECMF flow, the gas phase is locally
accelerated in the direction of the negative magnetic field gradi-
ent, and the magnitude mfg is indicated to have a larger value
compared to the case of mercury flow because of the magnetic
ejection effect, which acts on the bubbles. Considering Figs. 12
and 5 together, in the strong magnetic field gradient region, the
void fraction a4 locally decreases due to application of the non-
uniform magnetic field because the gas phase is locally acceler-
ated and the slip ratio increases due to the magnetic ejection effect
on bubbles in the two-phase region.

In addition to the formation of the cavity vortex and its growth
(a) ECMF in ECMF, the advection of the cavity cloud is enhanced by the
magnetic ejection effect in the downstream region of the throat.
With time, the gas-phase motion exhibits diffusing behavior, and
the u;; profile takes on a different aspect from the liquid-phase
velocity profilesu; . The characteristic gas-phase behavior in the
magnetic fluid is not only due to the several additional forces that
appear in Eq(11), but also to the two-phase magnetic body force
and other forces that act on the bubbles due to the two-phase
Lorentz force that are included in the momentum terms in(Eyg.
According to the numerical results on gas phase behavior, it is
clarified that the precise control of bubble motion and control of
the two-phase MHD flow is possible by practical use of the char-
acteristic magnetization of fluid inherent ECMF.

Figure 13 shows the profiles of power denggyin the ¢ direc-
tion as a function of time in ECMF flow and mercury flow. The
magnitude of the power densitg$ of ECMF flow has a larger
value than that of mercury flow. Especially if the flow field be-
comes two-phase flow state, the rate of increas& afi ECMF
flow with time is greater than that in the mercury flow. The high-
erpower density in ECMF flow is due to the fluid acceleration
resulting from the two-phase magnetic body force under the ap-
plied magnetic field region. According to these results, it is found
that the present ECMF system, which uses cavitation, can obtain
higher power density than the mercury system in the two-phase
(b1 Mercury LMMHD power generation systems because of the practical use
of magnetization in the working fluid.

Fig. 13 Power density profile in the longitudinal direction as a
function of time

5 Conclusions

.The two-dimensional cavitating flow characteristics of electri-

that utilizes the two-phase magnetic body force generated byca(\'/é-"y conducting magnetic fludECMP) in a converging-

tatingﬁmagnetic fluid flow can obtain the enhanced fluid accelera]-verging nozzle under a strong nonuniform traverse magnetic
tion effect.

. . . field were numerically predicted to realize the further develop-
Taking focus around the central axis region at the nozzle thro y P P

he liquid-oh longitudinal veloci s decel ent and high performance of the two-phase LMMHD power
the liquid-phase longitudinal velocity component is deceleratef e ation systems. The main results obtained can be summarized
because of the Lorentz force extensively acting as a flow resks:

tance due to the strong magnetic field strength and small voi follows:

fraction at the throat section. The backward liquid-phase flow at1. Inception of cavitation or formation of a cloud cavity in
the central axis induced by the cavity separation from the throeCMF flow in the diverging nozzle throat is more greatly sup-
wall is the another reason for longitudinal velocity deceleratiopressed than in the case of mercury flow due to the magnetic body
Especially in the case of ECMF, the magnetic body force al§orce with a sharp magnetic field gradient. Especially in the case
locally acts as a flow resistance in the central axis region at tbé ECMF flow, because the two-phase magnetic ejection effect
nozzle throat due to the strong magnetic field gradient and smatits on the cloud cavity in the negative magnetic field gradient
void fraction. Therefore, the liquid-phase longitudinal velocityegion, separation of the cloud cavity is enhanced by the two-
component at the region is decelerated, and the two-phase mplgase magnetic body force acting on the cavitation bubbles.
netic driving force cannot effectively act on the fluid due to small 2. The pressure rise effect due to the two-phase magnetic body
void fraction. However, in the throat wall vicinity where cavita-force under an applied magnetic field region effectively acts with
tion actively generates, the liquid-phase velocity is strongly accehe progress of time in the two-phase region. The magnitude of
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the pressure rise effect in cavitating ECMF flow has a larger val@reek Symbols

than that in cavitating mercury flow or boiling two-phase mag- _

netic fluid flow.

3. It is found that rather than utilizing only the pumping effect
of bubbles when employing the LMMHD two-phase fluid driving
system, the method that utilizes the two-phase magnetic body
force generated by cavitating magnetic fluid flow can obtain the

enhanced fluid acceleration effect.

4. The present ECMF system, which uses cavitation, can ob-
tain a power density greater than that with the mercury system in
the two-phase LMMHD power generation systems because of the
practical use of the magnetization in the working fluid.
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uf, ul, u
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interfacial area concentration per unit volume

magnetic flux density

contravariant vector of magnetic flux density

drag coefficient

virtual mass coefficient

specific heat at constant pressure
sound velocity

inlet width of duct

strength of electric field
contravariant vector of electric field
specific internal energy
permutation symbol

contravariant vector of gravitational acceleration
= fundamental metric tensor

strength of magnetic field
contravariant vector of magnetic field
maximum strength of magnetic field
specific enthalpy

current density

contravariant vector of current density
load factor

heat transfer rate

Boltzmann’s constant

strength of magnetization
contravariant vector of magnetization
saturation magnetization

= spontaneous magnetization

magnetic moment

mass of a single molecule
number density

absolute pressure

heat flux

contravariant heat flux vector
radius

magnetic Reynolds number
gas constant

absolute temperature

Curie point temperature
saturation temperature
time

= time increment
= contravariant velocity

covariant velocity
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¢ = condensation
e = evaporation

(ex) = exit section of the duct
g = gas phase

i, j, k = covariant component

(in) = inlet section of the duct
| = liquid phase
s = saturation
T = two-phase

Superscripts

i, j, k = contravariant component

(i) = interface

(I) = iteration number

(n) = nth time level
¢ = contravariant component in thgedirection
n = contravariant component in thedirection
{ = contravariant component in thiedirection

() = mean value
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Department of Civil Engineering, This paper presents thermal buckling and post-buckling analyses for moderately thick
The University of Quegnsland, laminated rectangular plates that contain functionally graded materials (FGMs) and
St. Lucia, Brisbane, subjected to a uniform temperature change. The theoretical formulation employs the first-

Queensland 4072, Australia order shear deformation theory and accounts for the effect of temperature-dependent

thermoelastic properties of the constituent materials and initial geometric imperfection.
The principle of minimum total potential energy, the differential quadrature method, and

S. Kitipornchai

. Professor, iterative algorithms are used to obtain critical buckling temperatures and the post-

Department of Building and Construction, buckling temperature-deflection curves. The results are presented for both symmetrically
City University of Hong Kong, and unsymmetrically laminated plates with ceramic/metal functionally graded layers,

Kowloon, Hong Kong showing the effects of temperature-dependent properties, layup scheme, material compo-

sition, initial imperfection, geometric parameters, and boundary conditions on buckling
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1 Introduction properties on the critical buckling temperature and post-buckling

?d-deflection curves was reported[#5]. By using the natural

. . . . o]
inhL(?r?(lJnZtr?goﬁgn;l?r?stlitgngﬁte ‘:‘gggéurrﬁzte'ﬂa.l%d&g t:r?gedr:;?fjerﬁode method, Argyris and Ten¢K] assumed the material prop-
g Y49 erties to be in cubic variation with temperature and examined the

acterized by a smooth and continuous change in both COrT]'OOS't'O(S]s,t-buckling response of composite laminates under compressive

profile and material properties in certain spatial coordinates, oad and a temperature gradient. In the framework of the first-
widely used in many industries. Quite often they are required Sder shear deformation theory, Srikanth and Kup8adiscussed
operate in varying temperature environments where, due to e '

. . . ianifical® effect of temperature-dependent properties on the post-
in-plane displacement constraints on plate edges, S'gn'f'q%rbckling behavior and failure modes of symmetric laminates
strains and in-plane stresses are induced even when there IS

. R . . H1r8ugh a direct application of the principle of minimum total
Shencmena nvohing et nonlcarty a1 el {112 rerd. Shefe employed Reddys ngherrder shear
levels. In addition, significant variations in both the thermal an y P 4

elastic properties of plate materials are to be expected with te in asymptotic post-buckling solutions for both perfect and im-

o s erfect antisymmetric angle-ply and symmetric cross-ply lami-
perature fluctuations; for example, Young's modulus and the sh fiated plates that were resting on an elastic foundation. All of the

modulu; usually. qlecrease, Wh.'le Poisson’s ratio and the thernix egoing studies dealt with homogeneous materials and a thermal
expansion coefficient usually increase at elevated temperaturI Sd due to a uniform temperature chanae exdépt], which
Hence, knowledge of the thermal buckling and post-buckling0 P g€, Pel,

characteristics of laminated plates that accounts for the effects 0{13ldered nonuniform temperature distribution.

; e . n the past few years, the buckling and post-buckling of FGM
temperature.-dependent materllal properties s O.f utmost 'MPRfructures has drawn the attention of the scientific community.
tance for reliable and economic engineering design.

Many investigatio‘ns of Fhe buckling gnd post-buck]ing re?haggﬁﬁehd?ghf iﬁﬂgﬁiﬁ;ﬁ;f;gff}f'sbh“;r'{"ff_ﬁ‘gﬁzfg[é'nmp'y
D e e e erur N4 Leun 1] examined th postbucding benavirof ressre-
and Argyris and Tenek3] résented cdm rehensive revie ’s . loaded and axially loaded cylindrical shells and panels in thermal
gyn pre L p v VIBWS [N\ ironments. Javaheri, Najafizadeh, and Eslami conducted a se-
state-of-the-art development in this field. However, studies of thg, " ¢ investigations into the compressive and thermal buckling
thermal buckling and post-buckling behavior of laminated plat GM plates with simply supported and clamped edges. They

with temperature-dependent material properties are few. Chen sented successively closed solutions for the buckling loads of
Chen[4,5] and Singhq et al.6] obtained finite element SQIUtionsﬂmpressed rectangul);r platess] and circular plate$17],gand

for the thermal buc!dmg and.post-bucklmg of composite Iamlt'h critical buckling temperatures of rectangular plgt&8,19
nated thin plates. Significant influence of temperature-depend%ﬂ% circular plate$20] under different temperature distributions.

Contributed by the Aoplied Mechanics Division offE A © Their work [16—20, however, did not include post-buckling
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MECHANICAL ENGINEERsfor publication in the ASME QURNAL OF APPLIED ME- analysis and neglected the existence conditions of bifurcation-type

CHANICS. Manuscript received by the Applied Mechanics Division, August 18, 200§;3UCk"ng ir} composite plates with the stretching-bending coupling
final revision, April 9, 2004. Associate Editor: S. Mukherjee. Discussion on the papeffect, which were clearly brought out by Qatu and Leig24].
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appligdence, the results they provided for pure FGM plates that were

Mechanics, Department of Mechanical and Environmental Engineering, Univers ot ; :
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accep@gt fu”y clamped do not exist in actual situations. To address the

until four months after final publication of the paper itself in the ASMExanaL oF  DUCKIing and post-buckling problems of FGM plate structures on
APPLIED MECHANICS. a sound physical basis, Yang and SHeg] developed a semi-
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analytical approach to determine the post-buckling paths for FGahd the nonlinear differential operatbg and linear differential
rectangular thin plates that are subjected to transverse and aperatorl ; take the forms of
plane loads. Thermal loads due to temperature change were not

considered. Most recently, the present auti@® discussed the i 0 1 [(a)\? 0 0'

existence of bifurcational instability and carried out a post- X 57 5%

buckling analysis for shear deformable FGM rectangular plates 2

with surface-mounted piezoelectric actuators under thermo- 0o 2 1 (i) 0 o0

electro-mechanical loads. Buckling load parameters for clamped ay 2 K ay

plates were calculated and load-deflection curves were traced by PR P

using Reddy’s higher-order shear deformation theory. All of the Lo=| = — #»—— 0 0],

above analyses concerning FGM plates, ex¢2f@t, did not ac- dy ox 294%

count for the variation in material properties with temperature 1+75 9

change and the effect of unavoidable initial geometric imperfec- 0 O > v 0 1

tions. There is obviously a need to gain a comprehensive insight %y

into the thermal post-buckling behavior of plate structures that are 1+75 9

comprised of FGMs with actual temperature-dependent ther- 0 2 ax 10

moelastic properties, possible geometric imperfections, and under - -

general edge boundary conditions. - P -
This paper investigates the post-buckling of moderately thick 0 00— O

FGM laminated rectangular plates with temperature-varying prop- 26

erties and undergoing a uniform temperature change. The math- 9

ematical formulation is based on the first-order shear deformation 0 00 O v

theory and geometric nonlinearity due to moderately large defor- L= y 4)

mation of the von Keman type. The initial imperfection of the 1 J 9

plate is taken into consideration but, for simplicity, is assumed to 0 00 W 9x

be of the same form as the buckling mode. A system of nonlinear

ordinary differential equations is obtained by the principle of 0 00 0 O

minimum total potential energy and is then solved by the differ- 0 00 0 O

ential quadrature method and iterative approaches to determine
the critical buckling temperature and the nonlinear temperature-Neglecting the transverse normal stress, the Duhamel-
deflection curves of plates with different boundary conditions. NINeumann form of the linear elastic stress-strain relation is written
merical results are presented for laminated plates with varioas

symmetric and unsymmetric layup schemes.

Qu Qi Qi O 0
Oy Ey
oy Q2 Q2 Qg 0 0 &y
2 Theoretical Formulations Tyt =| Quz Qm Qa 0 0 Yay
2.1 Preliminaries. We consider an imperfed{, -layer lami- Tyz 0 0 0 k2Qu 0 Vyz
nated rectangular plateak bxh) that consists of an isotropic, Tzx 0 0 0 0 K2Q Yzx
homogeneous metal layer and inhomogeneous ceramic/metal 555
FGM layers. The plate is defined in a Cartesian coordinate system @
(x,y,2), wherez is the coordinate along the normal direction to o
the midplane of the plate anc,fy) are the coordinates of a ge- 2
neric point along the in-plane directions. In accordance with the =4 a3z AT (5)
first-order shear deformation theory, the displacement field 0
(U,V,W) of the plate takes the following form: 0
U(x,y,2) u(x,y) ox(X,Y) 0 or in a short form
V<lerz) = U(X»Y) +z QDy(va) + 0
Wixy.2)) [ wxy) 0 w* (X,y) o=Q(z=alT) ©)

whereo,, a,, 7y, are in-plane normal and shear stresses,

. . x» Oy Txy ' S§2.
where (1,v,w) denotes the midplanez{0) displacements of a 7 are the transverse shear stresksndk? are shear correction
point, (¢x,y) are the midplane rotations of normal about $Re ¢5ctors and taken ag=ki=5/6,Q;; are the stiffness coefficients,

andx-axes, respectively, and* is the initial geometric imperfec- 4nq, are the linear thermal expansion coefficients. Note that, for

tion, which is assumed to be relatively small and have the safig, materials considered hereiQ3=Q23=0, a;=ay=a, az

shape asv. Let » be the imperfection parameter =0. As both the elastic and thermal properties of the materials are
w* dependent on the environment temperature, we have
n=1+2— 2
w Q=Q(T), a=a(T) )

Based on von Kaman's assumptions, geometric nonlinear

strains are obtained in the sense of moderately large deflecti(}fﬂ%eret thﬁltin:ﬁerzﬁtutm.: T0t+AT% To izm;[ge. r(te;erenc.fe terr;pera-
and small rotations by strain-displacement relations as ure at which tne piate IS stress iree, IS the unitorm tem-

perature increment.

e=¢gytze 3) The stress resultants are
where N, M, " ) 10
Zk
SOZLOU, 51:L1U, U:[U v W @y q)y]T Ny My :z o gy (1]Z)dz,
k=1 Jz
e=[gy €y Yxy VYyz ')’zx]T ny Mxy « Txy
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{Qy] % jzk+1[ Tyz] (k)d g Li Li ¥1lis Lia Lis] o 5 0
= z m
Qd & )y 7ax ®) Loy Lo y71los Laa Las| | 5, 0
L L Lsg1+ 7yl L L w ={0
Thermal stress resultani; , N Njy and moment resultants a1 La Ylasrt lss) Mm% A 0
M}, M}, M}, are Lo Laz v(Lazat mlazd) Lag Lus| | Om 0
®
NE M Lsi Lso ¥(Lsaitmblsz) Lss Lss ym
X X Neoorg (Qu+Qua) ¥ (15)
N;* M§ :2 (Qt Q) AT(1z)dz in which the details of the ordinary differential operators are de-
N M* k=1 Jz 0 fined in Appendix B.
xy Xy

©)
3 Solution Procedures

The general boundary conditions at plate edges, i.e., simply ) . . . . . .
supported(S), clamped(C), free (F), or a combination of these  Eduation(15) is a nonlinear ordinary differential system that is
also a nonlinear function of temperature. To solve the problem,

three, are considered and take the form of c ! §
the differential quadrature methg®QM) is used to convert the

S: U,=N,e=W=M,=¢=0 (10a) equations and the associated boundary conditiogs-t 1 into a
set of nonlinear algebraic equations, the solutions of which are
C: U,=us=w=¢,= ;=0 (1Gb) then sought by an iterative algorithm. According to DQM, the
unknown function vectolJ,, and itskth partial derivatives with
F: Np=Npe=Qn=M=M,=0 (1)  respect to¢ at a discrete point are approximated as the linear
weighted sums of its values at all of discrete points along the

where the subscripts and s refer to the normal and tangential

directions of the plate edge. &-axis

N K
2.2 Variational Formulation. In the absence of body force U :2 P.(&)U,. 9 Un
and applied mechanical load, the total potential energy of the "o ag

N
=J_Zl ClUn  (16)
laminated plate due to thermal deformation is i

§=¢

Where0m1=0m|§:§j is the value oﬂ]m at thejth point andN is

H:%f (e— aAT)TodV (11) the number of discrete points whogeoordinates are given by
v either of the two spacing patterns generally used in DQM:

. 1. Equal spacing pattern
We assume that the displacement vedfiocan be represented q P gp

in a series form as B j—1 iZ12 17
y §=n—7 (=12...N) a7
U= Gm(y)om(x) 2. Cosine spacing pattern
m=1
_ B O i ) IR "
Un(Y) ~0 0 0 0 §i=5 5008 =7 | (=12...N) (18)
M 0 Um(Y) _ 0 0 0 The cosine spacing pattern is employed in this paper because it
= 2 0 0 W(Y) 0 0 provides better convergence for the present problem. The interpo-
m=1 ~ lation functionsP; are Lagrange polynomials, and the weighting
0 0 0 ®xm(Y) 0 . (%) ! . . .
- coefficientsCj;” are determined through recursive formulas given
0 0 0 0 Eym(Y) in [24,25.
8(X) By applying approximation relatio(i6) to the ordinary differ-
ﬁm(x) ential equation(14) at each of the interior grid points, we have
m J—
X{ Wpn(X) (12) LniAn=0 (i=2,...N-1) (29)
<fxm(X) WhereL_mi is the discretized form of differential operator matrix
Pym(X) L, at&, andA,, is the unknown vector composed of displace-

o . ment components at all grid points, which takes the form
where the components i, (x) are unknown functions to be P gnep

determined, and those id,,(y) are chosen to be the analytical Ap=[Ul;, ... 0%, .. UL (20)
functions which satisfy at least the geometric boundary Conditio”STreating the boundary conditions) at £,=0, £y=1 by rela-

at edgey/=0, b, as given in Appendix A. tion (16) in a similar way and then combining the resulted equa-

Substituting Eqs(3), (6), and (12) into Eq. (11), integrating . . < . : :
over z— —h/2 to 2—h/2 andx=0 to x=a, introducing dimen- ggrgrs]%vnh Eq.(19) yields 5xX N nonlinear algebraic equations for

sionless parameters
GnAn=Rn, (21)
whereG,, is the nonlinear matrix that is dependent on both tem-
perature and unknown displacement vedaqy.
It should be noted that the right-hand-side tdRg comes from
and then applying the principle of minimum total potential energthermally induced stress resultants and bending moments in sim-

results in an ordinary differential equation system in termglgf Ply supported or free boundary conditions at edge®, 1, and
will automatically vanish when the plate is clamped where only
Lm0m=0 (14) displacement boundary conditions are involved or when the plate
is symmetrically laminated where the stretching-bending stiffness
or elementsB;; are absent. It is obvious that the bifurcation-type

¢&=xla, s=ylb, pB=alb, y=hla,

(amr&mvwm):(ﬁmvﬁmvwm)/h (13)
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Si, N,/Nickel hr
SRS Si; Ny/Nickel hi2
Nickel h,
Si; Ny/Nickel h2
Siz Ny/Nickel hr
(a) (b)
Si; Ny/Nickel hr
Nickel h.
©

Fig. 1 FGM laminated plates with different layup schemes: (a) FGM/Nickel /[FGM, (b) FGM/FGM,
and (c) FGM/Nickel

thermal buckling will occur only wheiR,,=0, otherwise trans-
verse deflection will take place whd®,,# 0, irrespective of the

magnitude of the temperature change.
The thermal buckling temperature, when it exists, is determined ) ) ) ) ) .
from the nonlinear homogeneous equation That is, the iteration process is to be continued until the relative

difference between the solutions obtained from two consecutive
iterations(i) and (+ 1) reduces to a prescribed error toleradce

A TE:irJr Y- AT(cir)

- <4 23
ATY (23)

GnA,=0 (22)

4 Results and Discussion

. . In this section, thermal buckling and post-buckling analyses are
1.1. Assume thalT=0, the buckling temperaturd T, IS c4rried out for laminated plates that are comprised of FGM layers,
solved by using the thermoelastic properties at referenggich are a mixture of nickel and silicon nitride ¢8i,). Four
temperaturel o . . . different layup schemes are considered, including aymmetric
1.2. Calculate the thermoelastic propertie$ atTo+ATe, and a6 jayer laminate that consists of a pure nickel middle layer and
updateG,,, and a new buckling temperature is obtainedy,, FGM thin layers FGM/Nickel/FGM):; b) a laminate with two
1.3. Repeat step 1.2 until the thermal buckling temperatupgs layers that are symmetrically bonded togettfe®M/FGM);
converges. ¢) an unsymmetrically laminated plate with an FGM thin layer
The nonlinear temperature-deflection curve, also known as tperfectly attached to the top of a thick, isotropic nickel layer
post-buckling equilibrium path, is traced by two different iterativéFGM/Nickel); and d a pure FGM plate. Schematic configura-
schemes, depending on the presencd&Rgf WhenR,,=0, the tions of the first three types of laminated plates are given in Fig. 1.

by an iterative numerical procedure with the following steps:

following iteration process is applicable The volume fractionVceramic for SisNy4 in the FGM layer follows
2.1. Begin with the dimensionless central deflectigiyh=0. a simple power law:
2.2. Use the iterative procedures 1.1-1.3. 27—h.\"  [h h
2.3. Specify a new value ofi;/h. _ FGM/Nickel/FGM: Vi eramid 2) = (TC) (?Cszs E)
2.4. Calculate the thermo-elastic propertiesTat To+AT,,,
and scale up the buckling mode that is obtained in step 2.2 (2449)
to form a newG,, to determine the post-buckling tempera- n
t 2z+h, h he
ure. . . Veeramid2) =| — A (24b)
2.5. Repeat step 2.4 until the post-buckling temperature con- 2hg 2 2
verges.
2.6. Repeat steps 2.3—2.5 to obtain the post-buckling equilib- 2z\" h
bANS oath. P P geq FGMIFGM: Vi gramid2) = (F) (0sz< 5 @5
The modified Newton-Raphson technique is useglif# 0, but n
the process is omitted here for brevity. v 'c(Z):( _ E ( _ E§2$0 (250)
The convergence criterion adopted in this study is of the form cerami h 2
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Table 1 Temperature-dependent coefficients for silicon nitride and nickel

Properties ~ Material P, Py P P, B
E (GPa) Silicon nitride 0 348.43¢9 -3.070e-4 2.160e-7 -8.946e-11

Nickel 0 223.95¢9 -2.79%4e-4 3.998¢-9 0

v Silicon nitride 0 0.2400 0 0 0

Nickel 0 0.3100 0 0 0

a (1/K) Silicon nitride 0 5.8723e-6 9.095¢-4 0 0

Nickel 0 9.9209¢-6 8.705¢-4 0 0

2z—h+2hg\" [h h studies with respect t, the number of discrete points distributed
FGM/Nickel:  Vieramid2)= (— (—— hg<z< - along theg-axis, and taM, the number of truncated series expan-
2he 2 2 sions in Eq.(12). The present method converges to solutions that
(26) are in excellent agreement with both analytical solutions when
274h N=15, M=5. In the following computationN=15, M=5 will

Pure FGM: Vi eramid2) = T

n
(_ Egzg E) be used, otherwise, they will be stated.
2 2 To validate the present formulation in thermal post-buckling of
(27) plates with temperature-dependent material properties, the post-
wheren is the volume fraction index (@n<«). The effective Puckling of a(0°/90°); symmetric cross-ply square plate/f
propertiesP; at an arbitrary point within the FGM layer can be=30) under uniform temperature rise is considered, which was

estimated by the rule of mixture as also analyzed by Shef®] using the perturbation asymptotic
method and Reddy’s higher-order shear deformation theory. The
Pett= Pmetart (Pceramic™ Pmeta) Veeramic (28) plate is simply supported with all edges restrained against in-plane

in Which Peeramic 2nd Prmeta Stand for the property parameters ofiormal displacements, but free to move in the tangential direc-
;o geramic metal = property p iscustigns. Except the Poisson’ ratio, which is considered to be inde-

earlier, are also the functions of environment temperafuf), pendent of temperature, the thermoelastic constants of each ply

as described bj26] are assumed to be linear functions of temperatur®hs
P=Py(P_ T 141+ P, T+P,T2+P,T?) (29) E11=Epd1+Eq1T),  Epp=Epod 1+ EppiT)
The coefficient®,, P_,, Py, P,, andP; for Young’s modulus G1=G1od 1+ G1o1T),  Gi1z=Giad 1+ GyzT),

E, the Poisson ratio, and the thermal expansion coefficienof _
nickel and SjN, are given in Table 1. G23=Gaad 11+ Gaanl)
To evaluate the effect of temperature-dependence of constituent ay = apd 1+ gl ap= agd 1+ apT) (30)
materials, the results are compared with those obtained by usmﬁ
the following temperature-independent material constg2ith where Eq10/E2p0=40, Gi20/E220=G130/E220=0.5, G230/Ezz0
. . s :02, allo/a():l, a220/a0=10, V12:O.25, E111:_5X 1074,
Nickel: E=204 GPa, v=0.31, «=13.2x10 IIK E221: G121: G131: G231: —2X 10—4’ Q111= Qo= 5% 10—3, @
SiN,: E=310 GPa, »=0.24, a=3.4X 106 IIK =10"%/°C. The post-buckling temperature-deflection curves of
the plate with and without temperature-dependent material prop-
4.1 Validation and Convergence Studies. Due to the lack erties are compared in Fig. 2 with Shen’s results. In temperature-
of appropriate results of functionally graded plates for direct conmdependent cases, the constafis;, E,1, G121, Giz1, Gozis
parison, validation of the present formulation is conducted in tw®;,,, anda,,; are set equal to zero. It is evident that good agree-
ways. We first study the accuracy and convergence of the proent is achieved in this comparison study.
posed method in linear buckling problems where no iteration pro- Convergence study of the iterative process is also conducted.
cess is involved. For this purpose, the buckling temperatuges Error tolerances=10"2 is used throughout the paper. The con-
=aAT, X 10 of simply supported isotropic square platés vergence of the iteration scheme is demonstrated in Table 3,
=0.21) are compared in Table 2 with the analytical solutions afvhere the total numbers of iterati¢fNI) required to obtain con-
Noor and Burtor{ 28] using the three-dimensional thermoelasticvergent results for thermal post-buckling curves of plateh (
ity theory and Sheh29] based on the first-order shear deforma= 30, n=2.0) with temperature-dependent material properties are
tion plate theory. Material properties are assumed to be temperaeorded for FGM/Nickel/FGM, FGM/FGM, and FGM/Nickel
ture independent. Our results are given in the form of convergensguare plates with SSSS, SCSC, and CCCC boundary conditions.

Table 2 Comparison of critical buckling temperature Ao=aA T, X10° for SSSS isotropic square plates

Present Noor & Burton Shen

vh N=9M=3 N=11M=5 N=15M=5 N=19M=7 [28] [29]
5 40.037 40.433 41232 41.237 39.90 41.297
10 11.472 11.772 11.962 11.962 11.83 11.978
20 3.0217 3.0516 3.1156 3.1156 3.109 3.1194
100 0.1135 0.1235 0.1265 0.1265 0.1264 0.1265

Journal of Applied Mechanics NOVEMBER 2004, Vol. 71 / 843



2.0 4.2 Parametric Studies. We now present critical buckling
Present temperature parameters,, = ayAT., X 10° for various FGM
""" Shen [9] laminated rectangular plates under uniform temperature change,
1.5} 1:temperature dependent where aq is the thermal expansion coefficient of nickel at refer-
2: temperature independent 0 :
ence temperatur€,=300 K. All of the four plate edges are im-
movable in the midplane in the SSSS, SCSC, and CCCC plates,
but are free to move along theaxis in the SFSF and CFCF
plates. Out-of-plane boundary conditions are denoted by symbolic
notations; for example, SFSF refers to a plate free=a0, a and
simply supported ay=0, b. Thickness ratich./hg between the
nickel layer and the FGM layer is 8, 9, and 0 for the FGM/Nickel/
FGM, FGM/Nickel, and FGM/FGM laminated plates.
00 02 04 0.6 0.8 Table 4 gives\., for SSSS, SCSC, CCCC, SFSF, and CFCF
w/h symmetrically laminated FGM square plates with side-to-
¢ thickness ratica/h=30 and different volume fraction indices (
Fig. 2 Comparisons of post-buckling paths for a simply sup- =0.5,2.0,10). Table 5 shows the results for CCCC FGM rectan-
ported, symmetric cross-ply square plate gular plates Wltha/h:30, 50,a/b: 1.0, 1.5, and various material
compositions, among which sh, and Nickel represent isotropic
silicon nitride plate and pure nickel plate, respectively. The value

Note that for FGM/Nickel/FGM, FGM/FGM, and CCCC FGM/of a/b varies witha remaining constant.

Nickel plates, the numbers at,/h=0 are in fact the TNIs to It can be seen that a plate with higrelb and lower values of
achieve the convergent critical buckling temperatures. The com-and a’h has the greater thermal buckling temperature, and a
vergence rate varies mainly with boundary conditions and pogtate with symmetric FGM/Nickel/FGM lamination has the low-
buckling deformations. As it can be expected, the process take€si thermal loading capacity among all of the layup schemes under
longer time at greater deflectiong,/h, i.e., as the nonlinearity consideration.

increases. Rapid convergence is observed for both SSSS anbote that the critical buckling temperature is greatly overesti-
SCSC plates while the CCCC plate needs more iterative compuated when the temperature-dependence of material properties is
tation whenw,/h=0.6—0.8. not taken into account. The discrepancy between temperature-

(0°/90°/90°/0°)

Table 3 Total numbers of iteration  (TNI) in thermal post-buckling analysis for laminated FGM square plates

/h FGM / Nickel / FGM FGM /FGM FGM / Nickel

w

¢ SSSS SCSC  cCCC SSSS SCSC  cccC SSSS SCSC  CCCC
0.0 4 5 5 4 5 3 4 5 5
0.2 5 5 5 5 5 5 5 5 5
0.4 5 5 5 5 5 5 5 5 5
0.6 5 5 6 5 7 7 5 5 5
0.8 5 6 9 5 7 8 5 5 7
1.0 5 6 9 6 7 9 5 5 8

Table 4 Thermal buckling temperature A ,= aoA T,, X 10° for symmetric laminated square plates

Boundary =~ Temperature FGM / Nickel / FGM FGM /FGM
conditions  dependence n=05 n=20 n=10 n=05 n=20 n=10
SSSS dependent 1.5218 1.4134 1.3347 1.9266 1.6984 1.4852
independent 1.6395 1.4748 1.3669 2.9334 2.0302 1.5783
SCSC dependent 2.7289 2.5408 2.4035 3.4103 3.0293 2.6658
independent 3.1096 2.7986 2.5947 5.5658 3.8492 2.9940
ccece dependent 3.6081 3.3627 3.1830 4.4706 3.9919 3.5264
independent 4.4271 3.8443 3.5647 7.6435 5.2857 4.1127
CFCF dependent 3.6721 3.4336 3.2574 4.4178 4.0244 3.5859
independent 4.4362 3.9363 3.6598 7.5336 5.3318 4.1903
SFSF dependent 0.9849 0.9140 0.8631 1.2360 1.1002 0.9554
independent 1.0325 0.9294 0.8647 1.8173 1.2760 0.9880
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Table 5 Thermal buckling temperature A .= apA T,, X 10° for clamped FGM rectangular plates

Side-to-thickness Temperature Material composition

ratio dependence Si;N, n=05 n=20 n=10.0 Nickel

a/b=1.0
a/h=30 dependent 4.9867 4.0583 3.6595 3.4825 3.0894
independent 14.087 6.9458 4.8657 4.0680 3.4271
a/h=50 dependent 2.0828 1.6609 1.4798 1.3976 1.2328
independent 5.1235 2.5260 1.7712 1.4822 1.2480

a/b=15
a/h=30 dependent 7.6920 5.7121 5.3330 5.0544 4.9083
independent 24.342 7.3584 6.6275 6.1479 59129
a/h=50 dependent 3.3981 2.4112 2.2433 2.1208 2.0572
independent 8.9186 2.7082 2.4366 2.2584 2.1713

dependent solutions and temperature-independent solutions four types of plates considered, contains the greatest amount of
creases dramatically as side-to-thickness ratib and volume silicon nitride with a higher Young’s modulus. Note that the
fraction indexn decrease. In terms of out-of-plane boundary coriemperature-independent results are significantly overpredicted,
ditions and lamination scheme, the discrepancy is maximum foreapecially for FGM/FGM and FGM plates.
CCCC FGM plate and minimum for an SFSF plate with FGM/ Figure 5 presents a comparison between the equilibrium paths
Nickel/FGM symmetric configuration. The difference reaches as
high as approximately 316% for a clamped, isotropighgirect-
angular plate witha/h=30 anda/b=1.5, but is less than 0.2%
for an SFSF FGM/Nickel/FGM square plate with volume fraction FGM/NickelFGM: SSSS
indexn=10 anda/h=30. ab=10; a/h=30; n=10
It should also be mentioned that the presence of stretching- : temperature dependent
bending coupling effect in pure FGM plates and FGM laminated | ~°*
plates with unsymmetric layup, irrespective of the magnitude of 20
the temperature, gives rise to lateral deflection, and hence, no A
bifurcation-type thermal buckling exists in actual situations for
FGM/Nickel and FGM plates if they are not fully clamped at all
edges. 1.6
Typical thermal post-buckling results for FGM laminated plates [
under uniform temperature change are plotted in Figs. 3-8 in T
terms of the dimensionless temperature laadaATX 10° ver-
sus dimensionless central deflection./h. Solid curves and 1
dashed curves represent post-buckling equilibrium paths for
temperature-dependent and temperature-independent plates, re-

Spgi(gnlrilyé gives the post-buckling equilibrium paths for simpiC'9; 3 Thermal post-buckling paths for simply supported
. ) . ¥GM/NickeI/FGM square plates with different volume fraction
supported, symmetrically laminated FGM/Nickel/FGM squargjices

plates withn=0.5, 2.0, and 10.0. The thermal post-buckling curve

24

2:n=2.0
3:n=10.0

2 1 1 1 1
0.00 0.25 0.50 0.75 1.00
w/h

becomes lower as the value wfincreases and when the thermal 3.0 TFOMNhelFGM
dependent properties are considered. The difference between so- 5 FGM/FgMe s N
lutions by using thermal-dependent properties and thermal- 2.5} 3. FGM/Nickel RN

independent properties increases steadily with a decrease in the
volume fraction index.

Thermal post-buckling behavior for plates with various lamina-
tion schemes is compared in Fig. 4, where curves 1, 2, 3, and 4 are
the post-buckling paths for FGM/Nickel/FGM, FGM/FGM, FGM/
Nickel and pure FGM plates, respectively. The plate edges are

. At . i 1.0}
simply supported and the volume fraction index in FGM layer is $SSS:n=2.0: ab=1.0; ah=30; n=10
n=2.0. In such a case, the post-buckling behavior of unsymmetri- osk ’:temper;m,e depe,’ldem
cally laminated plates is different from those of symmetric plates Ny : temperature independent
in the early post-buckling region. Curves 3 and 4 originate from . ‘ . .
coordinate origin because no bifurcation buckling point exists for 0‘8,00 0.25 0.50 0.75 1.00
the FGM/Nickel and FGM plates. The results show that the FGM/ w/h

FGM plate has the highest post-buckling thermal-loading capac-
ity, while the FGM/Nickel plate possesses the weakest heat resisy. 4 Thermal post-buckling paths for SSSS square plates
tance. This is due to the fact that the FGM/FGM plate, among théth different lamination schemes
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2.1 - 3.5
FGM/Nickel/FGM; SSSS _‘,/"’ 1 FGM/Nickel/FGM; SSSS L
n=2.0;ab=1.0;ah=30 e .22 30Lab=10; n=100; n=10 .

: temperature dependent .

1.8

e
A 121 A
09}
0.6
: temperature dependent lin 3
03F/ -emee- : temperature independent 2in=12
0.0 L 4 L L 0.0 L . I .
0.00 0.25 0.50 0.75 1.00 0.0 0.5 1.0 1.5 2.0 2.5
w/h w /h

Fig. 5 Effect of geometric imperfection on the thermal post- Fig. 7 Effect of side-to-thickness ratio on the thermal post-
buckling paths of SSSS FGM /Nickel/FGM square plates buckling paths of SSSS FGM /Nickel/FGM square plates

of S.SS.S FGM/I\_IickeI/FGM square plates with and without S]Je%'egligible whena/h=50. It is noteworthy that the post-buckling
metric imperfection,=1.0 and,=1.2 correspond to perfect and ., o5 cannot be extended beyamg/h~1.875 due to the con-
imperfect plates, respectively. The effect of initial imperfection i ergence problem, and a sudden drop is observed in the post-

seen to weaken the thermal post-buckli_ng s_trength of the pl %ckling paths for the plate wita/h=50 and atw,/h>1.875,
Quite similar to the case that is shown in Fig. 4, the curves f us indicating the possibility of a secondary instability phenom-

imperfect plates differ greatly from those for perfect plates : : y :
small deflections W./h<0.3), but all curves tend to be quite%t';ﬁgci%rn;hmner FGM laminated plates at larger post-buckling

sin;i_lar atéa(;ge_dt(aﬂﬁ](:ti(t:)ﬁm(c/I|1>O.t3%. Kli ths f tri Figure 8 shows the effect of plate aspect ratio, where curves 1,
Igure 6 gepicts the thermal post-buckiing paths 1or Symmetng g 3 are the results for simply supported, symmetrically lami-

FGM/Nickel/FGM laminated square plates with SCSC, CFC : . - /
< ed FGM/Nickel/[FGM plates wita/b=0.75, 1.0, and 1.%a is
and SFSF boundary conditions. Note that both CFCF and SFi?t constant A lower value ofa/b reduces the critical buckling

lates under temperature change are free to expand or contra : :
tphex-axis and onIp the in-plane%isplacement in ?hexis is con- T perature and, in turn, lowers the post-buckling temperature-
Y load-carrying capacity. The influence of the temperature depen-

strained. Numerical illustration shows that quite different from th . P
results for the SSSS and SCSC plates, only a small gain in ]%rgce:g Vsiftghrﬁgrk?:rtig?lljepsrc:g/egtles s much more pronounced for

post-buckling temperature load of the SFSF and CFCF plates’is
observed as the deflection increases. Because of its weak edge .
support and movability of in-plane displacement in #exis, the ° Conclusions
thermal effect is relatively small in the SFSF plate, and therefore, Thermal buckling and post-buckling analyses of symmetrically
the difference between temperature-dependent and temperataf@t unsymmetrically laminated rectangular plates that are com-
independent solutions of the buckling temperature and therngtised of functionally graded materials with temperature-
post-buckling path of the SFSF plate is insignificant. dependent material properties and subjected to uniform tempera-
Figure 7 deals with the effect of the side-to-thickness ratio afire change have been conducted by using the first-order shear
the thermal post-buckling response. To this end, thermal pogeformation plate theory. Numerical illustration has demonstrated
buckling paths are displayed for SSSS FGM/Nickel/FGM squatRat the critical bucking temperature and thermal post-buckling
plates withn=10.0 anda/h=30, 40, and 50. As expected, theequilibrium path are remarkably overestimated, especially for
dimensionless post-buckling temperature load becomes mugltker plates, when temperature-dependence of material proper-
larger as the plate becomes thicker. The discrepancy betwe@ is not taken into account, thus leading to possible unsafe
temperature-dependent solutions and temperature-independentksgineering design. Unsymmetric FGM laminated plates do not
lutions decreases with an increaseaith and even seems to behave bifurcation-type thermal buckling due to the presence of

4.5

3.0

[ FGM/Nickel/FGM; SSSS P

1: SCSC 1:a/b=10.75; 2: a/b=1.00; 3:a/b=1.50
: temperature dependent 2: CFCF 0.5 : temperature dependent
------ : temperature independent 3: SFSF ------: temperature independent
0.00 0.25 0.50 0.75 1.00 0'8,00 0.25 0.50 0.75 1.00
Wc/h wc/h
Fig. 6 Thermal post-buckling paths for SCSC, SFSF, and CFCF Fig. 8 Effect of plate aspect ratio on the thermal post-buckling
FGM/Nickel /FGM square plates paths of SSSS FGM /Nickel /FGM rectangular plates
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stretching-bending coupling, and they exhibit post-buckling char- 1. simply supported ai=0, 1

acteristics that are different from those of their symmetric coun-

terparts. Certain factors, such as the layup scheme, volume frac- Tml(8) =Wi(s) = 0ym(s) =siN(ms);
tion index in FGM layer, the out-of-boundary condition, initial
geometric imperfection, side-to-thickness ratio, and plate aspect

ratio, also significantly influence the buckling temperature and Um(s) = ¢ym(s) =cOg M)
post-buckling behavior of the FGM laminated plates. 2. clamped as=0, 1
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The functionsly,, Uy, Wm, @xm, andeyy, for different out-
of-boundary conditions ai=0, 1, take the following forms: mm=(M+0.5m
|
Appendix B

Details of the ordinary differential operators are given below:
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in which the laminate stiffness components are calculated by
N Zx+1
(Ajj ,Bjj ,Dij):kEl j Q¥ (1z,25Hdz (i,j=1,2,6) (B2)
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Adhesion at the Wavy Contact
Interface Between Two Elastic
George G. Agge?:i BOdles

Fellow ASME,
Department of Mechanical and Industrial The plane strain elastic contact of two bodies with a wavy contact interface is investi-
Engineering, gated. The effect of adhesion is accounted for by using the Maugis model. This periodic
Northeastern University, mixed boundary value problem is solved using integral transform techniques. Results are
Boston, MA 02115 obtained for the extent of the contact region as a function of the dimensionless applied
e-mail: adams@neu.edu pressure and for various values of the dimensionless adhesive stress and peak-to-valley
height. These contact length versus applied pressure curves are characterized by discon-
tinuities and hysteresis. A finite contact region exists at zero load, with further loading
causing one or more jumps into a complete contact configuration. Unloading is also
characterized by one or more jumps before pull-off occurs suddenly with a finite contact
length and tensile pressure loading>Ol: 10.1115/1.1794702
Introduction also assumes that the attractive forces are confined to the contact

area and vanish outside the contact area. The model by Derjaguin,

The frictionless two-dimensional elastic contact problem for auller. and Toporov(DMT) [11] assumes that the contact dis-
elastic half-plane loaded by a periodic system of rigid flat punchisg, .o hent and stress profiles remain the same as in the Hertz

was solved by Sadowski]. Westergaard2], using a complex theory. However, these quantities are calculated for a higher ef-

stress _funct|on, found a closed-form_ solution for _the Worsctive load which includes the applied normal force as well as the
dimensional contact problem of an elastic half-space with a wa tractive adhesive stresses acting outside of the contact area. Due
surface. He obtained an expression for contact stresses as well a¢,o assumptions involved, the JKR/DMT models are most suit-
for the dependence of the contact area on the applied pressuige \when the range of surface forces is smallllarge compared to
Independently, Shtaerma8] obtained the same result, using thqhe elastic deformations, as pointed out by Taft]. Another
Green'’s function method in order to formulate the contact pro'?ﬁodel, introduced by MaugiL3], describes a continuous transi-
lem as an integral equation for the normal contact stress. He fousish petween the JKR and DMT models. In order to represent the
a general form of the mathematical solution for an arbitrary peryrface forces, Maugis used a Dugdale approximation in which
odic contact profile and a particular solution for a sinusoidal prgnhe attractive stress is constant for surface separations up to a
file. He also obtained an integral equation formulation for thgrescribed valud,. Intimate contact is maintained over the cen-
frictional contact problem and a general form of the solutionya| region; an adhesive stress of constant magnitude acts in an
Dundurs, Tsai, and Ked], using Fourier analysis in a stressannular ring outside of the contact zone for which the local sepa-
function approach, produced a series solution to the frictionlegsion is less tham,; and the remainder of the separation region
problem with a wavy surface, which reduces to the form obtaingg stress free.
by Westergaard. Kuznetsd®| obtained a solution of the same Contact problems with a wavy interface, such[4s-9], are
problem, with one rigid body, by using the complex potentiglelevant to applications such as se@fswhich it is desirable to
method of Muskhelishvili. He also solved the frictiondbw- reduce the separation between the surfaaes in understanding
velocity) problem[6]. Nosonovsky and Adamgr] investigated friction (which is related to the real area of conads length
high-speed steady-state frictional sliding of the wavy contagtales decrease and surfaces become smoother in modern applica-
interface. tions such as microelectromechani¢®IEMS) and nanoelectro-
Johnson, Greenwood, and Higging@]j obtained a numerical mechanicalNEMS), it becomes important to account for the ef-
solution, as well as asymptotic solutions for small and large zonfst of adhesion on the contact area in these problems. In this
of contact, for the frictionless case of two-dimensional wavinessvestigation, the effect of adhesion on the contact problem be-
(three-dimensional elasticityTheir method was based on Fourietween two elastic bodies with a wavy contact interface is investi-
analysis. Mannerf9] extended Westergaard’s problem to contagjated. Plane strain linear elasticity is used along with the Maugis
surfaces with more complicated periodic profiles. model of adhesion. Due to the nonlinear nature of adhesion, the
For sufficiently small size contacts, the adhesion forces beentact area during unloading differs from that encountered dur-
tween the surfaces affect the contact conditions. Various adhesing loading.
models, between an elastic sphere and a flat, have been intro-
duced. The model by Johnson, Kendall, and Rob@iR) [10]
assumes that the attractive intermolecular surface forces cagggmulation of the Problem
elastic deformation beyond that predicted by the Hertz theory,

producing a subsequent increase of the contact area. This qu (fonsnder the plane strain frictionless contact of two semi-

ﬁnite elastic bodies, one of which is flat and the other of which
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oretical strength and by equating the work of adhesioto the
ll l l quantity ogh (the work of adhesion in the Maugis mogleThe
l l l l l l l l l l l l l l l value of hy is approximately equal to the lattice spacifitg].
Thus, the additional condition needed to determine the extra un-
known c is obtained from

yo(@) —[vP(a,00-v?(a,0]=0

and

yo(©)—[v(c,0—v?(c,0)]=hg 9)

which states that the interface gap vanishes-aa and is equal to
ho atx=c. The second of these equations is subtracted from the
first, which leads to

Cc
fa
Fig. 1 Two elastic half-spaces with a wavy contact interface . . . . .
subjected to a remotely applied pressure  (p) in which the normal displacements have been written as the inte-

gral of their derivatives.
In addition, the stress and displacement fields are subject to
certain inequality constraints on the interface, namely,

It is assumed that the amplitude of the waviness is small com- o< ey 11

pared to its wavelength, i.eg<<¢, so that the lower body may be Tyy =70; a=x=a (11)

treated as an elastic half-space with its boundary=a0. From jn the contact region, and

this point forward, the wavelength will be taken &s 7 without

loss of generality. vW—v@<y,, a<|x|<w (12)
The Navier equations of plane strain elasticity for the dlsplace

ment componentsi(x,y), v(X,y) in the x andy directions, re-

spectively, are given by

w' @
ax X

(RRRERARRRARRRRRRAN

)dx Yo(C) —Yo(@)—hg (10)

n the separation zones.
The solution of the Navier equationi®) can be obtained by
using, for example, the Papkovich-Neuber potent[dl6]. The

Ot 2) a?u® . ?u® Ot )(92 (k) o solution has been presented by Dundurs ef4dland is given as
kT eMk) o T Mk o2 k™ Mk
X Ay Ixay w
py
92p® 92y 200 b1=— erz a,n"e" cosnx (13)
(Mt 2p) 5 iz (Nl o xay 2 !
in which k=1 for the upper body and=2 for the lower body. _ b.n"2e" cosnx 14
Due to periodicity, only the strip- 7<x<# need be considered. ¥ z‘l " (14)
The boundary conditions at infinityly(| =) state that stresses
approach the uniform state of compression, i.e., by py +§ e.n-Te-™ cosnx (15)
Ug,J)})_O'(z -p, O'Xy) 0'<2)—0, for —a<x<wm (3) 2 2(1_ v2)
The following boundary conditions pertain to the contact interface o
(y=0): =D, d,n~2e"" cosnx (16)
oM=0@=0, —m<x<m (4) "t
X X ?
y(h y( where ¢, is they component of the vector potentiéhe other
Oyy = Uyy y T ASX<T (5)  components are zexoyy is the scalar potential, are the Poisson
@ gp@ ratios, andk=1,2 for the upper and lower bodies, respectively.
v gsinx —a<x<a (6) The displacements are related to these potentials by
X ax 2 '
gy Iy
a'(l):a'o, a<|x|<c ) 2,u,ku(k)——yw—(9—x
;@)—0, C<|X|<7T (8) © Ay Y
The condition of vanishing shear stre@ is exactly valid only 2™ = (3= 4v) i y_y’ ay 17)

for frictionless contact or for material combinations such that
normal/shear stresses do not produce relative tangential/normahs discussed ifi4], the potential{13)—(16) give the uniform
displacements. The latter case holds for identical materials; fepmpression field at infinity and satisfy the periodicity conditions
one material rigid and the other incompressible; for two incom-
pressible materials; or more generally, if the Dundurs bimaterial u®=u®=0, (1)_0(2y)_0 (18)
parameteB, defined in[14], vanishes. However, even if none ofyp, = + n automatically. Furthermorgt], the boundary condi-
these conditions hold, the coupling is generally a small effE8t i (4)—(5) require that
and Eq.(4) can be used as an approximation. Conditi®ncomes
from taking the derivative ob®(x,0)—v@(x,0)=y,(x), i.e., bo(1-2v)a,, Cy=—a,, d,=(1-2v)a, (19)
the gap vanishes in the contact region. i,

Condition (7) arises from the effect of adhesion using the The boundary condition5)—(8) lead to
Maugis mode[13] in which the adhesive tensile stress is a con- %
stant (o) in regions in which the local separation is positive but E a,sinnx=—Mgsinx, —a<x<a (20)
less tharh,. The adhesive stress is taken to be equal to the the- =
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Eancosnx=oo+p, a<|x|<c (21)
n=1
Eancosnx=p, c<|x|<m (22)
n=1
where
(1+a)puy ma(l=v)—pu(l—vyp)
=—7, a= (23)
4(1—vq) ma(l=v)+u(l—vyp)

In order to satisfy(22), we introduce the unknown functiog(¢)
such that

1 C
an=" J ~ #lé)cosngde (24)

Then by substituting24) into (22), reversing the order of sum-

mation and integration, and using the idenfity’]
o 1 o
> cosnx=— =+, S(x+2mn) (25)
n=1 2 n=0

along with symmetry(¢(x) = ¢(—x)), condition (22) is auto-
matically satisfied provided

J  $(&dé=—2mp (26)
The interfacial normal stress becomes
ayy(x,00=(x)H(c—|x]) (27)

whereH(x) is the unit step function. Note that, in view (27),
Eq. (26) may be viewed as an equilibrium condition in tle
direction pertaining to a semi-infinite vertical strip of widthr2
centered ak=0.

Now define another auxiliary functios(x) by

H(X)=d(X)— 0y, —c<x<c, PY(x)=0, a<|x|<c

(28)
and from(27)—(28), the boundary conditiof21) is automatically

satisfied.
In order to satisfy the remaining boundary conditi@®), we

substitute(24) and(28) into (20), reverse the order of summation

and integration, and use the identjty7]

0

) 1 x
E sinnx= - cotz

& 705 (29)

which leads to the singular integral equation

1 (a x—¢ |
5f_a[w(§)+oo]cot—2 dé=—Mgsinx, —a<x<a
(30)

It is now convenient to introduce the coordinate transformatiomeed not always be the case. Solutions can also be obtained for

used by Comninou and Dundus8|

¢ X a b
tanz =bu, tanz =bs, b= tanz, d=tan-
(31)
W(é)
¥ (W 1+b?%u?

which, after considerable algebra, reduces the integra{3.to

ijl OP

m)_,u-s

u=f(s) (32)
where

Journal of Applied Mechanics

f(s)=

d+bs -
bs CUO+pW+00|nrbS 7m(1+b*s%)

2bMgs 33
MEEry 59
Furthermore, the resultant conditié26) becomes
1
bj W (u)du=—(m7p+oyC) (34)
-1

Finally, the “adhesion displacement” conditidqi0) yields, af-
ter lengthy algebra

1
—m(ll+lz)=Eg(cosa—cosc)—ho (35)
where
I_2b qu | d/b—uOI +(wp+o-0c)| 1+d?
e B B TV L %
d X
— +tan§ (c—x)
l,=— [ In dx
T Ja d—tans |2 cod~
2 2
c
2 cog—
go(C—a) 2
+ In +1 (36)
T c—a

In order to solve the singular integral E&2), which is subject
to (34-39, the procedure developed by Erdogan and G{ip&
is used. The unknow® (u) is taken as

W(u)=(1-u’"g(u) @37

in which g(u) and its derivative are bounded continuous functions

in the closed interval- 1<u<1. Then(32-35 are approximated
by linear algebraic equations. For examg&2) becomes

1-uf g(u) _
;L n+1 ui—sj_f(sj)’ j=12,...n+1
| i=1,2
u;=co n+i)’ | 2, n (38)
B m2]—1 1 o
SJ co 2 n+1/’ J 2y ...n

in which the middle equation is neglected due to symmEgtg}.
The analysis thus far has implicitly assumed tbatz, which

c=, in which case the adhesion displacement conditid) is

replaced with the inequality constraint given in terms of the maxi-

mum gap openindyy, by

[ gD gp@
hMEyo(w)—yo(a)—fa (W‘ W)dxsho (39)
Using (35), this condition becomes
h 1 1+15 0
M—Eg(1+cosa)+ oM (40)

where
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Fig. 2 Contact half-length (a) and adhesion half-length

Applied Pressure (p/Mg)

(c) ver-

sus applied pressure (p/Mg) for oo/Mg=0.1 and g/h,=100

Applied Pressure (p/Mg)

Fig. 3 Contact half-length  (a) and adhesion half-length
sus applied pressure (p/Mg) for oo/Mg=0.5 and g/hy=100

(c) ver-

2b (1 (mp+aoC) . . ) . .
lj=—— W (u)ln[b(1—u)]du— —————In(1+b?), a. For increasing pressure, increases until the tangent to its
™ ) curve becomes vertical. A further increase in pressure causes a
(41) jump to complete contact given by the dashed horizontal line.

Itis noted that by symmetry, the maximum gap opening defined g3

13=0

Complete contact persists for increasing contact pressure. During

unloading, complete contact continues until reaching the left end
the horizontal line, beyond which point the complete contact

(40) occurs aix= and this quantity is useful to know regardlesso|ution (43) is no longer valid. A further decrease in pressure
of the value ofc. Forc<<sr, the maximum gap openirty, is also  causes a jump to the next stable equilibrium position, which is the
given by (40) with 1] given by(41) but with

X
oo (€ (d+tan§ (c—x) 35
|2:? In X c dx L
a
(d tanz 2(:o§2
Op / C
+— (m—a)|ln 200§§ +1

—(w—c)ln(w—c)—(c—a)ln(c—a)]

Another possibility is that the surfaces are in a state of complete
contact, in which case=c= . Complete contact requires that
the contact pressure cause the inequdlityto be satisfied on the

(42)

entire interface. Thus, this state occurs provided that

the gap opening is everywhere less tlgn Finally, the third case
corresponds to complete contact of the wavy and flat surfaces.

Numerical Results

In Figs. 2—7 are graphs of the dimensionless contact half-length

i;l_ﬂ

Mg Mg

and Discussion

(43)

Contact and Adhesion Half-Lengths (a,c)

1.5

1.0

0.5

0.0

— — — = Complete Contact

00 02 04 086
Applied Pressure (p/Mg)

08

. ) . Fig. 4 Contact half-length (a) and adhesion half-length
In summary, three different types of solu.tlons are possible. Hus applied pressure  (p/Mg) for oo/ Mg=1.0 and g/hy=100
the first casec<w and there exists a regiorc€|x|<r) for

which the gap opening exceetlg. In the second casec€ )

3.5

3.0

2.5

2.0

1.0

(c) ver-

(a) and adhesion half-lengttt) as functions of the nondimen-
sional remotely applied pressupgMg for various values of di-
mensionless adhesive stresg/Mg and peak-to-valley height
g/hg. Discontinuities and hysteresis in the loading and unloading
curves are observed in all of these graphs.

Figures 2—4 all pertain tg/hy=100 and to various values of
the adhesive stress,/Mg. Consider, for example, Fig. 3 for
which oo/Mg=0.5. At zero pressure, adhesion causes the sur-
faces to meet with a finite value of the contact half-lengsh (
~0.35) found by the intersection of a vertical line@t0 with
the solid curve. The corresponding valuesafersus pressure are Fig. 5 Contact half-length  (a) and adhesion half-length  (c) ver-
shown by the dotted line. Note thatis only slightly greater than sus applied pressure (p/Mg) for oy/Mg=0.1 and g/h,=10

1.5

10|

05

Contact and Adhesion Half-Lengths (a,c)

0.8

0.0 N . . .
00 02 04 06
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Fig. 6 Contact half-length (a) and adhesion half-length
sus applied pressure (p/Mg) for oo/Mg=0.5 and g/hy=10
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Fig. 7 Contact half-length (a) and adhesion half-length
sus applied pressure (p/Mg) for oo/Mg=1.0 and g/hy=10

lower portion of the dot-dashed cur¥eThe entire dot-dashed
curve corresponds to=7r, which requires that the opening gap
be everywhere less than the range of the adhesive digesA

further decrease in pressure causes another jump down to the
line until separation finally occurs at a tensile value of the pre

(c) ver-

(c) ver-

S|

1.0 T

W\ 9/h;=100; 5,/Mg=0.1
—_ r W\ — — - - ghg=100; 5,/Mg=0.5
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Fig. 8 Maximum separation
(p/Mg) for various values of

(hy/g) versus applied pressure
oy,/Mg and g/h,

Also the jump into contact occurs with a greater valua ahd the
stable portion of the dot-dashed curves tend to be more pro-
nounced than in Figs. 2—4.

Finally, the dimensionless maximum gap opening displacement
hy /g as a function of dimensionless pressure is shown in Fig. 8
for each of the six cases presented. Note that for the three cases
corresponding to larger initial gagse., g/hy=100), the maxi-
mum separation is only weakly affected by the adhesive stress.
However, for smaller gap@.e.,g/hy=10), the adhesive stress has
a more important effect on the maximum separation. The lower
three curves, each of which correspondgtd,=10 andc=,
begin athy,=h,, i.e., hy /g=0.1. The corresponding curves for
g/hy=100 are not visible due to the vertical scale of the graph.

Conclusions

The plane strain elastic contact of two bodies with a wavy
contact interface has been investigated. The effect of adhesion is
accounted for using the Maugis model. Results are obtained for
the contact region as a function of the dimensionless applied pres-
sure and for various values of the dimensionless adhesive stress
and peak-to-value roughness. The pressure versus contact length
curves are characterized by discontinuities and hysteresis. A finite
contact region exists at zero load with further loading causing one
or more jumps into a complete contact configuration. Unloading is
also characterized by one or more jumps before pull-off occurs
suddenly with a finite contact length and tensile pressure loading.
Adhesion has a greater effect on the maximum surface separation
gfdsmoother surfaces.

sure corresponding to a snap out-of-contact, i.e. a pull-off pres-

sure.

The behavior exhibited in Figs. 2 and 4 are similar to Fig. 3, [1] Sadowski, M. A., 1928,
except for the following differences. For the lower adhesive stress
case(i.e., Fig. 2 which corresponds ta,/Mg=0.1), loading
jumps from the solid linda for which c<) to the dot-dashed
curve (a for which c= 7) before jumping into complete contact.
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. 2 Two-dimensional computations of dispersed multiphase flows involving complex geom-
Seckin Gokaltun etries are presented. The numerical algorithm is based on the front-tracking method in
Computational Science and Enginegring which one set of governing equations is written for the whole computational domain and
Program, different phases are treated as a single fluid with variable material properties. The front-
Informatics Institute, tracking methodology is combined with a newly developed finite volume solver based on
Istanbul Technical University, dual time-stepping, diagonalized alternating direction implicit multigrid method. The
Maslak, Sariyer, Istanbul 34469, Turkey method is first validated for a freely rising drop in a straight channel, and it is then used
e-mail: gokaltunse@itu edu.tr to compute a freely rising drop in various constricted channels. Interaction of two

buoyancy-driven drops in a continuously constricted channel is also presented.
[DOI: 10.1115/1.1795222

1 Introduction treating them as body forces. The front tracking method has been

Dynamics of dispersed bubbles or drops in capillary flows irzuccessfully applied to a variety of dispersed multiphase flow
volving complex geometries has attracted considerable inter8pPlems, but all in relatively simple geometries. A detailed de-
due to its applications in enhanced oil recovery, hazardous waggéiption of the front-tracking method can be found in the review
management, microfluidic devices, and biological systEtas3].  paper by Tryggvason et 44]. The FV method used in the present

The presence of deforming phases makes the multiphase flowrk is based on the concept of the duar pseudd time-
computations a challenging task, and strong interactions betwestapping method and is developed for unsteady computations of
the phases and complex geometries add further complexity to {hgéompressible laminar flows. The dual time-stepping method
problem. Therefore, the progress was rather slow and the compdes subiterations in pseudotime and has a number of advantages,
tations of multiphase flows have been usually restricted to simpl§ch as direct coupling of the continuity and momentum equations
geometrieg4] or to moderately complex geometries in the limity, j,-omoressible flow equations, the elimination of factorization
ing case of creeping flow regim¢5,6]. Since nearly all- error in factored implicit schemes, the elimination of errors due to

multiphase flows of practical importance involve complex geom- L . o . .
etries, it is of obvious interest to extend the modeling angPProXimations made in the implicit operator to improve numeri-

computational techniques to treat multiphase flows in arbitrarif?! efficiency, the elimination of errors due to lagged boundary
complex geometries. conditions at both solid and internal fluid boundaries, and the

The motion of a drop in a constricted capillary tube has beebility to use nonphysical, preconditioned iterative methods for
studied experimentally by Olbricht and Lefl], Olbricht and more efficient convergence of the subiterations as discussed by
Kung [7], and Hemmat and Borhg2], and computationally in Caughey[9]. In order to combine the front-tracking methodology
the creeping flow regime by Tsai and Mik¢s] and Magnd6].  with the FV method, an algorithm is developed for tracking the
Udaykumar et al[3] performed computations of the motion ofgront in curvilinear grids and is found to be very efficient and
droplets in a constricted channel at finite Reynolds numbers Py, o The details of the present FV/FT method can be found in
using a mixed Eulerian-Lagrangian method. Muradoglu and KayaalpL0].

In the present work, a finite-volume/front-trackin&V/FT) Th beai ith a brief d inti fth .
method is used to simulate dynamics of two-dimensional drops € paper begins with a briet description ot the ‘governing
uations and the numerical solution algorithm. The results are

rising due to buoyancy in various constricted channels. The froritd ; : !
tracking (FT) method developed by Unverdi and Tryggvageh then presented and discussed in Section 4. The present FV/FT
is incorporated into a newly developed finite-voluiiie/) algo- Method is first validated for a freely rising drop in a straight chan-
rithm in order to facilitate efficient and accurate simulations ofel, and the results are compared with the results of the finite-
dispersed multiphase flows in arbitrarily complex geometries. Thiference/front-tracking(FD/FT) method implemented in the
front-tracking method is based on writing one set of governingTC2D code of Unverdi and Tryggvas8]. It is then applied to
equations for the whole computational domain and treating diffezsingle drop rising in various constricted channels. Interactions of
ent phases as a single fluid with variable material properties. df}o identical drops are also studied in the continuously con-

this method, the fronts are explicitly tracked in a Lagrangiaguicted channel. Finally, some conclusions are drawn in Section 5.
frame and the effects of surface tension are accounted for by
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Cartesian coordinates, two-dimensional time-dependent Navier- 1

Stokes equations for incompressible flow can be written in con- — 0 O
servative form as pB
aq odf 99 of, dg u r—1 Zau 0 (6)
% v W= =l — P
—t =t —=—+— + — ’ 2
T ax Ty ax ey ApG J S(x—X;)oxnds (1) v B
2av
where — 0 »p
B
0 u ) v wherep is a preconditioning parameter with dimensions of veloc-
q=|pu|, f=|ptpu|, g=| puv |, ity and « is a dimensionless parameter to be determined. In Eqg.
pv puv p+pv? (5), 7 denotes the pseudotime and the dual time-stepping method
is based on marching in pseudotime until a convergence is
0 0 reached for each physical time step. Since the transient solution in
f=| 7 | ) pseudotime is not of interest, we are free to use any nonphysical
v | Qv Xy convergence acceleration technique, such as preconditioning, lo-
Txy Tyy cal time-stepping, and multigrid methods. To facilitate treatment

. . ) ) of complex geometries, E@5) is transformed into a curvilinear
and the viscous stresses are given for a Newtonian fluid as  -qordinates defined by
au Jdu Jdv

Txxzzl’*&: Txy::“(@_’_a_x

d = = 7
, TyyZZM% (3) é f(XyY), 7 77(X:Y) ( )

Using the relatiomg=I'pw where the incomplete identity matrix

In Egs.(1)—(3), u, v, p, p, and u denote the velocity components!* is defined as

in x andy directions, the pressure, the density, and the dynamic

viscosity, respectively. The third term on the right-hand side of 0 0 O

Eq. (1) represents the body force due to buoyancy v@tlbeing =0 1 0 ®)
the gravitational acceleration anip=p,—p, wherep, is the

density of the ambient fluid. The last term represents the effects of 0 01

the surface tension andl x;, o, x, n andds denote the Dirac ] )

delta function, the location of the front, the surface tension coednd the transformation given by E@), the transformed equa-
ficient, the curvature, the outward unit normal vector on the intefions in the curvilinear coordinates can be written as

face, and the arc length along the interface, respectively.

The fluids in and out of the drop are assumed to be incompress- ., W __ ,dhpw JhF ohG _JhF, ohG,
ible, and the effects of heat transfer are neglected. Therefore, the or ot € an € an
viscosity and the density remain constant in each fluid particle, 9)
ie.,

+hf,

whereh=x.,y,—X,y; is the determinant of the Jacobian of the
transformation andF, hG, hF,, andhG, are the transformed
Dp Du . A .
a=0, Dt =0 (4) convective and viscous fluxes given by

hF=y,f—x,0, hF,=y,f,— ,
The flow regime of bubbly flows is characterized by four nondi- Yol =Xs8 vEY T X (10)
mensional parameters as discussed by Clift efldl]. These are

the Morton numbeM = ua(p,— py) G/ p20°, the Edvos number

Eo=(p,— pp)d5G/ o, the density ratioy=py/p,, and the vis- The vectorf, represents the last two terms on the right-hand side
cosity ratiod= up/ 1, , Whered, is the equivalent drop diameter of Eq. (1), namely, the sum of the buoyancy forces and the surface
and the subscripts andb refer to the ambient and the drop fluids tension. Following Caughef@], subiterated implicit scheme to
respectively. The Reynolds number is defined assR¥d./u,, solve Eq.(9) can be written as

whereV is the rise velocity.

hG=—yf+x.0, hG,=—yf,+x.0,

wPH—wP e 3(phw)P 1 —4(phw)"+ (phw)" 1

-1
Ih At 2At
3 Numerical Procedure JhF, dhG, P [shE ohGlP+1
As can be seen in Eql), the continuity equation is decoupled = [ E + a7 + fb} - {ﬁ—§+ Fr) —(1-90)
from the momentum equations because it does not have any time
derivative term in incompressible flows. To circumvent this diffi- oh(F=F,) dh(G—-G,) n
culty and to be able to use time-marching algorithms, pseudotime X E + P hf, (11)

derivative terms augmented with a preconditioning matrix are

added to Eq(1) yielding where (P denotes thepth level of the subiteration and [ Yde-
notes thenth level of the physical time step. The iterations in the

_1ﬂ+ &_q+ 0_f+ g _ dfy N I G physical and pseudotimes are called the outer and inner iterations,

ar | at  Iax dy  ax  ay (Po=p) respectively. The parametéris the implicitness factor witt#=1,
corresponding to a fully implicit method in pseudotime. As can be
seen in Eq(11), the viscous and source terms are treated implic-
itly in the physical time and explicitly in the pseudotime. The
correctionAw=wP**—wP is computed in each subiteration ac-
with cording to

r

+f S(X—X;)oknds (5)
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rt 3p 3(phw)P—4(phw)"+ (phw)" 1 terms similar to that of Caughdy] are added explicitly to the
h(— Il) AwP=— Il{ SAt } right-hand side of Eq(18) to prevent the odd-even decoupling.
A front-tracking method similar to that of Unverdi and Tryg-
ohF, dhG, p JhE gvason[8] is developed for treatment of the different phases and
{ oE + 3 + b} - [(9_5 the surface tension. In this method, the interface is divided into
K small line segments called front elements, and the end points of

JhGlp+1 oh(F—F,) each element are tracked explicitly in a Lagrangian frame. The
+ s —(1- 0){ 9E details of the numerical method can be found in Muradoglu and
K Kayaalp[10]. The complete solution procedure can be summa-
dh(G—-G,) n rized as follows:
+ “am hfy (12) In advancing solutions from physical time leve(t,=n-At)

to leveln+1, the locations of front points at the new time level
As can be seen in Eq12), when a steady state is reached in tha+1 are first predicted using an explicit Euler method, i.e.,
pseudotime, i.e.AwP=0, we have (§—()""!. Therefore the N1 Ny ApYT

method is equivalent to the second-order implicit backward Euler Xi =X+ AtV (21)
method in the physical time. To solve E(L2), the convective whereX; andV; denote the position of front points and the flow

fluxes are linearized in pseudotime according to velocity interpolated from the neighboring fixed grid points onto
JhEPFL (GhE\P  AWP front point X, respectively. Then the material properties and sur-
(_) = (_) A——+0O(AT?) face tension are evaluated using the predicted front poskion
29 9 9 i.e.
(13) ’
¢?h_G D+1_ c?h_G D+B(9AWP+O(A 2) pn+1:p(x;1+1); Mn+1:M(XP+1); fg+1:fb(xP+1)
an - an an T (22)
where the Jacobian matrices are defined as The velocity and pressure fields at new physical time level (
+1) are then computed by solving the flow equations by the FV
dF\P JG\P method for a single physical time step, and finally the positions of
A=lowl + B=low (14) " the front points are corrected as

From Eqgs.(12)—(14), the linearized equations can be written as

| 0Ar(;& J .éa)

where the residual vector is defined as

At
XPTE= X+ o (Vi VT (23)
AwWP=R (15)

After this step, the material properties and the body forces are also
reevaluated using the corrected front position. Cubic B-splines are
used for all the interpolations from the fixed curvilinear grid onto

A7 3(phW)p4(phw)”+(phw)“1} front poin'gs apd ]‘rom the front po.ints onto fjxed curviﬁnear griq,
R=-D"Y1— and for distributing surface tension onto fixed curvilinear grid.
ph 24t The overall method is second-order accurate both in time and
ADI [ [oh(F—F,) dh(G—G,) P space. It is emphasized that the method is implicit in physical time
- [6[ + —hfy| +(1-0) and the physical time stefit is solely determined by accuracy
h g an considerations.
dh(F—F,) oh(G—G,) n An auxiliary regular Cartesian grid is utilized for tracking the
x[ + hfb} ] (16) positions of the front points in the curvilinear grid and is found to
23 an be very robust and efficient. Details of the tracking algorithm can

and also be found in Muradoglu and Kayadl0]. The auxiliary regu-
lar Cartesian grid is also used to determine the material properties
A=D-TA: B=D-TIB: D=I+ 3A_7'|1 17) using Fhe procedure_ developeq by Unver(_ji and_ Trygg_va[ﬁd),n
' ' 2At which involves solution of a Poisson equation. Bilinear interpola-
tions are used to interpolate the material properties from the regu-

Following Caughey9), Eq. (15 is factorized as lar grid onto the curvilinear grid. The front marker points are
OAT~ O OAT~ O reflected back into the computational domain in the case that the
I+ TAﬁ_g I+ TB; AwP=R (18) points cross the solid boundary due to numerical errors. The sur-

face tension is distributed only onto the neighboring grid points
which can be solved efficiently in two steps by using a blocwhen the front is close to the solid boundary and care is taken to
tridiagonal solver. However, Eq18) can be solved more effi- make sure that the distributed forces are equivalent to the surface
ciently using the diagonalization procedure. The diagonalizationtisnsion. However, no special treatment is done when two fronts
possible because the inviscid part of the preconditioned equati@mne close to each other in the computational domain.
are hyperbolic, so there exist modal matri€gsandQg such that We note that, in addition to the preconditioning method, a mul-
g~ = tigrid method similar to that of Caughdy®] and a local time-
AA=Q; AQa; Ag=Q; BQg (19)  stepping method are used to further accelerate convergence rate in
r&§_eudotime stepping. The details of the FV method can be found

and the diagonal matrices having real eigenvalues. The diogo B 'Muradoglu and Kayaalp10].

ized algorithm is then given by
4 Results and Discussion

The method is first validated for the test case of a buoyancy-
1 ] ) ) ~driven drop rising in a straight channel, and the results obtained
whereAVP=Qg "AwP. Equation(20) is solved in two steps using with the present method and with the well-tested FD/FT method
a scalar tridiagonal solver in each step. Note that the spatial dé-Unverdi and Tryggvasof8] implemented in the FTC2D code
rivatives are approximated by a cell-centered finite volumare compared. Then the method is applied to more challenging test
method, which is equivalent to second-order central differences oases of the buoyancy-driven drops in various constricted chan-
a regular Cartesian grid and fourth-order numerical dissipatiorls. Although the method is general and can handle many drop

OAT d| 1 0AT J o -l
I+TAA(9_§ Q:& Qs |+TAB; AV =Q; R (20)
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Fig. 1 Velocity vectors around a light drop rising in a straight channel for Eo “tvos and Morton numbers Eo=1, M
=10"* (top plots ), Eo=4, M=4X10"* (middle plots ) and Eo=16, M=16X10"* (bottom plots ) at t*=9.487. Present
results (left plots ) are compared with the FTC2D results  (right plot ). Grid: 96 X384, dt* =0.0316.

interactions, here only a single drop and two drop cases are ceobiterations is found to produce essentially the same results; the
sidered. The computational results are expressed in terms of npmrs residuals are reduced by four orders of magnitude in each

dimensional quantities. For this purpose, the length, time, afiher iteration in pseudotime for all the simulations presented in
velocity scales are defined as=d,, T=\de/G and V, thjs paper.

=uo/pode, respectively, and the nondimensional quantities are
denoted b¥. For example, th& andy coordinates are nondimen- 4.1 Freely Rising Drop in a Straight Channel. The
sionalized asx*=x/L and y*=y/L, respectively. Although a method is first applied to a two-dimensional freely rising drop in a
three orders-of-magnitude reduction in thas residuals of the straight channel. The purpose of this test case is to validate the
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Fig. 2 The vertical positions  (left plot ) and the rise velocities (right plot ) of the drop centroid taken from the simula-
tions of the light drop rising in a straight channel. Computations are performed for Eo “tva's numbers 1, 4, and 16. The
solid lines denote the FTC2D results and the symbols are the present calculations. Grid: 96 X384, dt*=0.0316.

method against the FD/FT method implemented in FTC2D codeagnitude in both methods. In summary the present results com-
of Unverdi and Tryggvasof8] that can only use regular Cartesiarpare well with the results of the well-tested FD/FT method of
grids. The computational domain isd2<8d,., whered, is the Unverdi and Tryggvasofi8] demonstrating the accuracy of the
initial drop diameter and is resolved by a*@884 uniform regular present algorithm.

Cartesian grid. No-slip boundary conditions are applied on the e ) ) .

side walls(i.e., x=0 andx=2d,), while periodic boundary con- 42 Freely Rising Drops in Various Constricted Channels.
ditions are used in the vertical direction. The drop is initially aA\ter validating the method for the case of a freely rising drop in

infini ; ; *y _ a straight channel, we now consider buoyancy-driven drops rising
infinitely Ion_g_ circular cylinder centered ak{ ,y;)=(1.0,2.0) in various constricted channels to show the ability of the method
and starts rising from the rest due to buoyancy forces at time

—0. Freelv risina d tak ) h d di t.f r treating dispersed multiphase flows in complex geometries
— 0. FTeely r1sing drops take various shapes depending essentigiifoe the phases strongly interact with the solid boundaries. The
on the Edvos number.

To sh_pw__this effect, computation.s are performed for4three di}gséltgsytacnisyeiﬁogc:ggztﬁcstgl(?lgﬁggﬁellﬁ g){qlgn%rﬁgilnderl%g :,Z;:jneg{ due
ferent Edvos a_nfl Morton numbersi.e., onlv M=10" EO gxtends to 1@, in they direction, and is constricted sinusoidally
=4, M=4Xx10"" andEo=16, M=16x10""), while the Vis- i the middle by 75% as shown in Figl¥ In Fig. 4@a), a portion
cosity ratio is kept constant at=1. The corresponding density of 5 coarse grid containing 32192 grid cells is plotted in the
ratios a_rey=0.975, 0.9, and 0.6, respe_ctlvely- The physical imGicinity of the constriction to show the overall structure of the
step is fixed atit* = 0.0316, and the residuals are reduced by foody-fitted curvilinear grid used in the simulations. The governing
orders of magnitude in each inner iteration in pseudotime. Thgndimensional numbers are setfio=8, M=8x 104, y=0.8,
drop shapes and the velocity vector field in the vicinity of the drogng ;=1. No-slip boundary conditions are applied on the solid
are plotted in Fig. 1 at tim&* =9.487 for the cases &o=1 (top
plots), Eo=4 (middle plotg, and Eo=16 (bottom plot$. The
results obtained with the FTC2D code are also shown in the righ* ¢ 5

plots of Fig. 1. It can be seen in this figure that the present resul__ -— ETcth
are in good agreement with the FTC2D results demonstrating tt3 0.4} - - fresen

accuracy of the present method. It is also observed that drop d&
formation increases as the t06s number increases as expected.g
To better quantify the accuracy of the present method the verticg 0.2}
position of the drop centroid and the drop rise velocity compute@_
with the present method as well as with the FTC2D code arg °'f
plotted as a function of time in Fig. 2. As can be seen in thisce ¢
figure, the present results are overall in very good agreement wi g
the results of the FTC2D code except for the small discrepancie§ -0.1r
observed between the two results féo=16, which is partly ©
attributed to the time-stepping error in the present results. Noi%
that the time step used in the present method is about 20 tim € -0.3¢
larger than that used in the FTC2D code for the caseEof ¢
=16. Although the flow is incompressible, drop volurteea  -04f
changes due to numerical errors and the percentage change in  _g 5 . . . 2
drop volume is a good indicator for the accuracy of the methoc 0 3.16 6.32 Ti 949 12.65 158
Figure 3 shows the percentage change of the drop area obtaineu ime ()

with the present method and the FTC2D code for all three sets,_%_ 3 Percentage change in the drop area for Eo “tv's num-
dimensionless numbers. It can be observed in this figure that,jgs 1, 4, and 16 in the computations of the freely rising drop in
contrast with the FTC2D results, the drop volume reduces in tingge straight channel. Dashed curves denote the present results,

as the drop rises in the present method for this test case, but i@ the solid curves are the FTC2D results. Grid: 96 X384, dt*
overall percentage change in the drop volume is comparable=10.0316.

-0.2F

cel
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Fig. 4 Freely rising drop in a sinusoidally constricted channel. (a) A portion of the body-fitted

curvilinear coarse grid containing 32 X192 grid cells. (b) Snapshots taken at time frames t*=0,
9.49, 15.81, 22.14, 28.46, 31.62, 37.95, and 44.27. Time progresses from bottom to top. (c) The
vertical position (top plot ) and the rise velocity (bottom plot ) of the drop centroid computed with
the physical time steps dt*=0.3162 (dotted line ), dt*=0.1581 (dashed line ), and dt*=0.0791
(solid line ). Eo=2, M=8X10"*%, y=0.8, {=1. Grid: 128 X768.

walls, and periodic boundary conditions are employed in the vea-128<768 grid. In order to better quantify the drop motion, the
tical direction. The drop is initially centered atx)(,yy) vertical position and the rise velocity of the drop centroid are
=(1.0,2.0) and starts rising from the rest due to buoyancy forcgdotted in Fig. 4c). Computations are repeated for three different
The snapshots taken at the time franties 0, 9.49, 15.81, 22.14, physical time step§.e.,dt* =0.3162, 0.1581, and 0.079&n the
28.46, 31.62, 37.95, and 44.27 are plotted in Fily) 40 show the same 12&768 grid to demonstrate the time-stepping error con-
overall behavior of the drop. The computations are performed orrgence. The small differences between the results computed
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Fig. 5 Grid convergence analysis for the freely rising drop in the straight channel. The vertical position (left plot )

and the rise velocity (right plot ) of the drop centroid as a function of time computed on the body-fitted curvilinear
grids containing 48 X288 (solid line ), 96X576 (dotted line ) and 128 X768 (dashed line ) grid cells in the time interval
*=25 and t*=35. dt*=0.1581, Eo=4.
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Fig. 6 Effects of grid refinement of the front structure. Before the drop enters (left plot, time t*=12.65) and after

it passes (right plot, time t*=22.14) the constriction computed on 48 X288 (solid line ) and 128 X768 (dashed line )
grids. dt*=0.1581, Eo=4. The coarse grid results in wiggles on the front while the front remains smooth in the
case of the fine grid.

with the two smallest physical time steps indicate that the timetriction (i.e., before about* = 15), but then it is strongly affected
stepping error convergence is achieved dititi=0.1581 is suffi- by the presence of the constriction as the drop passes through the
cient for this test problem. Figuregb} and 4c) together show constriction. In Fig. 5, the vertical position and the rise velocity of
that the drop motion initially resembles that of the straighthe drop centroid computed on %888, 96<576, and 12&768
channel case before the drop starts feeling the effects of the cgnids are plotted to show the grid convergence. The physical time
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Fig. 7 Freely rising drop in a continuously constricted channel. (a) A portion of the body-fitted
curvilinear coarse grid containing 32 X192 grid cells. (b) Snapshots taken at time frames  t*
=0, 10.33, 20.66, 30.98, 41.31, and 51.64. Time progresses from bottom to top. (¢) The vertical
position (top plot ) and the rise velocity (bottom plot ) of the drop centroid computed with the
physical time step dt*=0.1291 on a 128 X768 grid. Eo=18, M=8X10"%, y=0.8, {=1.
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Fig. 8 Buoyancy-driven two-drop interaction in the continuously constricted channel. Snapshots taken at *=0, 35.78,

53.67, 71.55, 89.44, 107.33, 125.22, 143.11, 161.00, and 178.89. Eo=2, M=8X10"% ¥=0.8 and ¢=1. Grid: 96 X576,
dt*=0.2236.

step is kept constant att* =0.1581, and the results are showriThe channel is /3 wide, and extends todj in they direction,
only in the time intervalt* =25 andt* =35, during which the and is constricted along theaxis by sinusoidal wavy walls. The
drop passes through the constriction. The decreasing differeng@8striction ratio is 75% as in the singly constricted channel case.
between results obtained on the successively finer grids indicdfe€ initial and the boundary conditions are the same as the singly
that the grid convergence is achieved and the<SB6 grid is constricted channel case, and the. drop is. |n|t|aI_Iy centered at
sufficient for this test case. Figure 6 shows the fronts computed bf ;Y ) =(0.6667,1.6). The governing nondimensional numbers
the 48x288 and 12&768 grids just before the drop enters andire Eo=18, M=8x10"4, y=0.8, and/=1. Computations are
after it passes the constriction in order to demonstrate the effeptyformed on a 98576 grid with the constant physical time step
of the grid refinement on the front structure. As can be seen in thig* =0.1291. A portion of a coarser grid containing>3292 grid
figure, the coarse grid results in wiggles on the front while theells is plotted in Fig. #). Note that a similar geometry was used
front remains very smooth in the case of the fine grid. Note thay Hemmat and Borhaf2] in their experimental study of the
results obtained on the 8&76 grid is not plotted because it isbuoyancy-driven drops and bubbles. The snapshots taken at the
almost indistinguishable from the 12§68 grid case. time framest* =0.0, 10.33, 20.66, 30.98, 41.31, and 51.64 are
The next test case concerns a buoyancy-driven drop freely rigotted in Fig. Tb) to show the overall evolution of the drop
ing in a continuously constricted channel depicted in Fidn).7 motion. The strong interactions between the drop and the solid
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Fig. 9 Buoyancy-driven two-drop interaction in the continuously constricted channel. The horizontal (left plot ) and

the vertical (right plot ) positions of the (initially ) left drop centroid (solid line ), the (initially ) right drop (dashed line ),
and the center of the mass of the drop system (dotted line ). Eo=2, M=8X10"*, y=0.8, {=1. Grid: 96 X576,
dt*=0.2236.
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Fig. 10 Buoyancy-driven two-drop interaction in the continuously constricted channel. The horizontal (left plot ) and

the vertical (right plot ) velocities of the (initially ) left drop centroid (solid line ), the (initially ) right drop (dashed line ),

and the center of the mass of the drop system (dotted line ). Eo=2, M=8X10"%, y=0.8, {=1. Grid: 96 X576,
dt*=0.2236.

walls can be clearly seen in this figure. It is emphasized that, Figs. 9 and 10 indicates that the main features of the two-drop
spite of large deformations, the front remains smooth, whidhteractions are well captured by the present method.
might be considered as a good indication for the accuracy of the

simulation. The vertical position and the rise velocity of the drop Conclusions
centroid are plotted in Fig.(@). It can be seen in this figure that Th tati f b t d . tricted ch |
the rise velocity becomes periodic after a transient pefia, € computations ol buoyant drops In constricted channels
after about* = 20). have been reported in this paper. T_he FVIFT _method is first vali-

Finally, the method is used to compute two identical dro gatedr;or trr;re] C?t?e ?faﬁu%?#%_dnvf: df[oﬁ '2 astt)rtali%htdcgarmel
freely rising in the continuously constricted channel. In this cas yltlz_? ?ad FQI]D/F'T' es;Jh Sd impl e C? dp_u aF'Ic')CZIS) gﬂ]eeTh y the
the drop diameters are relatively small compared to the chanr’{\éqthegﬁ been metho fml}p emei_ngt "E) - dCr M € i
width, and the ratio of the initial drop diameter to the maximu € to' ¢ 35 hee sluccgss ully applied to buoya t ((j)_ps Ih va IOL|JS
channel width isde/dy,=0.25. The corresponding nondimen-CONSHICEA Channels. >ome error convergence studies have aiso
sional numbers ar€o=2, M=8x10"%, y=0.8, and¢=1. The been performed. It is found that the present method is a viable
same 9&576 grid is ;mioloy_ed as us‘edyiw the singl_e-drop cast980| to model dispersed multiphase flows in arbitrarily complex

. ) . eometries.

and the physical time step is takendi$ =0.2236. The drops are
initially located at & ,y§)z_(1.0,4.8) and X% ,y%)=(3.0,4.8). References
The snapShOts taken at the time frarﬁiaso, 35.78, 53.67, 71.55, _[1] Olbricht, W. L., and Leal, L. G., 1983, “The Creeping Motion of Immiscible
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Previous studies assumed that a crack is either impermeable or permeable, which are
actually two limiting cases of a dielectric crack. This paper considers the electroelastic
problem of a three-dimensional transversely isotropic piezoelectric material with a penny-
Kang Yong Lee‘ s_haped dielectric crack perpendicular to the p_oling axis. Using elt_ectri_c boundary condi-

tions controlled by the boundaries of an opening crack, the electric displacements at the
crack surfaces are determined. The Hankel transform technique is employed to reduce the
considered problem to dual integral equations. By solving resulting equations, the results
are presented for the case of remote uniform loading, and explicit expressions for the
electroelastic field at any point in the entire piezoelectric body are given in terms of
elementary functions. Moreover, the distribution of asymptotic field around the crack front
and field intensity factors are determined. Numerical results for a cracked PZT-5H ce-
ramic are evaluated to examine the influence of the dielectric permittivity of the crack
interior on the field intensity factors, indicating that the electric boundary conditions at
the crack surfaces play an important role in determining electroelastic field induced by a
crack, and that the results are overestimated for an impermeable crack, and underesti-
mated for a permeable crack[DOI: 10.1115/1.1795219

School of Mechanical Engineering,
Yonsei University,

Seoul 120-749, South Korea
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1 Introduction slender elliptical hole by Dunf5], Sosa and Khutoryansky’],
. and Zhang et al[9] indicates that the assumption of the imper-

h tuat ¢ d tc. due to the int freable crack may give rise to significant errors in determining the
such as actualors, Sensors, transaucers, etc., dué 1o e INtNERleygelastic field. In contrast, for permeable crack having no

coupling feature between elastic and electric behaibksHow- hickness; since the electric boundary conditions are assumed to
ever, a main disadvantage is that they are very susceptibleyQ ffilled at the boundaries of amdeformectrack in solving
fracture because of their britleness. Owing to various causggectroelastic fields, it ignores the contribution of the dielectric of
cracks or flaws are inevitably present in piezoelectric materialfe opening crack interior under applied electromechanical load-
which gives rise to electroelastic field concentration under appliggly on the electroelastic field. Therefore, in order to characterize
electromechanical loading, rising high enough to cause the cr. dependence of the crack opening displacerf@@D) and the
advance, and finally leads to serious degradation of the perfefectric displacements at the crack surfaces and inside the opening
mance of piezoelectric materials. To understand the failure mechgack, it is natural to assume that electric field inside the opening
nism of piezoelectric materials and maintain the stability afrack obeys
cracked piezoelectric structures operating in an environment of
combined electromechanical loading, the analysis of elastic and (c)_ A¢

: S 1 ; E)Y=- 1)
electric behaviors is prerequisite. So far, many efforts in theory z Au,

have been made in this fielé.g.,[1-13], among othefs tity with th odesianates th insid
In determining electroelastic field induced by cracks embedd ere a quantity wi € superscrpaesignates the one inside
e opening crack, and¢ and Au, are the voltage and COD

in piezoelectric materials, cracks of two types prevail, which us h K vely. C . the electric displ

ally are referred to as impermeable and permeable cracks. In oth&ress the crac ! re:spectwe Y- _onsequent y, the electric displace-
. o e D© inside the opening crack obeys

words, for electric boundary conditions at the crack surfaces, it fient vecto P 9 y

assumed that the electric displacements at the crack surfaces and D)= g(OF(© )

inside the crack vanishes for the former cB3gl], and that elec- z z

tric displacement and electric potential are continuous across e

crack for latter casg8]. However, a real crack is a dielectric with A

permittivity £(9, (9=g,, £,=8.85x10"*>F/m corresponding D= —¢(© ¢ A3)

to a crack full of air or vacuum. An impermeable crack simply Au,

imposes the requirement of® =0, and further exact analysis of aywhich was first proposed by Hao and SHér], who used the
above electric boundary condition together with solving a
*To whom correspondence should be addressed. Riemann-Hilbert boundary value problem, and gave an electro-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF : f . P . .
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- elastic anaIySIS of a crack in an infinite plezoelectrlc plane.

CHANICS. Manuscript received by the Applied Mechanics Division, September 3, It is er_nphaSized_thatS) is fquiIIe_d for a crack posterior to
2003; final revision, March 17, 2004. Associate Editor: H. Gao. Discussion on tigeformation, not prior to deformation, @u, denotes the final
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Joumal(ﬁ%macement Jump across the crack under combined electroelastic

Applied Mechanics, Department of Mechanical and Environmental Engineerin : s : ;
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will g)admg' In fact, finite element analysis given by McMeekja§]

accepted until four months after final publication of the paper itself in the ASMQEem()nStrate.CI that it is more suitable and reasonable to consider
JOURNAL OF APPLIED MECHANICS. the boundaries of a deformed crack, rather than an undeformed
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crack. Moreover, the validity of3) is observed from recent ex- U,

periments by Schneider et &l.6], who found that there is a dis- agf,:clzur,ﬁcllT+c13uzvz+ €3¢, (4b)
tinct drop of electric potential between the two surfaces of an

opening crack, implying that the existence of electric field in the

interior of an opening crack is full of dielectric such as air or —c te Uy te te (40)
vacuum. As a result, the conditii3) is adopted as an electric 02z~ Caglr ;T Cag ™ T Caallzz 3302
boundary condition, reflecting a geometrically nonlinear relation
between electric displacement and COD, i.e., the electric displace-
P p Urz:C44(uz,r+ur,z)+els¢,r (4d)

ment is controlled by unknown COD. Strictly speaking, the above
electric boundary condition is not an exact electric boundary con-
dition, since exact electric boundary conditions indicate that elec- Dr=es(Uy tU ) —end, (4e)
tric displacements and electric potentigds field9 are continuous

along the normal and tangential directions of the interface be-

tween a piezoelectric matrix and an inhomogeneity, respectively D,=e3
[17]. However, for an opening crack, due to the COD small com-

ared to the crack length or radius. As a simple modelling, in wha . . . .
?ollows the electric bo%ndary conditiof®) is a%opted. 9 Wﬁ1ere Cij, &ij, ande; are the elastic stiffnesses, the dielectric

For the two-dimensional case, such a treatment has been uggmgﬁévgggémz g;egggleg:&zgc;nnséi?ésé, éﬁg?eggvg:)e/' equilibrium
in dealing with certain crack problems, such as Hao and Sh y ges, q

[14], Hao[18], Liu et al.[19], Xu and RajapaksE20], Wang and gauations of stresses and electric displacements are, respectively,

Jiang [21], and Wang and Mai[22]. However, for three-
dimensional crack problems in piezoelectric materials, similar
treatment is lacking, although some field intensity factors have
been determined for a penny-shaped crack. Such works can be
found in[23-33, which are mainly concentrated on determining o

field intensity factors for either permeable or impermeable cracks Orppt 075,F =0 (50)
via various approaches. For example, using the results of electro- ' r

elastic behavior in an infinite piezoelectric medium containing a

spheroidal piezoelectric inclusion and letting a spheroidal piezo- r

electric inclusion reduce to a penny-shaped crack, Kogan et al. D r+Dgt TZO (50)
[25] derived the results of field intensity factors for a permeable

penny-shaped crack. A similar problem has also been studied
der the electrically impermeable condition by Jiang and [2%h,
who found that the electric displacement intensity factor is ind
pendent of applied mechanical loading, which is completely o
posite to that for a permeable cragR5]. This means that the
dielectric of the crack interiofor equivalently the electric bound-
ary conditions at the crack surfaggslays a significant role in C1a
determining the electroelastic field in a piezoelectric material con-
taining cracks. Nevertheless, there are few papers dealing with a =0 (62)
dielectric crack in a three-dimensional piezoelectric space. There-
fore, it is very necessary to investigate the effects of the dielectric

Ur
Up T +933Uz,z_833¢,z (4f)

O~ 0Ogg

—"=0 (52)

Ot Ozt

lt%’b'bstituting the constitutive equations into the above equilibrium
equations yields the basic governing equations for elastic dis-
E)]acementsur andu,, and electric potentiag as follows:

Urr  Ur
Ur rr + T_ r_2 +C44Ur,zz+(C13+ C44)uz,rz+(331+ elS) d),rz

of the crack interior on failure behavior of three-dimensional pi-c44( Uy o+ il +Caaly 7+ (Cizt+Can)| Uy o+ trz +e5 &

ezoelectric materials. ’ r ' ’ r ’
This paper is concerned with the electroelastic behavior analy-

sis of a transversely isotropic piezoelectric material with a penny- + | +egap ,,=0 (6o)

shaped dielectric crack. The emphasis is focused on the influence r '

of the dielectric permittivity of the crack interior on the electro-
elastic field, or the influence of the electric boundary condit®)n Us
on the electroelastic field. The electric displacements at the cracks| Uz + T
surfaces are determined by applied electromechanical loading as

well as the dielectric permittivity of the crack interior. By means o
of the Hankel transform technique, a complete solution for elec- + T
troelastic behavior in the entire piezoelectric space is given in
terms of elementary functions, and the corresponding field inten-

sity factors are determined. The effects of the dielectric inside tlegéré':v :ﬁtafgit(gvs esrgztrzllcaililcitlfrnttcl)otrllq ésggﬁ#gssai?sog ; Sﬁ]%wg}f‘héged

crack on the fiend intensity factors are presented graphically 048}, o ger t obtain a desired electroelastic field of a piezoelectric
cracked PZT-5H ceramic. body weakened by a penny-shaped crack, appropriate boundary
conditions must be furnished. First of all, from the above analysis
the electric boundary condition at the surfaces of a dielectric crack
2 Statement of the Problem is

ur,Z
+e33U; 7 €31+ €15)| Uy 1+ T)*Sn( Lo

_833¢,zz=0 (6c)

Consider a class of axisymmetric problems of an infinite trans- © ©
versely isotropic piezoelectric body with the poling axis as zhe Dy Au,(r,00=-¢""A¢(r,0), r<a (7
axis and the isotropic plane as tlk¢ plane. The constitutive
equations with the framework of the theory of linear piezoeledt is worth noting that the above electric boundary condition at the
tricity take the form crack surface is equivalent td3) for an opening crack
[Au,(r,0)>0]. However, in case ofAu,(r,0)=0, (3) becomes
(4a) meaningless. As a matter of fact, in this case two crack surfaces

ur
=CyU; +Cyp— +CyaU, ,+ € . \ Sub
e e keep contact with each other, and the electric potential jump
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* * 4 * * Fj(r.2)=*f:éAj(é)e’”fzJo(ﬂ)d% 9)

Z for z=0, whereA,(£)’s are unknown functions to be determined
through appropriate electric and elastic boundary conditions,
'yjz (j=1,2,3) are three distinct roots of the following characteris-

/— tic equation:
i

whereay, by, ¢, andd, are given in the Appendix, ang is

X chosen such that Rgj is larger than zero to guarantee that the
integral in (9) vanishes ag approaches infinity. Then a formal
solution can be obtained in terms Af(¢) as follows:

ao’}/6+ bo’y4+C0’)/2+d0:0 (10)

o]

Go

* + + * * ur(r,z)—é :Aj(§)e‘71§z\]1(§r)d§+ Byr (11a)

Fig. 1 Geometry of a piezoelectric material with a penny-
shaped crack along with the corresponding coordinates

3 oo
uz<r12>=21 737] fo Aj(£)e”M#3g(ér)dé+Bgz (11b)
=

across the crack should vanish. Therefore, it is more convenient to 3 »
rewrite (3) in the above form, which pertains to an opening crack ¢>(r,z)=2 74 ij Aj(§)e i Jo(ér)dé+ B,z (110)
as well as a closed crack. Previous assumptions on an electrically =1 0
permeable crack are that electric potentials and electric displa
ments are continuous across an undeformed crack, rather th
deformed crack. In fact, once a crack opens, the electric potential
jumps across the crack should exist. Therefore, electric boundary Ci Cyat Cagt Caamsi + €157a;
condition (7) is more suitable than the electrically impermeable = ! '
and permeable assumptions, and moreover, the latter two cases G (Caat Caa) 73 T (B30T €15) 74 C33773j + €337
two limiting cases of the assumptidi). Very recently, Ou and €31+ €15+ €157 — £1174]
Chen[34] also gave a discussion of validity of the conditigf. = = 7J-2
For a penny-shaped crack embedded in an infinite piezoelectric €33773) ~ £33774j

body subjected to a uniform mechanical ter?s@and constant Moreover, from the constitutive equations, expressions for the
electric fieldE, at infinity along the poling axis, remote mechani-stresses and electric displacements in termA; 6f) are also ob-
cal and electric boundary conditions can be written, respectivetginable. For example, we have

fitiereB, (k=1,3,4) are unknown constants, ang, and 7, are
tants that can be determined by the following relations:

(12)

below . )
T G D=2 BOjL EA (£ lg( ) dé— (cyy—caglr
o (r,2)—0, r—w (8b) xj}s‘,l :Aj(g)e*nﬂJl(gr)d§+(cll+c12)|31+c1383
0,(r,2)—0, z—o (8c) +e3B, (13
E(r.z2)—Eg, z—w (8d)

3 oo
ozz(r.z)=*21 Buj Jo EAj(£)e ¥ do(ér)dE+2013B +CaBs
=

In general, it is easy to measure and control the electric field
strength, rather than the electric displacement, in experiment.
Hence, for electric boundary conditiong&g is supposed to be 3 .
prescribed. Of course, the case when electric displacement is r7)=— ) A(E)e "3 (£r)d 13c
given at infinity can be solved in a similar manner, which is omit- ore(r:2) ,21 g 0 EA(E) (gndé (130)
ted here.

+e338, (130)

3 o0
Dr(r,2)=—zl Ba; L EA,-(E)e”ingl(&r)df (13d)
3 Solution of the Problem :

In this section, we consider a penny-shaped crack lying at a > * ez
plane perpendicular to the poling direction. Obviously, due to th&z(".2)= *Zl Baj | EA(§)e ¥ Io(€r)dE+2e3B1 + €338
symmetry it is sufficient to consider the upper half piezoelectric = 0

body. The electroelastic field in the lower part can be directly —£33B, (13e)
given by symmetry from the counterpart in the upper part. Hence
in what follows we confine our attention to the upper half-spac&heregy; (k=0,1, ... ,4j=1,2,3) are given in the Appendix.

In order to obtain a desired solution, it is expedient to employ As a straightforward check, substitution @f3) into the equi-
the Hankel transform technique. We introduce three generalizifolium equations reveals that these equations are satisfied identi-
harmonic functions by Hankel transform of the zeroth order  cally. The remaining task is how to get unknown and A;(¢)
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through appropriate electric and elastic boundary conditions and 3 o
further determine electroelastic field for the crack problem posed E 4 y‘f A(£)Jo(ér)dé=0, r=a (180)
by associated mixed boundary conditions. j=1 0
Consideration of symmetry of the problem allows us to con-
clude that the shear stress at the crack plane vanishes, i.e.,

0,(r,0=0, O<r<w (14a) BecauseD(® is assumed to be an unknown constant,

Since attention is restricted to the upper half-space, the following
condition:

3

u(r,00=0, ¢(r,00=0, r=a (14b) 21[D“)nsj-+e(°)n4j]71Aj(§>=0 (19)
=

must be supplemented owing to symmetry of the problem.

Besides, at the crack surfaces, electromechanical boundary

conditions follows from (17a) together with(18). On the other hand, utilizing
o, {r,0=0, r<a (14c) the boundary condition€l4a) yields
D,(r,00=D9, r<a (14d)
3
should be satisfied, whe®(® is a constant to be determined _
through(7). 121 B2iAi(§)=0 (20)
First, from the remote electromechanical loading expressed by

(8), we can get a system of linear equations that can be used to

determine uniquel k=1,3,4). The final result is ) . .
ine uniquelBy ( ) ! it Now we arrive at two equationg20) and (19) for A;(¢) (]

(Cag831— C19839) Eg — C130G =1,2,3), which are solvable up to two unknowns. In other words,
= > (15a) two unknowns may be represented by the remaining one. To
(C11+C12)Ca3—2CT; achieve this, we may choose a new intermediate auxiliary function

. . A(¢) such that
B [(C11+C1p)€33—2C13€3]Eq +(C11tCrp)og (150)
5=
(C11+C1p)Ca5—2CT;

By=—E; (150)

Ai(H=aA(¢) (21)

Knowledge ofB (k=1,3,4) permits us to further seek the dis-
turbed electroelastic field in a piezoelectric body weakened bywédere a;’s are constants. Putting the above ir@0) and (19)
penny-shaped crack. To this end, by substituting the above resyilds, respectively,
into (11) and(13), application of(13b) and(13e) to the conditions
(14c) and (14d), respectively, leads to

3 . 8
-2 Bl,f EA(£)Jo(ér)dE+05=0, r<a  (16a) ;1 B2ja;=0 (22)
j=1 0 B
3 o
_2‘1 B4;j EAj(£)Jo(£r)dé+DG=D'®, r<a (16b) 3
S >, [D9 g+ ny]73,=0 (220)
with =1
3 0o
(c) iy )
D' ]21 73 7j Jo Aj(€)Jo(ér)dé Furthermore, substituting21) into (16a) and (16b), by compari-
son we find
3 o
- _8<c>2 T4 71-] Aj(£)Jo(ér)dé, r<a
=1 0 3 3
(17a) 0321 ,84jaj+[D(C)—D§]21 B1;3;=0 2x)
= i=
» (CiytcCipess—2C1€s
= — oy
(€11t C1p)C33— 2073 _ . .
Accordingly, Egs.(22a)—(22c) form a system of linear algebraic
(Cp1+ C1p) €55+ 2C3485,— 4C13833851 equations fom; , which can be rewritten in a compact form
+ +833 EBC
(C11+C1p)Ca3— 2CT,
A70) a 0
Additionally, from (11b) and(11c) in conjunction with the condi- Alaz|=|0 (23)
tions in (14b), we have as 0

3 [ee]
> 757 f A(£)Jo(£r)dE=0, r=a (18)
j=1 0 with
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BulD©@ =D+ Buoy  B1dDO—Dg1+Baws  Bid D'O—Dgl+ Bagoy
A=| Ba Bao Boas (24)
[ 731D+ 741y, [ 73D+ 7406y, [ 72D+ 7436 ] y3

In order to obtain a nontrivial solution of this equation, the m; = def B, B, ]+ o det B, B, 1]
determinant of the matriA must take zero, from whicB(® can B
be determined. In particular, for several special situati@s) —Dg de{B1. B2, m] (2%)
may be given via simple expressions.
i. Inthe absence of applied mechanical loading at infinity, this my=de{ 1. B, m] (2%)
situation gives ) ) ) )
d Clearly, apart from the material properties of the piezoelectric
(© (©)_ e{Bi.B2. 1] © . S o . o
D'“=D,, or D'9=-— ST NS (25) matrix, the electric displacemebt® in the opening crack interior
elB1. Bz, m] is also dependent on the dielectric permittivity of the interior of
Hereafter P denotes the vector composed Ofne opening crack. Moreover, not only applied electric loading but
(Bk1:Bx2:Bks)  (k=0,1,...,4), andy,_, denotes the vec- giso applied mechanical loading at infinity have a pronounced

. In the case of an impermeable cra

tor composed of §y1 71, 7Yz, Tk vs) ' (k=3,4), T being influence onD(®. The above result coincides with those for the
the transposition. Obviously, the first solution pertains to thgnalysis of a dielectric crack in the two-dimensional case
case where a piezoelectric body without crack or two cragk4 18,2022
ant on the material properties and not on applied loadingc crack, only one is reasonable and the other is superfluous,
suitable for an opening crack. From this, one further findgpich should be neglected. Sineé) is finite and lies in a range
the electric field inside the opening crack to be a constagt o to %, corresponding to the impermeable and conducting
(;g;gél fglzd ’Zr]léidter?fhglzegi]c |2(rjr(]eqpt$n'(3en_}hqsf aﬁgrl:gr% cracks, respectively, the corresponding electric displacem&ht
Ic T : IC permittivity. TRIS PNenoms,qiqe the opening crack should be located at the range between
enon .has b_een found in studying a dielectric crack in thﬁvo limiting values corresponding =0 ande(© =, respec-
two-dimensional casgl9]. ) © ' .
0 tively. Thus, an acceptabl®'® may be selected. An alternative
ek® is assumed to be -t )
approach for determining an acceptabl€ is to look for the one
defB,. B ] such thatAu,(x,0)=0, the physical interpretation of which is ob-
D=0, or D<°>=D5°—a§4'—2'm 26) Vious, avoiding penetration of two crack surfaces. By computing
_ _ de{B.. B>, m] ~ for many practical examples, we find tHat® selected from the
Clearly, the first solutio(¥'=0 corresponds to an openingabovementioned two methods are identical. The variation ©f
impermeable crack, and the second corresponds to a clog@th E7 for a dielectric crack embedded in a PZT-5H ceramic is
crack, since two crack surfaces for a closed crack Comagbtted in Fig. 2, from which it is seen for a vacuum crack, the
each other and the electric displacement at the crack sWfactric displacements at the crack surfaces lie between those for
faces is certainly no longer vanishing. an impermeable crack and a conducting crack. In addition, the

For a permeable cracky ¢(r,0)=0 follows the assumption urve corres ; (©— ; ;
- ; ponding te'®=0 has an apparent turning point at
of the electrically permeable crack. Owing to the fact thagbout Ez=—3kvicm, ie. the crack is closed a&:<

E)ngri’\% andau,(r,0) are finite, in this situation, itis easy —3 kV/cm, and the crack starts to openkEsexceeds-3 kV/cm
in the presence of; =5 MPa.

zero, and we then find

L detBs, B, 1]

(o
0 de(ﬂl 7ﬂ2 ’ 772]
which indicates thaD(® is a linear function of applied

D'®=Dg— 27)

electric loading as well as applied mechanical loading. |~ 50 1
addition, if letting 6(©—o, the derived electric displace- 1 o, =5MPa
ments at the crack surface are the same as that given 40+

(27). This is to say that the electric displacements given b
(27) are, in effect, equal to those for a conducting crac
where applied electric fields are parallel or antiparallel t.~
the poling direction. Due to the fact that a real permeabl £
crack is not a conducting crack, even for the present stuce
i.e., applied electric fields parallel or antiparallel to the pol |
ing direction, the above result indicates a drawback of thg 04

electrically permeable assumption at the boundaries of i /g0
undeformed crack. 104
For a general case, expanding the determinant yields a quac 204
equation forD(®), and it admits two solutions
> -30 - T T T T T v T M T 1
—my*= ymi—4mgm, -10 -5 0 5 10 15 20
D©= (28) -
2m, E,” (kVicm)
where Fig. 2 Electric displacement versus applied electric field with

(€) o ©n =5 MPa for various values of &® of the crack interior for a
mo=e'“aq de{ B4.B2, 1] —&'“Dg de{ By, B2, 1m2] (299)  cracked PZT-5H ceramic
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Due to the complexity of dependen¢28) of D(®, we here DS =\eE; (30)
present an approximate linear relation betw&f and applied
electric fieldsgg for computingD(® by the following form: with

|
g, def By, B>, 1]

Ag= © P - (31a)

' def By, B2, ]+ 0 det B, B2, m]— 09100 del{ By, B2, 171]

[
where 3/ _n©
2a D D J a
AE)= \/> 1 1330 éa) (36)
_ (C111C1p)€33—2C14831 Ke Ve
(C11+C12)Ca3—2¢7; ’ (31b) where

(Cyq+ Cpp) €2+ 2C4€2,— 4c 3

g, 111 C10)€53 33631 13€33€31 2 Busa 37)

(C11+C1p)Ca3— 2CT,

which is very accurate foE; taking in a range from-10 kv/cm  In view of (22c), it is readily seen that in the presence of mechani-

to 10 kV/cm. cal loading, the solutioit35) coincides with(36). Similarly, (36)
Once D is determined, nontrivial solutiom; can be ex- is valid only forDg#D (©), since Eq(16b) also becomes an iden-

pressed in terms oD via solving arbitrary two equations tity when Dy —D(C) For convenience, we rewrite these two re-
among (22a)—(22c). For example, solving22a) and (22c) we sults in a unlform form, i.e.,

obtain
2 a3’2P Ja Q)

az /al A( f) - K \/E (38)

as/a;
_ where
_ 1822 BZ?} !
04 Baxt(D'9=Dg)B1y 03Bzt (DY—DF) B3 P=00, K=#m, asoo#0 (3%)
Box 2 P=D;—D®, =k, aso,=0 (3%)
04 Bt (DY=D7) By Dg andD© being defined by17b) and(28), respectively.

Next, applying the boundary conditiof®6a) and (18a) we get ~ With the above obtained results, the entire electroelastic field of
a pair of simultaneous dual integral equations Agg) a cracked plezoelgctrlc body can be determlngd. This can be
achieved by substituting38) into (11) for elastic displacements

s and potential. Making use of some known results involving infi-
Kmfo EA(E)Jo(¢r)de=0p, r<a (339) nite integrals of Bessel functions, which are listed in the Appen-
dix, explicit expressions for the elastic displacements and poten-

» tial are obtained as follows:
A(§)Jp(ér)dé=0, r=a (33p)
0 I 4
e 2_ 2.
where 2 rsin- ( ; ) ; Vre=13|+Byr
3 (40a)
Km:Z B1ja; (34) N
1= uz(r,z)— Z 73 7;8;| Va2 —yzsin~ 1(— +Bsz
This is a system of simultaneous dual integral equations involving
Bessel functions, and a solution can be obtained according to a (400)
standard approad85] is found to be "
\F 8%y Iy £a) D= 2 7ai )| Ny iz s 1(_1”5302
A(é)= —_— 35
O=NT— (35) (400)

whereJg () is the Bessel function of the first kind. whereB; andB; are given by(15a) and (15b), respectively, and

It is pointed out that the above result is suitable only for the 1
case where applied mechanical loading at infinity is nonzejo Ilj=§[\/(r+a)2+(y,-z)2— Jr—a)?+(y;2?]  (41a)
#0. In case ofoy =0, from (16a) we getEf’zl,Bljajzo, and in
this case Eq(33a) becomes an identity. However, in the absence 1
of mechanical loading, in view of the coupling characteristic, ap- |zj:§[\/(f+a)2 ¥22+\(r—a)?+(y2%  (41b)
plied electric loading also causes deformation of a piezoelectric
body and further may give rise to crack opening. Taking into In a similar fashion, fron{13) we can further give a complete
account that the opening of crack is attributed to application sblution of elastic stresses, electric displacements, and electric
electric loading for this case, we therefore use @6b) instead of fields in the entire space. Or rather, utilizing the relevant formulas
Eq. (16a) to obtain dual integral equations similar (83). An listed in the Appendix, the distribution of electroelastic field in the
analogous treatment gives a solution as entire space is
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3

P PH(r—a) >
ou(r2)= 2 [2Boaiha(r2) +eucoahg(rna]  u(r0=—r-—2>

(42a)

a\ a
rsintl—|——=r°—a?
r] o

a;

3 o o
rPH(a—r) (C33831— C13833) Eg — 130
3 + z j r

P 2k &7 (Cq1+C1p)Cag— 22
a,,,,(r,z):;zl[235jajh21(r,z)—(cll—clz)ajhoj(r,z)] 117 C12)C33 13 w
<

(42h) PH( L2
a—r
op 3 Uz(r,0)=Tzl 737Vt —r? (470)
w i=
o,Ar,2)= —z B1jajhyi(r,2)+ oy (42c)
T PH(a—r) < ,
5 #(r,0)= 721 najvidjNaT—r (47c)
2P =
o(1,2)= - ;21 Bajajhy;(r,2) (42d)  \whereH(t) denotes the Heaviside unit step function, il(t)
= =1 ast>0 andH(t)=0 ast<0. Moreover, from the resul{g?2)
3 in conjunction with(39), it follows that aside from the apparent
2P conclusiono,,(r,0)=0, other nonvanishing elastic stresses, elec-
Di(r,z)=— ;le Bsjajhyj(r,z),  Dy(r,2) tric displacement, and electric field in the crack plane are
3 207} a a
2P » . ——sin’l(— +oy, asr>a
:;j:l Bajajhy(r,z)+Dg (43a) o, (r0)={ 7 |JrZ—a? r 00 (480)
0, asr<a,
3
2P D,(r,0
Er(r,z):ﬁz1 n4ivjah(r,2),  Ey(r,z)= r,0)
I= 2[D5g—-D9]| a __[a B
3 —sin"*|—||+Dy, asr>a
2P > o = o rc—a r
_—2 74 7;ajh2;(r,2) +Eq (430)
TKi=1 D®, asr<a,
wherep;; (j=1,2,3{=0, ... 4) aredefined as before, (480)
) E.(x,0)
Bsj=(C13m3j+ €3174)) ¥] — C12 (44) 3
2P 5 a e "
and _;,2::1 TNE gz T FEo, @R
12, Ja2—17; aVlg—a? [l B!
hyj(r.2)=— 55 hy(r.2)= ﬁ—snn*(%) go P asr<a
r(lg =13 15;=13; €
(459) (48)

Note that from(48a), o,/r,z) for z=0 is independent of ap-
lyj LY plied electric loading and material properties. Nevertheless, the
hoj(r,2)= = yro—lg—sin* -~ (4%0)  distribution of o, (r,z) for z#0 around the crack front is reliant
r on the material properties, which is apparently seen f(d@r)
. . . since a; together withx are determined by combined loading,
Therefore, explicit analytic expressions for the complete elegiq|,ding mechanical loading as well as electric loading. In con-
troelastic field are given in terms of elementary functions. Frofp,ct p (r,z) around the crack front is dependent on applied me-
the above results, explicit expressions for electroelastic field fEHar;icz;I I(’)ading no matter whethee0 or not. which is due to
an impermeable crack and( f)or a COﬂdL(IC)tlng crack can be dire e fact thatD(® is controlled by applied mechanical loading
. . i o o . ,
written out only if settinge*”=0 ands'™ =<, respectively. In 44t from electric loading. Furthermore, it is not difficult to find
addition, if imposing the piezoelectric coefficients vanish, thg ot the behavior oE (r,2) is the same aB,(r,z). Obviously, it
electric and elastic behaviors are uncoupled, and the corresp%ﬁ (. AN '

. S . Seen that all the electroelastic quantities exhibit a usual square-
ing elastic field reduces to the results relating to a penny-shangg; singularity near the crack front=a, in accordance with the
crack embedded in an infinite transversely isotropic medium suébunterpart for a two-dimensional case.

jected to uniform tension at infini'ty. It is interesting to note that By comparing these expressions for electroelastic field in the

Fack plane obtained above with those given by Zhang ¢1.2],
it is found that two results are the same in form except for the
electric displacemen®(® at the crack surfaces. Zhang et[dl7]
' started with an elliptical hole before deformation and derived the
electric displacement®(© at the hole boundary by use of the
r asr<a a asr<a exact ele_ctric boundary condit_ior_ls. The_results in(_}licate that when
lim 1 i(r,2) = ' " im (r.2)= ' considering a very slender elliptical halee., reducing a cragk
sup a, asr>a' ,., 3" r, asr>a D are strongly dependent on a competition faatfyg*, « and
(46) B* being defined by Zhang et a[17], p. 227. In the present
study, aflat penny-shaped cradkefore deformatiomnd an open-
we get immediately elastic displacements and potential in tieg elliptical hole after deformation are assumed, and furihiét
crack plane, from the resultd0) are related to the eventual COD of tdeformedelliptical hole

are not given by Sneddon and Lowengi@6], who gave their
results involving complicated infinite integrals.

In what follows we confine our attention to the crack plane
=0. In this case, using the propertieslgf andl,; [37]
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Table 1 Relevant material properties

Dielectric
2 Piezoelectric permittivities
Elastic Stiffnessesex 10t N™) constantgC/m?) (X10*° F/m)
Ci1 Ca3 Cag Ci2 Ci3 €31 €33 €15 €11 €33
PZT-5H 12.6 11.7 3.53 55 53 —-6.5 23.3 17 151 130

(opening crack Under these circumstances, value®é? evalu- whereq stands foro,,, D,, andE,, respectively, can be evalu-
ated by(28) are also strongly dependent on both materials propted as

erties, including the permittivity and applied electromechanical 205"

loadings, which is in exact agreement with those for the two- Kv:ﬂ \/ﬁ, KD
dimensional analysi¢see e.g.[14,18,20-2D. ™

2[D5—D'¥]

ma

’

(54)

3
2P
4 Asymptotic Field and Intensity Factors KE=— 521 74 'szaj\/'”a
i=

In studying the stability of a cracked piezoelectric structure, of . . .
importance from the viewpoint of fracture mechanics is the distrf2S Seen from the above, no matter how applied electric loading
bution of the asymptotic electroelastic field around the crack frorfa€s. the stress intensity factor maintains unchanged, implying
which can be characterized as field intensity factors. that stress intensity factors near the cre_tck front_are inapplicable to

In order to obtain the required asymptotic field, we introduce predicting crack growth of piezoelectric materials. On the con-
local polar coordinate syste(p,6) with the origin at the periphery trary, the intensity factors of electric displacement and electric

of the crack, which satisfies field depend on the material properties and applied mechanical
loading. In particular, if setting(©=0, we findKP=2D} /al,
p=V(r—a)’+z*, f=tan '[Z/(r-a)] (49) independent of applied mechanical stress, which is in agreement
In the close vicinity of the crack front, i.ep<a, we have with existing results, such a$27-29, wherea_ls if setting
A¢(r,0)=0 or g@=00, we find KP

p 7o =205 def B4, B,,m,]Val(def By, B>, 1] ym), dependent solely
=g+ — — + 4/° 0" 4125 712. 1:P02: 72 - ~ .
=2 2 [cos 6)~ Veos(0) I Sire(6)] (508) on applied mechanical stress, in agreement with those obtained in
[25,30,32,33 Therefore, the above obtained conclusions under
p 7 i impermeable and permeable conditions are completely opposite.
=a+ - + + v
l2j=a 2 [cog0) +/cos'(9) Yi Sir(6)] (500) However, a real crack is neither elt_actrically impermeable nor elec-
Upon substitution of these int@#2), by neglecting some higher- trically permeable(at the boundaries of an undeformed crack

order infinitesimal terms, the asymptotic expressions for electrg-g ﬂs[criﬁ;?tilsnaof ﬁedéeﬁgéﬂgﬁ{giﬁég(sﬁrl‘ts ;rt]rg:l] ng%zi?st tct:)enZIiLrj\-
elastic field in the vicinity of the crack front are derived below: i’ » applied i 9 gly
gularity of the electric displacement near the crack front, and also

(P, 0) op 3 Bojajfa(0) its intensity factor varies with the dielectric permittivity of the
T,4p,0) | ="— /iz B1jafa(6) (51a) crack interior. Moreover, the impermeable and permeable cracks
o,(p,0) mk V2p{=1 —Byafy(6) can be taken as two limiting cases of a dielectric crack.

Pz 21910 Additionally, we introduce a factor to characterize the behavior
D,(p,0) —B3;a;f;(0) of the CODu,(r,0) near the crack front, referred as to the COD
D,(p,0) op [a Bajaifo(0) intensity factor, which is defined by
Ep0) | “x Vop At | mamayfye) | O . [Za
Ez(p,ﬁ) — Taj 'yJZanzj(é‘) KCOD: lim ;Uz(r,o) (55)

r—a-
heref,;(6) andf,;(#) denote the functions of angle distribu-__ . . .
\t/ivon’ de%ijrgec)i by 2i(6) uncti gie AIStOUith the help of(47b), one can immediately obtain
3
2P
f1(0)= 7 ! Keoo=—¢ \/7732 773578, (56)
Ycog(0)+ ¥ sir(6) =1
identical to the crack center opening displacemean{(@,0), aside
1 cog #
« \/_ 1- g z . (520) from a factor of Jal.
2 \cog () + 7 sirf( )
1 5 Numerical Results and Discussions
f25(0) =7 > In this section numerical computations are carried out for com-
Veog(6) + Y] Sin() mercially available PZT-5H ceramic with the relevant materials

X \/E{1+ cog 6) Figure 3 shows the variation of the COD intensity fadQiop
2 Jeo2(6) + yjz Sirt( 6) with applied electric fielcEg for three different crack models, an
From the above, the intensity factors of stress, electri@permeable crack, a vacuum dlelec.tnc Srack, and a permeable
displacement, and electric-field near the crack front, according $2ck, in the case of mechanical loading$=5, 20, and 0 MPa,

} properties, listed in Table fi3].

their definitions respectively. Here the radius of the penny-shaped crack is chosen
asa=1mm. Itis noted that the solution corresponding to a per-
K9= lim 2= (r—a)q(r,0) (53) meable crack is identical to that corresponding to a conducting
r—a* crack for applied electric fields parallel or antiparallel to the pol-
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- - -0 ,

&/e=1 ,

e e = V
elg =0

Park and Suri38]. Therefore, it is more reasonable to adopt the
COD intensity factor as a fracture criterion to assess the fracture
behavior of piezoelectric materials. Especially, in the case of
e(9/e,=0 corresponding to an impermeable crack, the crack
keeps closed cop=0) whenEg< —3 kV/cm, and starts to open

when E{>—3 kV/cm. In contrast, for a permeable crack or a
conducting crack, the opening of a crack does not vary with ap-
plied electric fields, as expected. Also it is found that three curves
corresponding tce(®/ey=0, 1, and intersect a point aEg
=0, implying that values oK qp for purely mechanical loading
are the same for a crack, irrespective of the dielectric permittivity
of the crack interior. Similar trends are seen in Figo)Jor oy
=20 MPa. The only difference lies in the fact that the imperme-
able crack does not close &>—10kV/cm for oy =20 MPa,
while it is closed asEg<—3 kV/cm for og=5 MPa, which is
easily understood since applied mechanical tensigr 20 MPa
is much larger thanri=5 MPa. In the absence of mechanical
loading [Fig. 3(c)], a purely electric field cannot drive crack
100 - . . growth for a permeable or conducting crack. This is easily under-
() o,"=20MPa e stood because the electric boundary conditions for a permeable
crack are adopted at the boundaries of an undeformed crack.
However, this is not true for a dielectric crack and an impermeable
crack. For a vacuum crack, the crack surfaces remain in contact
for a negative electric field because the piezoelectric material
shrinks in the poling direction, in this case, and they start to open
until the electric field exceeds a certain positive electric figld
because it expands in the poling directions. HEgedenotes a
turning point from a closed crack to an opening crack, which is
related to the dielectric permittivity of the crack interior. Obvi-
ously, E, is shifted to the origin when (/s drops down to 0. In
other words, for an impermeable crack, the crack surfaces keep
contact for negative electric fields and open immediately only
when positive electric fields are applied.

Similarly, the variation oK cop with applied mechanical load-
ing o is displayed for three different value$®/e,=0, 1,, for
E;=0, =5 kV/cm in Fig. 4. Clearly, in the absence of electric
fields, values of the COD caused by purely mechanical loading
70— are almost the same for various valuess®/¢e,. Nevertheless,

{ © o,=0 , the results manifest an important difference in the presence of
60 - - &% L7 electric fields. For example, from Fig_s(.b4 ar_ld 4c) it is observed
| P that values oK qp for an opening dielectric crack gradually be-
e oo e come close to those df.gp for an impermeable crack with an
0 ’ increase ofry . Conversely, they gradually become close to those
401 e for a conducting crack with the decreaseogf, which implies the
30_' e influence ofe(© inside the opening crack. This coincides with the
’ theoretical prediction for a two-dimensional cracked piezoelectric
2. d medium by Wang and Jiarf@1]. Especially, it is observed from
’ Figs. 4b) and 4c) that for an impermeable crack, application of
positive electric fields drives crack opening, even in the absence
’ of mechanical loading, while application of negative electric fields
cannot drive crack opening for lower mechanical loading, which
is attributed to negative electric fields that cause the piezoelectric
material to shrink in the poling direction. When applied mechani-
cal loading is large enough, the crack begins to open, agreeing
with that in Fig. 3.

Figures 5 and 6 are devoted to the effects of applied mechanical
loading on the intensity factors of electric displacement and elec-
tric field, respectively. As pointed out above, the stress intensity
factor is independent of applied electric field. However, the elec-
tric displacement intensity factdt® depends strongly on applied
mechanical loading, which is seen in Fig. 5. When an applied
ing axis because of27). It is found from Fig. 8a) for o electric field is absent, the effect of) is small, as compared to
=5 MPa that for a vacuum dielectric crack, a positive electrihat when an electric field is present, and exhibits almost a linear
field increasesKcgp, While a negative electric field decrease®lation. For the latter, applied mechanical loading has a strong
K cop, Which implies that applied electric fields can aid or impedifluence onKP. For a positive electric field<® for a dielectric
crack growth depending on positive or negative directions of elegrack increases and gradually approaches that for an impermeable
tric fields, in agreement with the experimental observations fyack asoy is raised from 0, and decreases and gradually ap-

K. /(2(am)"™) (x10%)

E,” (kVicm)

@ _ -,
e fe=1 P

80 - - -e%,=0 ,

K, /(2(@m)') (x10%)

0 T ] T Ll T T 1
-10 -5 0 5 10 15 20

E,” (kvicm)

e'/e =1
50 °

K. of2(am)' (x10%)

-10 -5 0 5 10 15 20
E,” (kVicm)

Fig. 3 Variation of the COD intensity factor  Kcop with applied
electric field Eg for &£©/gy,=0, 1, », () o5=5MPa, (b) of
=20MPa, and (c) o5 =0 MPa
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Fig. 4 Variation of the COD intensity factor ~ K¢op With applied i o ) ) ]

mechanical stress o for £(9/g,=0, 1, =, (@) EZ=0kV/cm, (b) Fig. 5 Electric displacement intensity factor KP as a function

EZ=5kV/cm, and (c) Ez=—5 kv/cm of applied mechanical stress  o§ for £©/g,=0, 1, =, (a) Ej
=0kV/cm, (b) Ef=5kV/cm, and (c) Eg=—5kV/cm

proaches that for a conducting crackeggsdrops to 0. While for a . o

negative electric field, the tread is similar to the above, aside frdid ¢© = for lower o7, which is still due to a closed crack,
that the curve corresponding #° =0 is below that correspond- Whose two surfaces keep contact with each other in this stage.
ing to &= for EZ<0, which is reversed foEZ>0. This is Slmllgr behaviors can be fo_und_for the electric field intensity fac-
attributed to the fact that positive and negative electric fields cau9s K~ near the crack front in Fig. 6.

piezoelectric material to expand and shrink, respectively. Also )

with the increase ob% , KP for a dielectric crack still gradually 6 Conclusions

approaches that for an impermeable crack. It is also seen that th&he electroelastic analysis of a transversely isotropic piezoelec-
curve corresponding te{®=0 coincides with that correspondingtric body with a penny-shaped dielectric crack perpendicular to
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124 electromechanical loading. Explicit expressions for the complete

@ E=0 Lz electroelastic field at any point in the entire piezoelectric space are
w0d —=-%70 Lz obtained in terms of elementary functions. In particular, the
£%%e,=1 Lz L asymptotic electroelastic field around the crack front is also given
’g - &% =0 S in terms of angle distribution functions, and the field intensity
S 8- 2 R factors are determined. The previous results for a penny-shaped
= Lz impermeable or permeable crack are two special cases of the
= e . present results.
s ] -
g .
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Appendix
201 () E,"=SkV/em In deriving e>_<p|ic_it expressions _for the complete_ _electroelastic
] o 0 field, the following integral equalities have been utilized:
- - Eo » - -
16 4 © - © 2 [q2_ |2
£ /=l _- f et 217va—I11
= o .- et (ér)dgéa) JEde= ————— (AL
g - % e .- o T J2mad? (12—12) (A1)
2 12 -7 d 1
-—: -7 g —-c¢ | 2_2
?‘i 8 - joe J1(ér)Jzpléa) G \2na¥% livre=I3
N 1 P PR
A (!
+r25|n‘1(T1” (A2)
o .-
- - 2 I, ayl3—a?
e %Jg(ér)d a)Védé= —— sin‘l(— —-——
oo . . . . fo o)l é2) Ve \/Ea”[ N T

0 20 40 60 80 100 ( A3)

s,” (MPa)
S dé 2 2|2 i1 g
e *o(ér)Jzéa) == Va—li—csin ™l =
] © E =5k 0 Ve \2ma® '
104 (©) E~=5kV/iem ] (Ad)
] - = =% =0 -
8 e =] et for Re(c)>|Im(a=b)|, where
E o7 R h=3[V(r+a?+c?=(r-a+c? (A5)
S 1 - .
< I,=3{(r+a)?+c2+\(r—a)?+c?] (A6)
o
% It is noted that the first two have been given in Fabrike38],
S while the last two are derived as follows.
..;’ 1 Multiplying (A2) by r, then differentiating with respect t9 and
24 ) .7 considering the known result
4] T - d
{1 v- oy [132(r)]=€rdo(r) (A7)
<6
o 2 © 6 80 100 We get
s,” (MPa)

“ 2 |
f e_cgJo(§f)\]3/z(§a)\/Ed§=—m[sin‘l(—l)
Fig. 6 Electric field intensity factor KE as a function of applied 0 \/ﬁa r
mechanical stress o for £9/g,=0, 1, =, (a) E; =0 kV/cm, (b)
EZ=5kV/cm, and (c) EX=—5kV/cm o h (r f?|1”

r \/rz—_@ Lor

(A8)
the poling direction is made within the framework of the theory ofrthermore, upon substitution of the following resta3]:
linear piezoelectricity. Using the electric boundary conditions at
the crack surfaces dependent on the COD, the electric displace- aly,  a(l3—r?)
ments at the crack surfaces are determined in terms of applied o LaEmD) l1l,=ar (R9)
electromechanical loading as well as the dielectric permittivity of 2(12=12)
the crack interior. The Hankel transform technique is employed to mmzcr' \/'5*—32\/@?=C|2 (A10)

reduce the mixed boundary value problem to dual integral equa-
tions. The results are presented for the case of remote unifoimo (A8), after some manipulations one can obteA3).
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In order to derive(A-4), putting the known identity
VE d [Jiéa)

ade| |z

into the left-hand side afA4) and performing integration by parts,
we find

Ja(éa)=— (A11)

'Fe_cg\] (ér)J z(fa)E
0 0 3/ \/E

_1 A Jx—cg %
= V¢ 0e Jo(fr)Jllz(ga)\/_E

d¢

Ve

With the aid of the known resul{s9]

d¢ V2 [I , 7
CE Tl T e

+c(a?-13-a)

differentiation of the above equality with respectciaconsidering
(AL10), yields

_rfo e “4Jy(ér)dyyéa)

Jo e J1(ér)dypl éa)

(A13)

V2

N (a—+aZ-12) (Al4)

On the other hand, we multipl§A13) by r and then differentiate
with respect tar. Employing the relations itA9) and (A10), to-

gether with

fwe_CgJ (ér)J z(éa)d—§=
0 1 1/ \/g

(A15)

we derive

2 I
isin—l(—l) (A16)
Jma r
As a consequence, substitutitgl4) and (A16) into (A12) yields

the desired resulfA-4).
The constants appearing (0) are respectively

Fe‘% (€r)Jdypéa) %«
0 0 1/. \/E

_ 2
8= C44(C33€ 33T €33
_ 2 2 2
D= —C33C4s8 111 C138 33~ C11C33€ 337 2C13C448 33~ C33€75— C11€33

— 2C33831815— Cag€hy+ 2C1983:815+ 2C13033831+ 2C4483:831
(A17)

Co= —Clae 11T C11Cag 11~ 2C15Caa8 11+ C11Ca8 33— 215875
—2C13816831+ Cas€31 1+ 2C1 1815853
do=—C11(Case 11+ €%5)
The constants appearing (3) are respectively
Boj=(C1373j+ €3174)) 7,‘2_ C1y
B1j=(C33m3j+ €3374)) 7;2_ Ci3
Boj=[Caa( L+ n3j) + €1574j 17

Bsj=[€15(1+ 73)) — €1174i1;

(A18)

2
Baj= (€333~ €33774)) ¥ — €31
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wsamieso. | The Qnset of Tearing at Slits in

Development & Engineering Command,

~ e | Stressed Coated Plain Weave
-Rosseies | Fabrics

Department of Mechanical, Industrial &

Manufacturing Engiqeeriqg, A simple micromechanical model is presented for predicting the onset of tearing at slitlike
Northeastern University, damage sites in biaxially stressed coated plain weave fabrics. The stress concentration in
Boston, MA 02115-5096 the first intact yarn at the slit tip is determined as a function of increasing loading, and

Fellow ASME predictions for the onset of tearing are made under the assumption that tearing initiates
S. E. Bosselman through the rupture_ of the firgt intact yarn a_t a characteristic yarn breaking load. E_xten-
- k- : sive onset of tearing experiments on various coated nylon and polyester fabrics are
Besearch_ Engineer, presented, and the model is shown to capture the onset of tearing in these fabrics quite
Natick Soldier Genter, well over a range of slit length§DOI: 10.1115/1.1794165

U.S. Army Research,
Development & Engineering Command,
Natick, MA 01760-5020

Introduction mechanisms of a PVC-coated plain-woven polyester fabric with a
ry&\riety of slit-damage configurations under displacement-

Coated woven fabrics are used in a variety of inflatable al - - ) o
tension structures. An emerging application is the use of Coatg(antrolled uniaxial and biaxial loading conditions. They reported a

fabrics to create pressure-stabilizeir-inflated fabric beam and number of interesting findings; however, their work did not in-
arch structures, commonly referred to ais-beams While the clude any theoretlca_l modeling. Experiments on the same polyes-
propagation of tears in coated fabric structures has long beef€hfabric with and without the PVC coating demonstrated that the
concern, the issue is particularly important in air-beams, wheg@ating significantly lowers the threshold load for the onset of
rapid tear propagation initiating at sites of local damage or strelggring. Davidson et a[.7] consider the role of woven fabric be-
concentration is accompanied by a hazardous explosive releas@afior in developing fracture toughness in fabric-reinforced com-
compressed air. An improved fundamental understanding of thesites. They investigated the “crack-tip” micromechanics of a
mechanics of damage in coated woven fabrics is needed to pcommon plain-woven apparel fabric through optical displacement
vide a rational basis for efficient, damage-tolerant air-beam mataeasurements and finite element modeling. The finite element
rials and designs. model represented the interlaced yarns of the weave by a network
HedgepetH1] provided the first micromechanical analysis of af pin-jointed beams. When frictional slip between interlaced
damaged filamentary structure. His analysis, based on shearyaéns at crossover points was included in the model through
theory, has been applied to fiber/matrix composites, where t§6ring elements that allowed relative displacement between the
matrix transfers the load from br(_)ken to unbroken fibers by meaggams at the pinned joinf8], a good fit with the experimental
of shear. Hedgepeth regarded his model to apply to coated WOYRR s rements of fabric strains near the crack tip was obtained. In
fabrics as well, where the coating transfers shear between yaiigic_reinforced composites, Davidson et[&l} consider the ma-
I[‘Z'tfa?tg{%gié?iﬂgteatgégrssgﬁs Ognjgggaﬂqﬁgggsgﬁigs ft?g ﬁ( to play a role in limiting the possible fracture toughness of the
mote stress needed to initiate tearing—fabrics are more damégmgoﬁggrbg;]énE'rgélg%ghe.rﬁizt?gggl ifsorerg)cp:Ic())rltj:cli Stl)';) taiw::s?lts
tolerant than predicted by the Hedgepeth model. Inelastic effe Aentioned abovd6] on fabrics with and without coating&@

not considered in Refl], may partially explain the discrepancy - . S ; .
between the literature experiments and the analysis. The mofepted fabric is essentially fabric-reinforced composite with an

presented here, while having a similar mathematical structure §stomeric matrixand by the present work. In this paper, inelas-

Ref.[1], includes a type of inelastic deformation near the slit tigic deformation involving slip between yarns and permanent de-
In this paper, we present the onset of tearing experiments fofggmation of the coating, is key to reducing the stress concentra-
variety of coated polyester and nylon fabrics that agree well witfon in the yarn at the slit tip and, therefore, inhibiting the onset of
the model. tearing failure.

For an extensive review of the literature on mechanics of dam-While the major emphasis in this paper is the comparison of the
age in stressed fabrics, the reader is directed to[B&fHere we present model with experiments on coated fabrics, the behavior of
will highlight some recent works not discussed in the prior revievihe coated-fabric model will also be discussed in the context of
Szostkiewicz and Hamelii6] observed and analyzed failureshear-lag models for notched-fiber composite sheets where matrix

yielding plays a role similar to the yarn-slip mechanism encoun-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  tered in fabrics[9]. Such models, outgrowths of Hedgepeth’s
e e o 2,210INal Wo-cimensional2D) shear-iag model), have been the
2003; final revision, April 2, 2004. Associate Editor: D. A. Kouris. Discussion on théUbject of extensive study. The onset of inelastic deformation, its
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journalgfowth under increasing load, and the attendant affect on stress
Onersiyof Callornia- Santa Barbara, Santa Barbara, CA 83106.5070, and wil G /Centrations at the notch tip will be briefly discussed in both
accepted until four months after final publication of the paper itself in the ASM}’éna't(':‘rlaI systems. This framework provides further insight into the
JOURNAL OF APPLIED MECHANICS. coated-fabric model by pointing out some common aspects of the
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T, (increasing) tions, the angles are indicated in Figbp The component of the

#2 yarn tension along the #1 yarn can then be written.
Introduceu!, as thex, displacement of th¢th crossover point

on thenth #1 yarn, where the reference state for displacements are

the positions of points on an otherwise identical stressed fabric

without damageFor sufficiently high values of the loading the

#1 yarns are assumed to be in a nearly straightened out condition

= (i.e., the out-of-plane “crimp” due to interlacing with the #2 yarns
2 has been taken out by displacement along xhelirection, see
. Ref. [11]), and display an effective constant axial stiffness prop-
‘: erty (EA) having the dimension of force. In-plane rotations of
&~ the #1 yarns may be neglected, and the #1 yarn load-displacement
relation is
. I—ul?
Fin= EAeffT +p 1)

where the factorl,—u!,” Y1yo, is the additional strain in the yarn

due to the damage, amplaccounts for the yarn load in the refer-
l l l l l l l l l ence state. Rotation of the #2 yarns is represented by relative

displacements at points on adjacent #1 yarns. Considering the

Fig. 1 Configuration of biaxial remote stresses on damaged crossover point unit cell as a free body, Figb2 the component

fabric of force in thex; direction acting on the #2 yarn entry and exit
boundaries will beF5 (ul,_, —ul)/yg, and —F3 (ul—ul . )/yo,.
Shear in the matrix bays between thth and neighboring r{

behavior of notched-sheet systems and highlighting behaviorall)th and f+1)th yarns gives rise to force components

features that are unique to the coated-fabric model system.  Ghyyy(ul_;—ul)/yo, and—Ghyg,(u)—ul , ;)/yo,, whereGh is

the shear stiffness of the coating laydimension of force/lengh

Yo1 is the unit cell length, and shear strains in the coating bays

gl tween #1 yarns are identical to the #2 yarn rotations. Therefore,

referring to Fig. 2b), equilibrium of thejth crossover unit cell in

the x, direction is written as

Micromechanical Model. We adopt a micromechanical mod-
eling approach originally developed [d0]. Essential aspects of
the development are summarized here. Consider a coated pl
weave fabric with damage consisting of a slit, parallel to xpe
coordinate direction at; =0, where thex;x, coordinate system is

aligned with the yarn directions. The slit interrupts the coating ang 1 .., Ghyut+F3 P

a series of consecutive number aid) yarns, referring to yarns (u " =2u+u"H+ ———(_,—2ul+ul, =0
parallel to thex,; andx, directions as #1 and number tw#2) 01 Yoz B
yarns, respectively. The plain-weave-unit cell dimensionsygie

along thex, axis (the spacing of the #2 yarpandy,, along the where Eq/(1) has been used for the #1 yarn force on either side of
X, axis (the spacing of the #1 yarnsRemote biaxial membrane the crossover point, i.e., thjéh and (+1)th Fy,, terms. Regard-
stressesi.e., having dimensions of force/lengthre applied to the ing u, as a continuous function of position, this equilibrium
fabric such that the stress in the direction, T,, is held constant equation can then be written as

while the stress in the, direction, T, is increased quasistati- ) .
cally. The global configuration of the damage and remote loading d“u, I Gh+F3/yo
is shown in Fig. 1. We assume that the elastomeric coating carries dx? EAcYo2
only shear so that the direct membrane stresses are supported : . o .
entirely by tension in the yarns. At the microstructural level, theréquation(3) is written in dimensionless form as

fore,. the membrane stresses are viewed as individual remote yarn U'+Up_y—2U,+Ups =0 4)
tensions such that #2 yarns are under constant remote teisjons
and #1 yarns are under quasistatically increasing remote tensig§ig the following nondimensionalization:

(Up—1=2Up+Ups1)=0 3)

p (i.e., Ty=plyg, To=F3/yy). As p increases, the #1 yarns E

exhibit displacements in the, direction, and the #2 yarns exhibit X1= /ﬂ . uy=p \/ Yoz U

x, direction displacements and small rotations in the fabric plane. F%/yoi+Gh EAf{F3/yor+Gh}

With continued increasing loading, a small amount of permanent (5)

deformation takes place in a region along the first intact #1 Yams ore primes denote differentiation with res ectto
at the slit tips. Wherp reaches a critical valup., tearing begins Re zfrdin as a function of position intr?)duce a nondimen-
through the rupture of one of the first intact #1 yarns at either end ? %Flfc‘P defined b P '
of the slit. In actual fabric testing, tearing may be catastrophié',Ona yarm load=,, defined by
where the first yarn rupture coincides with rapid propagation of Fin=pP, (6)
the tear, or progressive, depending on the particular fabric and test ) . . .
conditions. In this work it is assumed that rupture occurs when theeforming the #1 yamn 'Oadjdlsplacemgm relation, €9, into a
maximum tension in the first intact #1 yarns reaches the yafQntinuous form[i.e., replacing ¢, —up ")/yo; with du,/dx,]
ultimate breaking loag,, . and nondimensionalizing, using E@), gives the nondimensional

Appropriate differential equations, which describe the equilijoad-displacement relation,
rium of yarns in regions where inelastic behavior occurs and in P —U'+1 @)

. ; ) . . n=

the region where inelastic behavior does not occur, can easily be n
derived. For instance, in the elastic region, equilibrium of the #ihere we have used the definition given by Eg).
yarns can be derived by taking into account the load transfer to theExperiments and analytical modeling of uncoated plain-weave
#1 yarns that occurs due to the rotated tensioned #2 yarns in fabrics have shown that, for moderate-sized slitsp ascreases,
fabric plane and the additional load transfer due to shear of theossover point yarn slip occurs predominantly along the first in-
coating, assuming the coating does not wrinkle. For small rottct #1 yarre.g., yarn 2 in Fig. @)] at the slit tip[12]. Crossover
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Fig. 2 (a). Geometry of damaged fabric indicating the elastic deformation. Breaks in #1 yarns, dashed lines represent
deformed #2 yarns. (b). Equilibrium of the jth cross-over point unit cell under forces due to rotation of the tensioned #2
yarns and shear in the coating.

point forces between the #1 and #2 yarns are a maximum aloyayn near the slit line, € x;<I, wherel denotes the extent of the
the first intact-yarn neax,;=0, therefore it is in this region that inelastic zone. The inelastic deformation is assumed to occur at a
the forces first attain a threshold value necessary for frictional signstant force of (perfect plasticity acting in the+x, direction
to occur between the interlaced yarns. In coated fabrics, the coar the #1 yarn at the cross-over point. Note that possible wrin-
ing layer acts to bond the interlaced yarns together and inhilsding will have the same effect. We interprfedis an average cross-
crossover point slip. As in uncoated fabrics, crossover point forceser point force. For fabrics coated on one side only, the actual
between the interlaced #1 and #2 yarns will be greatest along gi@ssover point slip forces alternate between small values and
first intact #1 yarn neax; = 0. Therefore, assuming that the coated€arly 2 and these forces are regarded as having an average
fabric cross-over point has some characteristic strength, we expéaiue off per crossover point. Note that in the development of the
that crossover point slip or inelastic relative displacement wigquilibrium equation, Eq(8), the inelastic force will be averaged
occur preferentially along the first intact yarn. The inelastic rel&Ver the crossover point unit cell to a force per length, 4, .
tive displacement between the #1 and #2 yarns involves yielding/Ve consider a finite-width configuration ofg2-1 #1 yarns
or separation of the coating, as depicted speculatively in Fig. 3Vith a slit interrupting N+ 1 yarns centered at the zeroth yarn.
In the present model, we assume that inelastic yarn-to-yafarns in the positive, half-plane are numbered so thaequals
relative displacement occurs in a region along the first intact #1t0 . Yarns in the negative, half-plane are numbereet1 to
—(g. The slit is symmetrical about the center yarn, so that, con-
cerning ourselves only with non-negative yarns numbered 0
) ) . o <n=<N are severed by the slit, and yarns numbeneedN are
location of coating separation or yielding intact. The (N+ 1)th yarn is the first intact #1 yarn at the slit tip.

coating " .
Because of symmetry, we need only consider equations for yarns
n=0 ton=q.

xl B Following the previous discussion of inelastic behavior, equi-
- librium of the (N+ 1)th yarn in the region €& x,;<<| may be writ-
ten as
first intact # 1 yarn # 2 yarns
Fig. 3 Cross-section showing first intact #1 yarn at slit tip and dzu,\Hl f

location of possible separation or yielding of coating. Arrows 0 (8)

— ==
indicate motion of #2 yarns. dx{ EActYo1
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where the inelastic force has been averaged over the cross-adetail for a similar boundary value problem|[ib2]. The solution
point spacing. Equatiof8) may be written in dimensionless form process is completed by selecting values of the inelastic zone

as extent| and determining the values of the integration constants
l +1=0 ) and parametef, such that the boundary and continuity conditions

. are satisfied. Observing from E{l0Oa) that the parametef is
where slip occurs in a region<0¢<| and a dimensionless loadinginversely proportional to the applied loal we introduce a di-

parameter and extent of the inelastic region are introduced,  mensionless applied logulthat we define ap=f 1. For selected

(F5 1 Ghyopy values of the inelastic zone extent, solution of the defined bound-
f=p [ir2 2 Joryois (10a) ary value problem provides the corresponding value of the applied
EAetY 02 load p. A key result that can be easily computed from the solution
is the stress concentration fact@CB, defined here as the ratio
B EAettyor - of the maximum tensiotwhich occurs ak; =0) in the first intact
1= ml (100) yarn at the tip of the slit to the remote applied lo&dq,y. 1(0)/p.

Using Eqgs.(6) and (7) the SCF can be written ddy. ,(0)+ 1.

Development of the equilibrium equations in the inelastic re- As p increases, the value dF; . 1(0) increases also, to the
gion for the nearest-neighbor yarns to the first intact ya®, point of rupture of the K+ 1)th yarn, which we assume occurs
yarns N and N+2), takes into account the rotation of the #2yhenF, . ,(0) attains the value of the ultimate yarn breaking
yarns, which, in this region, is not coupled t® ., due to slip. |oadp,. Rupture of the first intact yarn is regarded as the onset of
Following a similar procedure to that in R¢12], the #2 yarns are tearing. The applied load has the vaye(p critical) at the instant
treated as classical taut strings wih displacemen®y.; at the  of first yarn rupture, and we denote the value of the SCF at this
crossover points along théN(-1)th #1 yarn. Equilibrium of the jnstant as SCF i.e., thestress concentration factor at onset of
#2 yarns is used to eliminaig. , in theNth and N+2)th yarn  tearing From our assumption regarding yarn rupture, we write
equations. Finally, the equilibrium equations in the region& SCF as SCk=p,/p.. We denote the value of dimensionless ap-
<I for the Nth and (N+2)th yarns are written in dimensionlessplied load at onset of tearing d%; it can be evaluated a8,
form as :f*1|p:pcl

3 1 Consider the behavior of a particular fabric over a range of slit
UN+Unoi— s Ut sUne=5 (11a) lengths. For increasing slit lengtfigvolving greater numbers of
2 2 2 severed yarns the value ofp. will decrease and SGFwill in-
1 3 F crease. The produgt. SCK should remain approximately con-
Mot =Un— = UnsotUnis=% (11p) stant over the range of slit lengths, however, sipe&SCR=p,
2 2 2 (the yarn breaking logd which is independent of the slit size.

The width of the model, specified by the valuecpis assumed Nondimensionalizing this relationship, we introduce a parameter

to be sufficiently large such that the behavior of the finite widtRu=Pc SCR, which may be used to characterize the behavior of
: ic witigPecific fabrics over a range of slit lengths. The paramgenay

an isolated slit. Similar studies in composite sheets containirl?g regarded as a r;:at(_ana}l property of the coated fabr'%’ since it
matrix yield zones near the slit tf3,14, where the structure of CONtains micromechanical constitutive parameters, such as yarn

the equations is the same and the slip zone in fabrics plays SFEN9th, yarn stiffness, unit cell dimensions, and the crossover
d b play paint inelastic force. Results for SCiersusp, (i.e., SCF versus

analogous role as the matrix yield zone in composites, ha ’ .
g y P R obtained from solution of the boundary value problere used

shown exponential decay in the width direction, so that finit ~ o : .
width sheets provide effective models for the infinite sheet prof t@bulate SCFversusp, for slits involving various numbers of

lems. Therefore, the displacements of ygrare taken to be those S€vered yams. Selecting values pf and extracting from the

of the undamaged reference, i.6,(¢)=0 tabulation the corresponding SCier various slit sizes provides
Symmetry about the center yarn and the above assumption & behavior of specific fabrics versus slit length.

garding thegth yarn lead to the following special forms for yarns

0 andg—1, written as:

—)>

Ug—2Uqy+2U,=0 (12a) Effects of Inelastic Behavior—Comparison With a Fiber
Composite Sheet Model

n —
Ug-1¥Uq-272Uq-1=0 (120) As previously mentioned, shear-lag models for fiber composite

The boundary value problem for a slit involving a given numsheets(monolayers containing a central notch have a similar
ber of severed #1 yarns requires appropriate boundary conditianathematical structure to the present model for a slit-damaged
on the severed and intact yarns at the line of the &), and at coated fabric. For a comprehensive exposition, including both 2D
a remote distance from the sli=. Since the broken yarn endsand 3D shear lag models for fibrous composite materials, connec-
are stress free at the slit, the boundary condition on the brokstn to statistical strength theories, and an extensive account of the
yarns isP,(0)=0, which using Eq(7), givesU/(0)=—1. For literature, the reader is referred to REL5]. A review with par-
intact yarns, symmetry requires tHat=0 at £&=0. Uniform yarn ticular attention to 2D sheets is given by Rossettos and Godfrey
loads ofp are assumed far from the breaks, therefore, for all yarf§].
we require thaP,=1 and, thereforel)/ =0 at =, A numbc’er of investigators have considered extensions to

Since all yarns are continuous &1, continuous yarn dis- Hedgepeths model incorporating local plastic deforma}non of the

lacements and strains lead to continuity condition§)grandU/ r_natrlx. Her_e we refer to Beyerlel_n and Phoe[ﬁ)]'(B_-P_) in par-
P N > o y . R n  ticular. As in[1], the 2D composite consists of infinite sheet of
at £=1. An additional continuity condition arises from the asequispaced parallel elastic fibers in an elastic matrix, where the
sumption that cross-over point forces required to initiate inelastigers are parallel to th& axis, uniformly loaded ak=* by
deformation at the boundary of the slipping region are approachggler loadsp. The matrix is viewed as divided into discrete bays
in a continuous manngd0]. . . separating neighboring fibers. A central notch interrupts a series of

The system of equations for regions K@<, and Il, £&=1, consecutive fibers and the associated matrix bays along the line
are written in matrix form, and solutions in each region are ob=0. Fibers are assumed to deform in simple tension, and the
tained using an eigenvector expansion technique, as describednitrix is assumed to deform in simple shear. It is assumed that the

882 / Vol. 71, NOVEMBER 2004 Transactions of the ASME



first intact fiber and the remaining intact shéstt one notch tip in

a quarter symmetric portion of the sheeSince only a small,
limited load can be transferred elastically, increasing the applied
load beyond yield requires that the shear transferred through the
yielded regionr,hb increase in proportion to the applied load,
leading to the nearly linear increase @ In the coated fabric
model, inelasticity limits load transfer to the first intact yarn
through slip between the yarn and the coating/#2 yarns, but no
gross yielding of the coating “bay” occurs. Therefore, load trans-
fer to the remaining undamaged fabric is not as severely limited,
and the inelastic zone extent grows at a rate less than linear with
increasing applied load.

In both material systems, the SCF is found to decrease with
increasing applied load, as load transfer tends to occur over a
larger portion of the sheet surrounding the notch/slit, due to the
increasing yield/inelastic region extent. Results for small slits of
5-13 breaks in the coated fabric were giveflifi]. For a notch of
31 fiber breaks in the composite sheet, B-P give the SCF as start-
R ing at 5.03 for the elastic case, and falling to roughly 3.9, 3.5, and
Fig. 4 Analytical results for inelastic zone extent, I, with in- 3.0 for P values of 0.620, 0.820, and 1.160, respectively. Corre-
creasing applied load, p, for slits involving seven, fifteen, and sponding yield region extents ag=3, 5, and 9. Note that, for the
31 severed yarns (# breaks indicated next to curves ) elastic casdi.e., the yield/inelastic region extent is taken to be

zero, both models reduce to Hedgepeth'’s original mddé¢l and
o ) ) ) ) the solution methods faithfully reproduce the SCF result given in
matrix yields in an elastic-perfectly plastic sense only in the mai]. For comparison, we find for 31 breaks in the coated fabric, the
trix bay between the last fiber break and the first intact fiber at tRgCF falls from the elastic valug.03 to 4.2, 3.95, and 3.6 gt
tip of the notch. values of 0.62, 0.82, and 1.16, respectively. The decrease in SCF

Beyerlein and Phoenif9] (B-P) provide extensive results for js seen to be less steep in the coated fabric model due to the
this configuration, including calculations for notch sizeaamber relatively restricted growth in inelastic extefe.g 1=1.37 atp
of contiguous breakssimilar to the slit sizes considered in the_ 0.82). = '
present work'. The nondimensional IoEddefmed by B‘P‘ IS €S- For the notched fiber composite sheet, B-P treat debonding in
sentially equivalent to oup, where a matrix bay yield force/ oqition to yielding and provide a wealth of information on shear
length,h (yield stress times sheet thickngssay be regarded as o5 and ‘shear strain distributions in the matrix, load profiles
_ple_lylng the same role as gquantmymm our model._As the load along fibers, stress concentrations on fibers ahead of the crack,
Is increased, the composite deforms _elastlcally until a threfShOldrl:'ﬂ‘ationships to damage region extent, and applied load and deal
reached at which the matrix bay begins to yielkat0. B-P give i the question of yielding in multiple adjacent matrix bays. A
the applied load at first yield &8, =0.33 for 15 breaks and 0.225 i jjar depth of study of the coated fabric model is beyond the
for 31 breaks. For the coated fabric model, comparable nondimefiesent scope and will be the subject of a future paper. Phoenix
sional loads at the onset of inelastic deformation are found_ to bey Beyerlein[15] connect the fiber composite sheet results to
0.294 and 0.204 for 15 and 31 breaks, respectively, which 5o, ejastic fracture mechanitisEFM) theory for an orthotropic
slightly lower than in the fiber composite, but very similar infyanar continuum and provide additional theoretical results in-
dependence on number of breaks, with increasing slit size lead{t|ging 5 variety of approximations for fiber stress concentration
to decreasing loads at onset of inelasticity. In both material systefy s shear stress concentrations, etc., as well as the previously
models, an increasing load beyond the yield/inelastic threshqighioned comprehensive treatment of statistical strength theory.
leads to the growth of a yielded region along the first intact fiber
or yarn. The inelastic zone extdntwith increasing applied loag .
for the coated fabric model is exhibited in Fig. 4. The inelastigXperlments
zone extent is seen to grow at a higher rate with applied load forILC Dover provided samples of five coated fabrics for experi-
larger slit sizes. B-P find the same trend with the fiber compositeental investigation. One of the samples, a silicone coated plain
model, however, as exhibited in Fig. 7 (], the extent of the weave Vectran fabric, could not be effectively tested using our
yielded region increases approximately linearly with applied loadpparatus and was dropped from the study. Characteristics of the
whereas growth is seen to be nonlinear in the coated fabric modemaining four fabrics are given in Table 1. The yarn size is given
(Fig. 4), which leads to smaller inelastic zone extents at simildor fabric a and fabrid in the traditional textile unit of denier. A
load values. In the fiber composite model, the entire matrix basrn’s denier count is defined as the mass in grams for a length of
yields in the region &x=<b, whereb is the dimensional yield the yarn measuring 9000 meters. Yarn deniers were not available
region extent, corresponding to the nondimensional exgeithe for fabric b and c. Three additional fabrics were obtained from
yielded region, therefore, passes a total shear loagiob to the stock of the Natick Soldier CenterNSC) tent prototype shop

~>

Table 1 Sample fabrics furnished by ILC Dover

sample coating base fabric construction specified
No. warp yarns/criNo. strength

weft yarns/cm, warp, weft

yarn denier direction,

N/cm

a urethane, one side nylon 280, 210 315, 300

b urethane, both sides nylon 186, - 220, 190

c PVC, both sides polyester BT, - 900, 900

d urethane, one side Kevlar %44, 400 790, 790
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Table 2 Sample fabrics furnished by NSC tent shop

sample application coating base construction
fabric No. warp yarns/criNo.
weft yarns/cm
e Soldier Crew Tent Fly heat set urethane, nylon 31x23
both sides
f TEMPER tent fabric PVC, both sides polyester X8B3
g tent liner fabric -, one side - %720
and are described in Table 2. All fabrics are plain woven with the Table 3 Yarn ultimate breaking loads  p,
exception of fabricc, which is a weft-inserted warp knit with a
laid-in warp system. In such fabrics, warp and weft directionsample Pu. N No. observations
yarns are not interlaced, as in a woven, but are laid in straight and 8.97 (0.245 4
joined via a much lighter weight thread that knits the warps to the b 14.4 (0.754 6
wefts at the crossover points, yielding a fabric where the yarns are € 117 (3.47) 4
closely packed and do not exhibit the out-of-plane crimp charac- ¢ 1756.'29((51_'22% g
teristic of woven fabrics. Areal densities were not obtained for any ¢ 22.4 (0.179 4
of the fabrics, however, fabric ¢, which is typical of a high per- g 5.41 (0.338 4

formance architectural fabric, is significantly heavier with a much
greater coating thickness than the other ILC Dover fabrics. Tigandard deviations shown in parentheses.

Hedgepeth

fabric samples:
eaaboc+dxexfag

0 T T T T T T
0 10 20 30 40 50 60 70

slit length (# breaks)

Fig. 5 Experimental (symbols ) and analytical results (curves) for SCF, versus slit length. Top-most curve,
labeled “Hedgepeth,” shows SCF , from Ref. [1]. Remaining curves indicate results for various p, (values
indicated next to curves ).

884 / Vol. 71, NOVEMBER 2004 Transactions of the ASME



RErr Er IRy
$2adds

i e s b s
P

O
D
Ak o

1
o2 1O1)
......

,,,,,,,

,,,,,

Fig. 6 Post-test condition of fabric ¢ specimen

three military tent fabrics from the NSC shop include a lightmen and an associated sudden drop in the applied load. In other
weight tent fabric e, a medium-weight tent fabric f, and a tent lindabrics, a few yarns at the tip of the slit rupture while the load is
fabric g. still generally increasing on the specimen. The progression of fail-

Onset of tearing tests were performed on the sample fabrigse is regarded as a complex dynamic event possibly involving a
using biaxially stressed initially slit cruciform specimens follow-variety of factors: the response characteristics of the material, sta-
ing a procedure similar to that described in H&£2]. The central tistical aspects of yarn strength, specimen size and geometry, dis-
stressed region of the specimen is 15>b% cm and overall placement versus load control, compliance of the test fixtures and
dimensions are nominally 36 cm top-to-bottom and 43 cm sidéest machine, etc. As such, investigation of failure progression is
to-side. Each cross arm is 15 cm wide, and a 2.5 cm long sectioot an objective of the present study, and we are concerned only
of the end of each arm is retained in the test fixture grips. Thv@th the conditions leading to the onset of tearing failure at the slit
initial test slit is cut in the center of the central region with a shargamage site. For the tests where initial yarn ruptures occurred
razor, running parallel to the side-to-side direction of the spegirior to maximum load, the specimen load-displacement curves
men. Typically, four “stress relief” slits are cut in the side crossvere carefully studied to reveal the point at which a localized load
arms, and two are cut in the top/bottom cross arms to mitigate thep occurs associated with the first yarn rupture at the slit tip. For
buildup of in-plane shearing stresses along the boundaries of tests involving sudden catastrophic tearing, the load associated
central region. The test setup uses a lightweight frame incorporatith first yarn rupture coincides with the maximum load, and so
ing air cylinders to apply a constant tension in thedirection the maximum load value is used in the calculatiopof Once the
(specimen side-to-side directiprwhile an increasing tension is proper load value is identified, the value pf is determined by
applied in thex, direction using an Instron test machine. Usuallassuming the applied load on the specimen’s gripped top/bottom
the tests were performed under load control, however, the necessss-arm ends is distributed uniformly among the #1 yarns.
sity to change test machines during the test program required that
some of the samples be tested under displacement control condi- . . .
tions. Each sample fabric was tested over a range of initial sk omparison of Experimental and Analytical Results
lengths. The yarn ultimate breaking loggisexhibited in Table 3,  The experimental and analytical results for the SCF
were measured through tension tests on narrow strips of thep,/p.) behavior of particular fabrics over a range of slit
coated fabrics using a loading rate approximately the same as tlesigths are exhibited in Fig. 5. Each individual test result is plot-
used in the onset of tearing tests. Generally the gage length fed, where the SGHs calculated using the mean value pf
these tests was 5.08 cm, although falzi@and d required that (Table 3, and the particular value qi, observed in that test. In
capstan grips be used and involved a longer and less well-defirsuine cases, only a single observation was made for a fabric at a
gage length. From four to eight observations were made for egeérticular slit length, though generally two to four replicate tests
fabric. were made.

The failure process in some of the fabrics was sudden, with aAnalytical SCFk curves are plotted in Fig. 5 for various constant
rapid tear propagating across the full center section of the spegalues ofp,, where the value is indicated next to the curve. As
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shown previouslyp, may be regarded as the single dimensionleggesented. A crucial aspect is the treatment of inelastic deforma-
parameter that governs the SCQFersus slit-length behavior of tion involving yielding or separation of the coating and relative
particular fabrics. As such, experimental SEEIit length data displacement between the interlaced yarns near the slit tip. Results
for individual fabric samples are expected to follow a consfant for the onset and growth of inelastic deformation under increasing
curve. Increasing values @f, result in decreasing values of SCF load and the associated decrease in stress concentrations at the slit
for given slit lengths; since fabrics with lower SC¥alues can tip have been discussed in connection with similar results for a
tolerate higher loading relative to yarn strength may be re- notched fiber composite sheet model in the literature. Experimen-
garded as a measure of a fabric’s tolerance to slit damage. Gtal-results on a variety of coated nylon and polyester fabrics have
frey and Rossettogl6] introduced a somewhat similar parametebeen shown to corroborate the model and demonstrate the useful-
as a screening measure for slit-damage tolerance in uncoated wess of a paramet@;, as a measure of slit-damage tolerance. The
ven fabrics. effect of experimental specimen size on obtaining realistic results
Hedgepeth's stress concentration factpt$ are exhibited by consistent with the present analytical model was discussed.
the curve marked “Hedgepeth” in the figure. As previously men-
tioned, if we assume an inelastic zone extent of length zero, the
present model essentially reduces to Hedgepeth's, and the SCF
calculated_using the present method closely approximate th%@knowledgments
given by his result. ]
With the exception of fabric d, the experimental data are seen toWe gratefully acknowledge the efforts of Robert Lingo, Thad
be in good agreement W|th the analytica| curves for Consﬁant Frednqkson, and DaV|d Zetune, ILC D_0V€r, Inc. in SeleCtIng and
While the data for fabrics ¢ and e are somewhat scattered, data§ePPlying fabric samples for our experimental program. We thank
fabrics a, f, and g follow the analytical curves for constagt Professor Julie Chen, University of Massachusetts-Lowell, for her
quite well. Results for fabric b lie close to the Hedgepeth curvéterest and for her help in recruiting one of (Bosselmah to
suggesting that deformation near the damage site in that fabric@gsist in this research. The helpful suggestions of an anonymous
primarily elastic up to onset of tearing. Consistent with results féeferee that led to a significant improvement in the text are also
coated fabrics in the literatuf@—4), the slit-damaged fabrics sus-acknowledged.
tain higher remote loadings than would be anticipated based on
Hedgepeth’s analysighe experimental SGFare lower than the
result given in[1]).
Results for fabric d do not exhibit the trend of increasing SCReferences
with |r_10reasmg slit size cI_earIy shown in the analyt_lcal an_d Other[l] Hedgepeth, J. M., 1961, “Stress Concentrations in Filamentary Structures,”
experimental results. Noting that the Kevlar yarns in fabric d are” ~ NASA Technical Note D-882, NASA Langley Research Center, Langley Field,
significantly stiffer than the nylon and polyester yarns in the other VA
fabric samples, we investigated how the fabric’s elastic propertieéz] Topping, A D., 1973, “The Critical Slit Length of Pressurized Coated Fabric
. . . Cylinders,” J. Coated Fabric8, pp. 96—-110.
affect t.he relationship between the aCt.ual experl'm.ents and .thﬁ’,] Ko, W. L., 1975, “Fracture Behavior of a Nonlinear Woven Fabric Material,”
theoretical model. The model treats an isolated slit in an infinite” ~ 3. Compos. Mater9, pp. 361-369.
fabric, whereas the experiment assumes that a 15 cm by 15 ciid] Wardle, M., 1978, “Aramid Fibers for High Performance Coated Fabrics,” J.

region of the specimen pproximatelyinfinite. It turns out that, Coated Fabricsy, pp. 334-356. N
duge to the hi hpstiffnesﬁsgep of the Kglvlar arns. the character- [5] Rossettos, J. N., and Godfrey, T. A., 1998, “Damage Analysis in Fiber Com-
9 ff y ' posite Sheets and Uncoated Woven Fabrics,” Appl. Mech. R&N§), pp.

istic length scaldi.e., the physical length along associated with 373-385.
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Concept and Fundamentals of
Temporal-Spatial Pulse
Representation for Dislocation
Source Modeling

Ray Ruu:hong Zhang For far-field wave-motion response to a point dynamic dislocation source, the temporal
Associate Professor and spatial features of the source mechanism are characterized, respectively, by two

Division of Engineering, factors, i.e., a source time function for dislocation growth and a combination of nine

Colorado School of Mines, couples of impulse forces that is equivalent to the final dislocation. The mathematical
Golden, CO 80401 representation for each of the couples, referred to as spatial couples, is a couple of

e-mail: rzhang@mines.edu impulses acting in opposing directions with an infinitesimal separation distance or, in the

limit, by the derivative of the impulse with respect to the separation-distance parameter.
This study proposes a temporal-spatial pulse representation for the nine couples, referred
to as temporal-spatial couples, and subsequently for the dislocation source modeling.
Each temporal-spatial couple consists of two impulses acting in opposite directions with
both an infinitesimal separation distance and an infinitesimal time delay. By examining
dynamite source modeling, this study shows that the proposed representation can intrin-
sically integrate the spatial and temporal features of the dislocation sources from the
response point of view. This study also shows an example of a point, shear-slip seismic
source modeling using traditional and proposed pulse representations for far-field wave
motion. Discussion is finally provided for the implications of the proposed representation
in broad applications[DOI: 10.1115/1.1794712

1 Introduction tion of the nine spatial couples can be theoretically proved to be

uivalent to any kind of a dislocatidmormal and sheaiin an

Material crack, seismic rupture source, and the like, share tﬁgn. . ’ . .
arbitrary orientation from an elastodynamic approach, which uses

same source mechanism, i.e., time-dependent dislocation ovehe generalized Betti reciprocal relation by introducing a time pa-

finite fault area, or simply the finite dislocation source. The ﬁmt?ameter as first described [i]. In this approach, the Green's
dislocation source can be modeled as the s_ummatmmtegra- function(i.e., displacement response to a unit foriseassumed to
tion in the limit) of point sources, each of which accounts for th% continuous everywhere, even on both sides of a fault as the
evolutionary dislocation over a discretized subarea tnggeredcﬁ location never happeniﬁ),r details, sed2]). Alternatively and
different time instants. Therefore, truthfully characterizing th(renore generally, Bakus and Mulcafs',4] use the concept aitress
point source Is a key in u_nderstandlng of nature .Of the dlslocatlgﬂ_‘t to derive tﬁe same results. Thz;lt derivation uses the assump-
?ogrce. é\(lore |mportant,k|tdhas broa}d-b?se? aﬂp#ca:ﬁtlﬁﬂs, eﬁem in that the earthquake and indigenous sources are considered to
fied as |agnccj)smg Cg’}c ?me}ge n structura d eab mon cl)”rlge the result of a localized, transient failure of the linearized elas-
improving understanding of seismic source and subsequently Wg-qnqfitytive relation, which leads to the stress glut as a function
ing the source model to simulate earthquake ground motion fgf the dislocation quantityfor details, seds])
Sﬁ;sm'c de|3|gn. and retrofit, and conducting seismic survey forrpg apove traditional approach basically characterizes the spa-
oil/gas exploration. . . . tial and temporal features of the dislocation mechanism separately

The mechanism of the above point source is typically modelgg i two factors, i.e., the spatial couples and the source time
as the product of a source time function characterizing the dislgyction. It provides an equivalent description of far-field wave
cation growth(e.g., a ramp function a factor combining nine mqtion due to the point source, in which the features of the spatial
couples of |mp_ulse forces that is equwglent to t.he unit dlslo.catloggoumes are closely related to the type of the physical source. For
and a scaling factor or magnitude =({inal dislocation example, the couples with separation-distance orientation along
xmaterlal_r|g|d|ty><fault qrea). Each qoup_le can b? represgntqﬂe impulse direction are usually related to the explosive source
mathematically by two impulses acting in opposite directionggr mode | in fracture mechanigswhile the so-called double-
with an infinitesimal separation distance either along or Perpegouples (or combination of modes Il and Ml in which each
dicular to the impulse direction or, in the limit, by the derivativesople has the separation-distance orientation perpendicular to the
of the impulse with respect to the separation-distance paramejgfpulse direction, are associated with the seismic shear-
This study refers to the above approach asspatial pulse rep- gjslocation source. The combination of the above two types of
resentationfor couples, or simplyspatial couplesThe combina- couples can be used to explain the volcanic earthquake source
- mechanism, among othefsee details if2,6-9).
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the assumption that the two impulses in a spatial couple mustEach of the two impulses will produce three additive terms of
simultaneouslgxist with an infinitesimal separation distance, thumotion response, i.e., two far-field motions of pure P and pure S
generating no net force in the far field. Note that since the dislasaves, respectively, and one near-field coupled P-S wave motion.
cation is equivalent to a combination of nine couples of impulseEhis can be seen, for example, [ii], from the classicStokes
only couples/impulses are used here and subsequently for exalution that is the displacement response to a force in a homoge-
nation of the underlying physical phenomena. With the same rezeous medium. The far-field terms of the pure P- and pure S-wave
son of no net force generated by the spatial couples in the far fieldptions are proportional to the geometrical spreading factor 1/R
temporal pulse representatidar couples otemporal couplesan where R is the source-to-observation distance, while the near-field
be introduced, each of which is modeled by the two impulsesrm for the coupled P-S wave motion is proportional to?L/Rs
acting in the opposite directions with no separation distance biai as the far-field motion is concerned in this and other pertinent
with an infinitesimal time delay or, in the limit, by the derivativestudies, the near-field motion term can be neglected, as illustrated
of the impulse with respect to time. in [7], among others. To this end and also due to the additive
The objectives of this study are to examine the validation andsponse feature, this study can examine the pure P- and S-wave
implications of the alternative temporal couples for dislocatiomotions in the far field separately.
modeling. Moreover, the study will propose a concept of com- The impulse response functidaij(i,t;é, 7) is denoted as the
binedtemporal-spatial pulse representatidor the nine couples, p- or S-wave response in the directibrat (X,t) due to a unit
or temporal-spatial couplesfor dislocation source modeling. jmpuise in directionj at (£,7), i.e., (X— &) (t— 7)6,. This
Each temporal-spatial couple consists of two impulses acting dfy,dy defines the unit impulse having the dimension of moment
opposite directions with both an infinitesimal separation distanggyrce-length and the impulse response function having the di-
and an infinitesimal time delay. This study will then provide theyensjon of length squared. The far-field displacement of P- or
fundamentals and explore the underlying physics and implicatiogsyaves at the observation site due to the colplgs,t) can
of the proposed representation. then be found as the superposition

2 Spatial and Temporal Representations for a Couple

1 - S
Without loss of generality, this study first investigates the far- Ui (X, )= (= [Gij(X,t:6,7) = Gy (Kt €— iy, 7)]
field displacement wave motion due to a spatial couple of im- K

pulses in thex; direction. Shown in Fig. 1, this couple is repre- 9 .

sented as two impulses at timeacting in opposite directions — gGij(i,t;g,T) 2

alongj with an infinitesimal separation distanbgin directionk. h—0 k

A mathematical representation of the impulses exerted by this

couple is Alternatively, Eq.(2) can be written as
F(XD=F (X0 +F (X,1)

N T o
:hik[a(z—é)—5(i—§+hkék)]5(t—r)éj Vit = g LG (X667 =G (X iy 14,7

J -
I oz . —— = ——Gj(R L&) (3)
— O(X—&)5(t—1)& or ax, e
H) 9&, ( &) o ) j h—0 k
_ ié()?— g) S(t—1)6, @ Equations(2) and(3) indicate that the derivatives of the impulse

response function, with respect to the spatial parameters at the

_ source and observation locations, are equivalent except for a sign

where=denotes “by definition” and=j(X,t) is the force represen- change. This is a direct consequence of spatial reciprocity.

tation of the couple that consists of the two impulslé%*,(i,t) The spatial reciprocity of source and observation positions can

andlfjs’(i,t). The superscrips is used to emphasize that this is &€ related to a temporal reciprogity at the source and observation

spatial pulse representation. In H@), t represents timeg is the locations. For a given impulse a,(r), the induced wave motion

Dirac delta function, and; is the unit vector in the; direction at (X+hy&y,t) is equivalent to the wave motion ak,(+tq),

wherei =] or k. Further,X=x,&; + X,8,+ X365 represents the ob- where the direction-dependent time differenggis

servation site in space, wheré,(€,,6;) are the three orthogonal

unit vectors, andé= &,6,+ &,6,+ £,6; is the location of one [h&]-[6] h

source impulse. Note th&; andé, are not necessarily orthogonal tdk:L — —kcosak (4)

or parallel to each other, or coincident with one of the three or- v v

thogonal unit vectorsd; ,€,,€3). Since the separation distance is

infinitesimally small in comparison with the source-to-observatiopere the dot denotes an inner produgtjs the angle between the

distance, the spatial pulse representation for the couple i1Eq. 5o rce-observation directio and separation-distance direction

generates no net force at the locations far away from the sourge. andy is the body wave spedie., either P- or S-wave speed
Similarly, for a given wave motion at(t), the causative impulse
at (£—hyé,,7) is equivalent to the impulse afy,7—tg,).

* With the aid of the above relationships, the first parts of E2js.
and (3) can then be written as

heo 9%

Fr=Ls@-8e-nge,
h

4

Observation  (3,8)

b2, 1 - .
ﬂ Fr =—hla(f-5+hké.)a(:—r)é, Ujj(X,t)= h—k[Gij(x,t;é,r) —Gjj(X,t €, 7—tg)]
(1
cosfy, d L=
Fig. 1 Spatial pulse representation for a couple with an infini- — ;Gij(X,t;f.T) )
tesimal separation distance tak—0
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B = 8G-500-K, ﬂ
2
(e} +”_+ ;,I ﬁ"=%5(fc—5)6(t—r)é,

o 1 .. = . = 1 oo 7., -

F'r=a—8(GF=-8Y0( -1+t . F =—— - - - -

LTk =00l -r+tak?; ! h E=G 4 k&) -0, ﬂ F,'-=_—h‘ S(%-£ +h,8,)8(t- 1),
2

g _ 1 oo 2 ]
Fr= Z S(xR-E)o(1-1)E,; Observation

Fig. 2 Alternative temporal pulse representation for a couple (a)
with an infinitesimal time difference

F;=-is(f—¢‘)6(r-r)ézm T g
o, — =g 0D,
(b)

1 - R N
Uij(X,t)= h_l:Gij(Xrt;‘i:vT)7Gij(xvt+tdk;§17)]
K Fig. 3 (a) A 2D dynamite source with a spatial pulse represen-

cosfy d o tation for couples in a finite version; (b) a 2D dynamite source
T T, il X, €,7) (6) with a spatial pulse representation for couples in a limiting
tgx—0 v version

where use has been made of E4). Comparison of Eq92) and
(3) with Egs.(5) and(6) yields

i . SO . Since the dynamite source generates only P waves, the impulse
72 Gi(X g1 = ———G;(Xt£7) (7)  response function in Eq10) and pertinent quantities in subse-
& v JT . -
quent equations are related to P-wave motion only. Note that for
R K . simplicity, the factor of the source time function, describing the
o Ci(R g1 = ———Gj(X, 6, 7) (8) temporal evolution of the dynamite source or forces and scaled by
Kk v ot . . . . .
the total magnitude or seismic moment of the source, is not in-
The above equations imply that the temporal and spatial derivduded in Eq.(10). The superscript is used to indicate that the
tives are exchangeable, to within an adjustable factorfgls displacement is obtained by using thenventional approachvith
These equations also suggest that the spatial pulse representatierspatial pulse representation, as opposed to the new proposed
for a source couple in Eq1) can be alternatively replaced by theapproach to be elaborated on later.
temporal pulse representation below and in Fig. 2, With the aid of Eq.(6) or (8), Eq. (10) can be rewritten as

FIXD=F" () +F (Xt)

C030 J
Uf(i,t): _E [G”(X t; g T)]

- j: 1))
= A(X=E[S(t—7) = d(t—T+1q.) ]€;
cosfy d . :_;E 2 [Gij(X,t;€,7)cosb;] (11)
- S(X—§)o(t—1)€ or
ta—0 Y i Note that the subscrigtin Egs.(10) and(11) is a dummy index,
cosé depending only on the coordinate system selected for describing

_ k —&)8(t—1)8; ©) the three orthogonal couples. Without loss of generality, therefore,

tg—0 v ﬁt ! one of the three couple directiong=1,2,3) can be selected to be

coincident with the directio®, . Equation(11) then becomes
where the superscrigtin F is used to emphasize that this is a re =4 D

temporal pulse representation, in comparison with the superscript
S.

Since the time difference for the temporal couple is infinitesi N -
mally small in comparison with the time elapse required for : £ =Z‘s(x"f)5("’)ez
wave traveling from the source to the far-field observation site, tt
temporal pulse representation in E§) introduces no net force in ﬂ
the locations far away from the source. Therefore, both the spat _
and temporal pulse representatlons are conceivable for the indf"” —-h—5(x &)o(t- f+t,n)e.<::' —
enous source, the latter of which is referred to as any phenome ! ﬂ F," =—i5(§-§')5(z—r+:,,)az
occurring within or upon the surface of the earth that does n hy

R =L 8G-5)60-18

involve forces exerted by any other bodigs]. (a)
. . Bl = _cosé, 3 5 i-8)s
3 Conventional Models for Dynamite Sources 2 = F-5)se-1)z, m
The physical mechanism of a point dynamite source is highl = F=- cosb, i:S(x -E)5(t-1)8,
nonlinear and very complicatete.g., [12]). Nevertheless, the (b) v

source for far-field wave motion can be modeled by three orthog
nal couples in the spatial pulse representation, which essentie
represents the consequence of a sudden pressurization, or force
all the directions, on a spherical cavit§.g., see detailed deriva- :
tion in [13,14]). The far-field displacement in directidndue to (¢
the three couplesii(X,t), can be found below, with the aid of Eq. ] )
(3) in whichk=j, Fig. 4_ (a) A2D dynar_nlte source Wlth a temporal pulse repre--
sentation for couples in a finite version; (b) a 2D dynamite
3 3 [9 source with a temporal pulse representation for couples in a
:2 Ujj(X E —G;; 517') (10) limiting version; (c) a 2D dynamite source with a temporal
j= =1 9X; pulse representation for couples in an alternative version

P s Byt
=15 0E-5de -1z,
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9 . couples in particular, although the spatial features of the source
ui(X,t)y=—— EGir(i,t;f,T) (12)  are well characterized by the spatial couples as shown in Fag. 3
v On the other hand, the alternative temporal-based source model

Equations(10)—(12) indicate that the far-field displacement, duemay capture the temporal features of the two-impulses formation
to a point dynamite source, is composed of fundamental solutiofos each of the nine couples, while it may not seize upon the
that are proportional to the derivative of the impulse responseatial characteristics in the two-impulses formation.
function with respect to either a spatial or a temporal parameter. The above observations and analyses suggest that the dynamite

The above equivalence on far-field displacement can also seurce may be modeled on the basis of a combined temporal-
interpreted from the source point of view. Equatid®) suggests spatial pulse representation for the couples, each of which has two
that the three orthogonal spatial couples generate the far-fieldposite impulses built at both infinitesimal separation distance
wave motion. For convenience in illustration, a two-dimensionand time delay. Accordingly, the temporal and spatial features of
(2D) dynamite source model is shown in FigdaBand 3b). the source can be characterized in an integrated way, which may
Since all the impulses in Fig(8&) develop at the same timewith  overcome the influences of inappropriate assumption of a source
infinitesimal separation distancds and h,, the spatial-based time function in the conventional source modeling.
source model can be regarded as to physically cagturenap-
shoy the cavity growth of the dynamite process with the cavit)é ) )
size proportional td; andh, at time instant. Note again that the Temporal-Spatial Pulse Representation

temporal evolution of the cavity growth is characterized by a Buijlding on the above analysis, a temporal-spatial pulse repre-
source time function that is not included in H30). sentation for couples, and consequently for such applications as
~ On the other hand, Eq11), the alternative form of Eq(10),  dynamite source modeling, is proposed. Shown in Fig. 5, the two
implies that the far-field displacement is generated by three gmpulses for a temporal-spatial couple act in opposite directions in
thogonal couples that are described by the temporal pulse repigection;j with an infinitesimal separation distankgin direction
sentation, as depicted for a 2D source model in Figa) 4nd K and an infinitesimal time delat,. Mathematically, it can be
4(b). Since all the impulses in Fig(d) develop at the same loca- represented as

tion (&), but with infinitesimal time differencey; andty,, this R R

alternative temporal-based source model may feasibly capture th@(X,t)=F]" (X,t) + F] " (X,t)

temporal evolution of the impulse generation at a given location

> . S : 1 - -

(&) for the dynamite source. Similar to EG.1) and Figs. 4a) and = ——[8(X—&)8(t—7)— 8(X— E+h &) 8(t— 7t 1§,
4(b), Eq. (12) or its 2D case depicted in Fig.(@, shows an tihy

alternative temporal pulse representation for the dynamite source. (13)

L . where the superscript denotes thenew temporal-spatial pulse

4 Imphcatlons c.)f Spatial- and Temporal-Based Models representation for a couple. Note that f?}?()?,t) in Eq. (13) has
While both_spatlal and tempo_ral pulse representations for thejifferent dimension of force such 5$()?,t) in Eq. (1), because

above dynamite source are consistent each other from the perspegeyw pulse representation takes into consideration both the spa-

tive of far-field wave-motion responses, their underlying physiGgy| ang temporal features of the source to be modeled. The ex-
and |mpllca_t|ons may be different, which 1S examined below. .pression forlf”(i(’,t) can be adjusted to the force dimension by
The spatial-based model for the dynamite source characteri J

the spatial and temporal features of a point dynamite sour f?oducing a constant dimension-related factor in E). For
mechgnism e arate[I) throuah the s atiapl) cou I)és and a so &6nvenience and also for conceptual comparison only, however,
. h P y 19 patia P - SOUGEH a factor is not used and similar terminology, such as “force”
time function. The source time function is, however, typicall BN t d its induced tion. is still din th b
assumede.g., a ramp function with a selected risetime for th&?" Fj(X.t) and its induced wave motion, is still used in the sub-
sequent analysis. With the same reasons used in explaining the

dislocation progressionwhich may not have as much intrinsic X ;
physical meaning as the spatial couples. In fact, in deriving tif@atial and temporal couples, the new pulse representation gener-
s no net force in the locations far away from the source, and is

spatial pulse representation for the couples that is equivalent toﬁi@ - -
dislocation, the principles for motion synchronization and compafl€refore feasible for the indigenous source. .
ibility are implicitly used, i.e., the pair of forces or stresses in 1€ témporal-spatial pulse representation for the colfle 5
opposite directions equivalent to the dislocation or discontinuif;"Id Eq.(13)] can be Qecompqsed into one spatial and one tempo-
of strainmustoccur at the same time instant. While the synchrd@! Pulse representatioisee Fig. 6,
nization is widely used in establishing and solving wave motion gn g \ _r2ns+ ¢ 2ns— g 2nt+ o 2nt— o
equations in a continuous medium, it may not truly characterizeFJ(x’t) [P RO+ R RDIHIFT O+ R (U]
the dynamic process of a dislocation source that has integral 1 R R
temporal-spatial features. = i p [OX=8)8(t—7)— 6(X— £+ &) 8(t— 7)€

In particular, from the perspective of far-field wave-motion re- Kk

sponses, if one impulse of a couple can be regarded to take place 1 - R

at the source location closer to the observation site than the other + i [0X—E+h&)a(t—1)
impulse, the former impulse should also be viewed similarly as Kk

occurring at an earlier time instant than the latter impulse. Note — (X~ E+h &) d(t—T—t,)]§,

that the above time difference in the generation of the two im-

pulses for the far-field motion is different from the time difference

due to the wave motion generated by the latter impulse traveling

the infinitesimal separation distance. In other words, the two ir [e-¢]

pulses in each of the couples for modeling a dislocation sourg_ 1 s5:_ 5,5z

have not only the infinitesimal spatial differengeaditional view ' %A !

but also the infinitesimal temporal differenéeew view that is ke,

parallel to the traditional view with the time replacing the spac

parametens ﬂ,
With the above in mind, the traditional spatial-based source

modeling may not capture the essential temporal features of #ig. 5 Temporal-spatial pulse representation for a couple with

source in general, and two-impulses formation for each of the nibeth a separation distance and a time delay

Observation  (%,1)

B el s -F 4 h3 )00 - -1)5,
tkhk .
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where use is made of Eq&l) and(8). The far-field displacement

£ for a dynamite sourceu-”(i,t), can then be found by
— ul(X,t) = E - tZG.,<x,t,§ 7)
ﬂ Er == 8G-E4hE,)86 1), =-F™
1
R I 1 Y5 ——n Z Gy (%,t;€,7)cos0, 17)
Again, if one of the three couple-directiopg=1,2,3) is selected
B el 5 E 4 k) —1,)F, - to be coincident with the source-observation direcBpnEq.(17)
thy becomes
. iy . 1 9° R

Fig. 6 Decomposition of the temporal-spatial pulse represen- ul(X,t)=— —Gi (X, €,7) (18)
tation for a couple : I AL

Equation(18) implies that the far-field displacement for a point
dynamite source is proportional to the two derivatives of the im-

1 9 10 . . pulse response function with respect to time, i.e.,
—_— — — — (X~ g)&(t 7€+ —6(X—¢&

tk &X hk ot 2
e MR Gy (R GE ) (19)

Ui (X,1) e ir(X, 16,
+h &) 8(t— 1) (14) ' gtz i T
The corresponding P- or S-wave displacemé]ﬂ()?,t), is Correspondingly, the force representation for the source is then
1 1 proportional to the two time derivatives of an impulse, i.e.,
U”(X t)_t hy [G”(X,t,f T)— GIJ(X+hkeklt!§ ]+ — th 92
b F(X, t)oc 6(x &) o(t— 16, (20)

XTG:i: (X 3.t —G.. (X 8 t—t,:
[Gy (XH M€ 167 = Gy (XH i 1=t 617)] Equation(20) can also be derived from Eq4.3) and(14) follow-
ing the same approach used in EG)—(19).
The underlying physics of Eq20) is now explained. From the
perspective of far-field wave-motion response, the point dynamite
+hé, E D (15) source mephanism is an'evolutiona_ry process o_f th(_a pressurizayion
on a spherical cavity, which has a diameter infinitesimally small in
In general, the time delay for the impulse-induced waves travelig@mparison with the source-to-observation distance. All the same-
the infinitesimal separation distance between the two impulsesaisiplitude forces of the pressurization on the spherical circumfer-
different from the time difference generated by the two impulseshce of the cavity are not exerted simultaneously from the re-
from the perspective of far field, i.etq #t,. However, both sponse point of view, i.e., each pair of the forces along a certain
quantities {4y, t) are much smaller than the time required for thejirection has a time delay that is infinitesimally small in compari-
impulse-induced waves propagating from the source to the f&bn with the time elapse for the force-induced waves propagating
field observation site; an assumption can be made that they & the source to the observation site. Note that all the physical
approximately equal for the far-field motion. In fact, this is not aguantities of the cavity formatiofe.qg.,h, andt, in Eq. (13)] are
assumption if the derivative representation for each of the couplgso much smaller than the physical quantities of wave motion at
is used. This is similar to the fact that although generdlly the observation site, such as wavelengths of interest. The wave
#h, in Fig. 3@), they can be assumed to be the same. Neverthgignals generated by the impulse at the cavity end nearest to the
less, the assumption will not affect the limiting case in Fi@) 3  observation site will be received first, among all the signals from

14
— i 2 Gy §7')+h - Gij(%

the derivative representation is used. the source, while the wave signals induced by the impulse at the
With the above analysis, EL5) then becomes farthest end of the cavity will be picked up finally. Both the above
19 ) P ) gausative impulse_s, i.g., a_pair of impuls_,es ora com_JpIe, are in the
U{}()?,t) =—— —G(X,t& 1)+ — —G;;(X+h& t;€,7) line of source-to-site direction. Note again that the time difference
hy dt hy dat in the above pair of wave signals shown in the response is not
2 only caused by the infinitesimal separation distamcbkut also the
- G.J(X,t,f 7) infinitesimal time delayt, . The signals caused by the other pairs
heo X kot of impulses or couples in the other directions will be cancelled out
cos 2 by each other due to the symmetry to the source-to-site direction.
_ k ZG”(X t:€,7) (16) This leads to a single couple of the impulses in the source-to-site

direction in Eq.(20). The two derivatives in Eq20) are made of

Table 1 Comparison of conventional, alternative, and proposed pulse representations for the
couples at source and wave motions in far field

Description Conventional Alternative Proposed
Force representation for a 9 R Fl R Fa .
dislocation source &_x[a(i_ Ht—1)] ﬁ[a(i— HAt—1)] Ez[a(i— HAt—1)]
Displacement of wave 9 . F) . P .
motion to a dislocation —[G(XLE7)] —[G(Xt;€7)] —[G(Xt€7)]
source x a *
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Fig. 7 Two sets of orthogonal unit vectors and their rotational
angles for pulse representations of a shear-slip dislocation
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Fig. 9 A point shear-slip seismic source with a temporal pulse
representation for couples

one temporal derivative, capturing the temporal features of the u(X,t)= — cost, iG-l(i t'é 7)— cosf, iG-z(i t'§ 7

couple generation in the source-to-site direction, and another tem- '~ v gt BT gt e

poral derivative that is equivalent to the spatial derivative, char- 19

acterizing the spatial features of the couple generation. =———G, (X&) (24)
In comparison with the traditional source model that is based on voat T

the product of a factor for spatial couples and a source time funggations(21) and (24) indicate that the far-field P- or S-wave
tion, the proposed dynamite source model for the wave motion s acement, due to a shear-slip source, can be obtained from the
the far field has an extra derivative of the impulse response fung,jamental solutions that are proportional to the derivative of the

tion with respect to the time parameter in comparison with thg, ise response function with respect to either a spatial or a
traditional model, which should intrinsically integrate the sour mporal parameter.

temporal feature. Table 1 summarizes the traditional, alternative,tna gpove equivalence on far-field displacement can also be

and proposed pulse representations for the couples at source g

wave motion in far field.

6 Extended Applications

preted from the source point of view. In particular, E2{l)
suggests that two orthogonal spatial couples are responsible for
the far-field P- or S-displacement wave response, depicted in Fig.
8. On the other hand, the first equality of Eg4) implies that two

While the above study focuses on the application of the pr@fthogonal temporal couples cause the response shown in Fig. 9.
posed temporal-spatial pulse representation in modeling a poite 1ast equality of Eq24) implies an alternative temporal rep-

dynamite source, it is straightforward to extend it to modelin
other dislocation sources such as seismic shear dislocation

sentation for the source, i.e., a temporal couple in the direction
d

material crack. As an illustration, below is an example of a point, With the aid of temporal-spatial pulse representation for
shear-slip seismic source modeling using conventional and plqp_uples, the far-field displacement caused by the shear-slip source

posed pulse representation for in-plane, P- or S-wave motionGan Pe found as

far field. 92 . 92 -
Conventionally, two orthogonal spatial couples or so-called U(X ) == ——=Gj1(X,t;£,7) — ——=Gi2(X,1;€,7)

double-couple$2], each of which has the impulse direction per- Xt IX It

pendicular to the separation-distance orientation, are used to 1 92

model a point, shear-slip seismic source Iocateé and activat-

== eCn(Xt&s) (25)

ing at 7, shown in Figs. 7 and 8. The far-field P- or S-wave

displacement in direction in the plane ofé; and €, due to the
double-couplesy;(X,t) can be found by

J - J -
u::()z,t)z__Gll()—(),t,g,T)_T)qGQ()?,t,f,T) (21)

With the two reference frame€{, &,) and €, , &) in Fig. 7, one
could have the following transformation:

6,=6, cosh,—€&;sind,, €,=€ sinh,+é&cosh, (22)
Giu(X,6:€,7) =Gy (X,t;€,7)C0s0,— Gp(X,t; €, 7)sin 0,
Gia(X,t;€,7)=G; (X, 1: €, 7)sin 0, + Gy (X, 1; €, 7)cosd, (23)

Note that angled, (6,) is between directiong, andé€, (€, and

€;) because the impulse directi@ (€,) of a couple is perpen-
dicular to the direction of separation distance of the couple wi

&, (&).
With the aid of Eqs(8) and(23) and 6, + 6,= /2, Eq.(21) for
the far-field wave motion can be rewritten as

¢

r

|-

- & .- % -
F'= _;. S(E~&E)o(1-71)e, Observation

&)
ﬁ=> B =5 5)60-1)%

Fig. 8 A point shear-slip seismic source with a spatial pulse
representation for couples
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where use has been made of E¢®. and (23). Equation(25)
suggests that the far-field P- or S-wave displacement to a shear
dislocation sourcey!(X,t), is proportional to the two derivatives
of an impulse response function with respect to the time, i.e.,
52 R

UF(i,t)“PGir(i,t;&T) (26)
Accordingly, the force representation for the source is then pro-
portional to the two time derivatives of an impulse, as shown
below and Fig. 10,

R L. R

F”(X.t)ﬁﬁé(x—é)ﬁ(t—r)er (27)

The underlying physics of impulses for the shear dislocation such
s Eq.(27) are not as easily interpreted as those of dynamite

source in Eq(20) (e.g., sed2]), because the double-couples rep-
resentation for a shear dislocation is derived in the sense that

\i¢

2 - = . -
F=- 9 8 -E)8(t-1)8, |X—-f|e, Observation  (%,1)
Ox, 0t
2
=288 2 s Eysa-0e,
v —

= 82 - cosd, d° .
Fr=v S(% - -V =— 29 o= -3
) o (X-5)0(t-1)é, P S(X-£)5(t-1)e,

Fig. 10 A point shear-slip seismic source with a proposed
temporal-spatial pulse representation for couples
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impulse forces and the dislocation are equivalent in mechanitise broad-based applications such as diagnosing crack damage in

not explicitly through the simple, physical observations. structural health monitoring, simulating earthquake ground mo-
) ) _ tion for seismic design and retrofit, conducting seismic surveys for
7 Conclusions and Discussions oil/gas exploration, and assessing influences of explosions in

Following a review of the conventional spatial pulse represeftructures, among others.
tation for couples, a temporal pulse representation for couples js
introduced. This study shows that the temporal and spatial puégknowledgments
representations are alternative for the source modeling as far a¥he author would like to express sincere gratitude to Dr. Ken
the far-field wave motions are concerned. Furthermore, Larner at the Center for Wave Phenomena in Colorado School of
temporal-spatial pulse representation for couples is proposadines for providing invaluable advice on the first draft of the
which is then used to build new models for dislocation sourcegaper, and to Dr. Douglas Hart at WesternGeco, (tlteen) and
The proposed temporal-spatial pulse representation for edgBgis University(now) for the joint research effort on modeling
couple consists of two impulses acting in opposite directions wittynamite sources for seismic survey under the sponsorship of
an infinitesimal separation distance and an infinitesimal time dé/esternGeco, Inc. and the Colorado Advanced Software Institute.
lay, which can be applied for modeling various types of dynamithis work was supported by the National Science Foundation
dislocation sources. with Grant No. 0414363 with Dr. Ken Chong as program director.
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Three-Dimensional Steady-State String pee x—x /1. s=sL: q.-0./mg: q.-0./mg. p*

Motion in a Fluid Flow =P*/mgL (i=1,2,3);Q,;, Q. are projections of external forces
per unit lengthS is an arc-length coordinat®* = P—m\? is the

) ) fictitious string tensionP is the real tensionR* may have any
Roman Miroshnik sign, while P is always positivie andu andv are the direction
The Israel Electric Corp., R&D Division, P.O. Box 10, cosines of the string tangent vector.

Haifa 31000, Israel

o 90
The phenomenon of three-dimensional (3D) steady-state motion of § 80 ,//
a string traveling along an invariant curve in a flowing medium is € 70
studied. Existence conditions are found using a perturbation < o0
scheme where a known two-dimensional (2D) solution is used as L ,/
an initial approximation. [DOI: 10.1115/1.1794713 § ig //
¢ 30 ~
=]
£ 20
1 Introduction g 10 _—
. . . . -
The paper examines the steady-state motion of an inextensible 0
perfectly flexible string along an invariant curve of lengthn a 0 20 40 60 80 100 120 140 160
flowing medium having constant velocity/. The string, which Flow "velocity" k, misec 2
has a mass density, travels with constant velocity between
outlet and inlet roller$1]. Fig. 1 Three critical domains of the string motion

The string motion causes a constant tangential drag force, while
the fluid induces a normal force. It is assumed that the traveling
velocity is much greater than the fluid velocity and the drag resis-
tance does not depend on it. Particular cases of string motion for
quiescen{1-3| and flowing mediun{4-6] were examined ear-
lier. k=11 :
\_.<"" ree,, -

2 Three-Dimensional Equations and Solution

Manipulations with string steady-state dimensionless equations
[1] in Cartesian coordinateX; and the Frenet triad, v, andb
result in

du_gqu—gq dp* _ p*q,

dv  qu—0y do 0,0~y

ds p* dx,  p*u

— = 1
dv gu—Ox dv  Qqu—0dx @ X
-02 0.1 01 02
dx, p*v  dxs  p*yl-u®-v? , . . .
—_—— - Fig. 2 String modes for different traveling and constant flow
dv  gqu—0y’ dv q:v —0x2 velocities
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There is a singularity in Eq(1) at v=v*, where the normal tension and the curvature radius vanish at the singularity. Evi-
string force vanishes. Because the singularity cannot be crossatly the string motion exists, only if the tension vanishes.
uniquely by direct numerical integration, the integration of the Three domains of string motion are shown in Figiwhere
equations is carried out in two stages: consecutively from ttandk are correspondingly the drag force and the fluid resistance
outlet and from the inlet until the singularity is reached. per string unit mags

The boundary conditions for both integration stages are « Subcritical domain I, when @V<V,.,; p=c,

 Supercritical one I, wheW ., <V<V, ; p=,

S(vo)=0; U(ve)=Ug; P*(ve)=Ps; « Hypercritical domain I, wherV>V.,, ; p=0.
Xi(vo)=0; S(ve)=0; U(ve)=Ue; 3 Results and Discussion
. . The string modes for different flow velocities and a constant
P*(ve)=Pe; Xi(ve)=Xio (2)  string one are shown in Fig. 2. The experiments with a maximum
whereu,, v,, Uy, andv, are direction cosines corresponding t irflow velocity of 100 m/sec were carried out in a wind tunnel
outlet and inlet, and;, are the coordinates of the inlet. 7]. There is good agreement between theoretical and experimen-

The boundary condition&) contain four unknownsy,, ve, (@ results. .
ps , andp} , that are found using a gradient method by succes- "€ Stab'“lty of lstegdy-state modhes IS not anglyzed heret.)lTr;e
o) D “re: o : o experimental results demonstrate the string modes are stable for
sive iterations satisfying the discrepancy equations: the analyzed domain of parameters. This enables us to use the

o e . o e obtained results for practical use as a first approach.
X;—x;=0(i=1,2,3);s°+s°~1=0 3)

wherex?, s° x{, ands® are the correspondingly values of theReferences
variablesx; ands obtained at the end of the first and second 1 wiroshnik, R., 2001, “The Phenomenon of Steady-State String Motion,”
integration stages. ASME J. Appl. Mech. 68(4), pp. 568—574.

Knowledge of an accurate initial approximation of unknowns is [2] Perkins, N. C., and Mote, Jr,, C. D., 1989, “Theoretical and Experimental
necessary to obtain solution convergence. A known solution of the ggﬂ'ﬁ’of’f Two Translating Cable Equilibria,” J. Sound Vitl283), pp.
tWO'd|men3|0na|(2D) problgm (5] (fOI’ the case When med'um [3] Healey, T. J., and Papadopoulos, J. N., 1990, “Steady Axial Motion of
flow acts on a quiescent string plang used as an initial approxi- Strings,” ASME J. Appl. Mech.57(3), pp. 785—787.
mation for the present 3D prob|em. The solution for the appropri_[4] Miroshnik, R. A., 1972, “Research of the Ballistic Antenna Stationary Motion

; ; i i . ; in Flat Homogeneous Flow,” 1zv. Vuz. Mashinostt0, pp. 27-32.
ate flow dlreCtlon(nOt COInCIdmg_ with I.n!tlal string plan)6|s . [5] Lemon, G., and Fraser, W. B., 2001, “Steady State Bifurcations and Dynami-
found by advanced movement with sufficiently small angular in-"" ca stability of a Whirling Cable Acted on by Aerodynamic Drag,” Proc. R.
crements. Soc. London, Ser. A4572009, pp. 1021-1041.

The fictitious tension and the radius of curvatgreither vanish  [6] Svetlicky, V. A,, and Miroshnik, R. A., 1975, "Research of the Ballistic An-
or are infinite at the singularity regardless of the boundary condi- }32{‘; S’Tt:g?”;(%m‘;‘;‘;&@ergp:”gg‘jlzow of Arbitrary Direction,” Soprotivienie
tions (2). There are two critical velocities/;.; and V. They [7] Kurkin, V. 1., and Miroshnik, R. A., 1974, “Influence of wind loading on the
determine the minimum velocities for which, correspondingly, the  form of ballistic antenna,” Izve. Vuz. Mashinostg, pp. 18—21.
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Stability of a Rotating Heated Circular de

. . — =k,
Plate With Elastic Edge Support dr
dk, 1 N k6 L
R. B. Maretic ar o T e @)
e-mail: maretic@uns.ns.ac.yu dN, UuEh N,(1-») - EhaT
— = -7 e pw — ,
V. B. Glavardanov dr ' ' '
e-mail: vanja@uns.ns.ac.yu du_ 1 o E+N 1—1? raT(14)
Faculty of Technical Sciences, University of Novi Sad, dr 2 Yy "En ' ¢ V)

21121 Novi Sad, Serbia and Montenegro whereD =Eh3/12(1-1?) is the bending stiffness, is the radial

coordinateE is the elastic modulus; is the Poisson ratiay is the
thermal expansion coefficient, and w are the radial and trans-
verse displacements of the middle plahg, is the radial mem-
brane forcep is the mass density] is the angle of the tangent in
the radial direction, and, is the radial curvature. The boundary
conditions are

[DOI: 10.1115/1.1796448

1 Introduction

The stability problem of plates has been of considerable impor- u(0)=0, 6(0)=0, w(R)=0, u(R)=0, @
tance in engineering. For the case of a thin circular plate described
by the von Kaman nonlinear plate theory stability, analysis is kho(R)+D| k (R)+ Kg(R) —0.
given by Wolkowisky[1]. The stability of a clamped annular plate R
also described t_Jy the von Kaan nonlinear ple_lte theory is P'€- Introducing the nondimensional variables
sented by Machinek and Trogg], where the Liapunov-Schmidt
method is used. For the case of a moderately thick circular plate r
stability, analysis is given by Raju and RER). X= R’ (33)
Many papers investigated the influence of temperature on the
stability and the stress distribution of the plate. RPdlhas exam- w
ined the axisymmetric post-buckling behavior of annular heated Y=t (30)
plates with both edges clamped or simply supported. Ggsh
has shown that the flexural vibration of a spinning disk is strongly R
affected by the heat flow across the disk and specially by the 0= h (30)
parabolic type of temperature distribution. RensH&lused the
Liapunov method to determine the critical speed of a flexible spin- k,R?
ning disk. K== (3d)
Many of the above-mentioned papers mostly deal with the sta-
bility of rotating annular plates with the free outer edge. However, uR
there are many cases in practice where the outer edge of the plate U= he (3¢)
is not free. One of them is given in Fig. 1, showing a circular plate
of radiusR and thickness#, the edge of which is welded to a rigid N,R?
cylinder rotating at the constant angular speedrhe plate con- N=F7 (3f)
sidered can be the base or the lid of a rotating tank or centrifuge.
The elasticity of the welded seam, which will be modeled by kR
torsional springs uniformly distributed on the outer edge of the Cr=p (39)
plate, will be taken into account. The mentioned torsional springs
have distributed rotational stiffness It is assumed that the con- pw’R?
stant temperatur@ is imposed on the plate in comparison to its = Ep (3h)
natural state.
In this paper, an attempt has been made to investigate the in- aTR?

fluence of the thermal effect on the stability of the above- = (3)
mentioned circular plate spinning at a high angular speed. The

adjacent equilibrium method will be used and only the axisynand by using Eqs(1) we obtain

metrical deformation will be examined.

y: - ®l
2 Mathematical Formulation O=K,
In this paper we use von Kaan’s theory for axisymmetric thin K 0
circular plates and the Duhamel-Neumann theory. The governing K=121- v )NO— — + — 4)
equations for a rotating heated plafsee Timoshenko and X X2
Woinowsky-Krieger[7] and Nowacki[8]) can be reduced to the
following system: N= u_Na- V),XA, T
X2 X '
dw )
dar 7

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Novem-
ber 26, 2002, final revision, May 10, 2004. Associate Editor: N. Triantafyllidis.
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where ( )=d()/dx, subject to
u(0)=0, ©6(0)=0,
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Note that the syste and (10) has the solutiory* =0®* =K*
bl Elastic plate ystert®) and (10) y

(stiffnes k) L <® =U*=N*=0 for all the values oh and r. The nontrivial solu-
s ( : ‘3 / tions of Eqgs.(9) and(10) correspond to the buckled statess of
S~——— stability) of the plate.
h ! R 3 Bifurcation Analysys and Critical Angular Speed
i To determine the possible bifurcation points of the syst@m
E (10) we consider the linearization @9). The result of lineariza-
tion is
\ yr=-0%, (112)
II Rigid cilinder O* =K*, (11b)
5 ) K* @*
’ K*=12(1*v2)NT®*77+7, (11c)
Fig. 1 A circular plate supported elastically around its edge
. u* 1-v»
*_— *
N* = —7— =N, (11d)
y(1)=0, U(1)=0, (Cr+»)O(1)+K(1)=0. U*:(l_yz)N*_gu*. (11e)
The system(4) and (5) has a trivial solution in which the plate ] .
remains planar. The trivial solution reads. The solution to Eqs(11d), (11e), (10a), and(10d) is
yr=0 (62) Ui=0, N{=0, (12)
®:=0 (&) while Egs.(11a)—(11c) can be combined to give
K=o ) X2Y* +xy* —[12(1- v?)Nex®+ 1]y* =0. (13)
T Reducing the order of Eq13) and using Eqs(6d) and (7), we
obtain
Nt=AM\— 1,7 (6d) ) )
v X20* +x0* + (bx*—cx2—1)0* =0, (14)
Ur=UN. (68)  where
where 1+v T
1 b=3(1-1%)(3+»)\, c:12(1—V2)( 8 x—l_v).
-V
=H1+v—(3+v)x?], U= (1-x?)x. @ (15)

8
We assume the solution of Egd) in the form

y=yr+y*, 0=0;+0%, K=K;+K*,

The solution to the Eq14) reads

1 1
®) ®f:(31; Fol 7/1%\/6X2)+C2; Go(7,5\bx?), (16)
U=Ur+U*, N=N+N*. whereF, is a regular Coulomb wave function of order zero and
o Is an irregular Coulomb wave function of order zero

By using Eqs(8) in this decomposition and substituting the resul Abramowitz and Steguf@]), C, andC, are the constants, and

into Egs.(4), we finally obtain

y* = ®*, = L 17
| 740 17
OF =K* o .
Satisfying the boundary conditidiiOb) we getC,=0, so that Eq.
) K* @* (16) becomes
K*=12(1— 1) (N;+N*)0* — — + —, ©)
X X * 1 1 2
O =Cy Fo(7.3vbx). (18)
- u* 1-v .
N*=—z— —— N, From Egs.(11a) and (11b) it follows that
x1
. 1 * = 1 2
U:—§(®*)2+(1—V2)N*—;U*, YL leleO(WIZJEX )dxx (1%)
subject to * dii 12
K{=Cigy | Fo(m.2Vbx) |. (1)
U*(0)=0, (10m)
Substituting Eqs(18) and(19b) into the boundary conditio(iL0e
®*(0)=0, (1) we get
y* (1)=0, (1a) Cal(Cr+ v—1)Fo(, 503 +Fo(7,3V05®) ][, =0.
U*(1)=0, (10d) _ _ (20)
Next, for the case of parameterand C+ fixed, solving Eq.(20)
(Cy+v)O*(1)+K*(1)=0. (1) the corresponding values of are obtained. The choice of the
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Fig. 3 Maximal transverse displacements

Fig. 2 The critical speed parameter A\, with super- and sub-
critical bifurcation regions

smallest positive roafonly one solutionof Eq. (20) or as the two
critical value \.,, between the obtained ones, will be the dissmallest positive rootéwo solution of Eq. (20). The lower criti-
cussed in Sec. 4. We proceed following the standard Liapunasal values {\'Cr) are shown by the shadowed part of the diagram,
Schmidt procedurésee Golubitsky and Schaeffgt0] or Chow below the line AB. In that part of the diagram when the tempera-
and Hale[11]). Therefore we determine the formal adjoint of Eqsyre increases, the critical angular speed also increases, which is
(10) and (11) and then formulate the bifurcation equation in the,, unexpected behavior. Based on the bifurcation equéibrit
following form: can be established that>0 andc;>0 within the shadowed
g(a,Ag+AN)=cjaAN+czad+O(|al?AN,|al*), (21) diagram area. This shows that bifurcation is subcritical in this
diagram area, while above (the area not shedowgd;<0 and
c3>0, which shows that bifurcation is supercritical. In the en-
larged diagram part around point A in Fig. 2 it can be seen that
L (Y1+w 2 1 points on the boundary line ABvhich separates different bifur-
C1=5| |~ (BFwx Fa(7,5\bx?)dx, (22)  cation type} are determined as points on the curves whose tan-
0 gents are vertical.
11 1 . To confirm subcritical bifurcation the numerical integration of
f — | W(x)— —W(l)—W(l)}Fg(n,%\/sz)dx, the differential equations systert®) and(5) was performed. For
0 X 1-v the special case of the clamped pla@; € ) and the parameter
(23) value of r=0.98, Fig. 3 shows the maximal nondimensional trans-
with verse displacementpy(0) obtained using the numerical integra-
1 L tion. ForA=0 the value of the maximal transverse displacement
1 is y(0)=0.2804. With the increase of the angular speed the maxi-
W(X):_Ff Xf FFS( 7,3\bx?)dxdlx (24)  mal transverse displacement reduces and for the valua of
=2.7757 it isy(0)=0. So, this value of the parameteris the

When writing Eqs(22) and(23) we assumed thal, =1 without lower critical value (\lcr). With the increase of the angular speed

reducing generalization. To siudy the qualitative behavior of ﬂfﬁe plate remains stable. The plate is not bent and its state is

solution, we can neglect the higher-order terms in 4). Thus d . o . . :
. . . escribed by the trivial solutio6). The plate retains this state
we conclude that E¢21) is contact equivalenteyfitz [13]) to until the angyular speed reachegaghe Vall?& ef11.035, which is

g(a,\g+AN)=sgr(c;)aAN +sgr(cg)a’. (25) the upper critical valueXt,). When the parameter exceeds the

Therefore, Eq.(25) has pitchfork bifurcation, and this type of UPPer critical valueN>\¢,, the plate loses stability again and it

bifurcation will be studied in the next section. If the constants Pends. The shape of this diagram confirms that there are really
andc, are of the same sign, the bifurcation is called subcritical; VO stability boundaries and two bifurcation types, sub- and su-

they are of the opposite sign, the bifurcation is supercritical. ~ Percritical. ) ) ]
The numerical integration of the equation system confirms the

4 Results and Discussion conclusion of existence_ _of the subcritical bufurcation, as well as
the upper and lower critical values of the angular speed. There-

Figure 2 shows the nondimensional critical angular spegd fore, the plate will be stable provided that its angular speed is

with respect to the nondimensional temperaturand the rota- inside the range defined by the lower and upper critical angular

tional stiffnessC+. The parametex., was determined by solving speed. For example, if the clamped plaR=1m and h

Eq. (20) given that the Poisson ratio is=0.3. In case ofr=0 =30mm, made of concrete pE&7850kg/nt,E=2.1

(not heated platethe obtained critical values of, are the same 10t N/m?, o= 1.26x 10 51/°C), heated aT =70°C is consid-

as in Maretic[14]. The critical values of, in that paper were .4 it will be stable fom". < w< w"  wherew' = 2465 rpm and

determined using the dynamic stability criterion. It can be notice(L _’4921 o er o

that overall rule of behavior of the paramelgf shows a decrease Wer™ rpm.

when the temperature increases and shows an increase when the

rotational stiffness increases. However, there is an exception to

this rule, since there are certain temperature values that have two

corresponding critical values of the parametgr: the upper %) 5 Conclusions

and lower ). In this case they are obtained as the two smallest __ ) )
positive roots of Eq(20). So, depending on the nondimensional 1S Paper presents the following results:
temperaturer and the rotational stiffnesS+, there can be only (1) The critical values of the angular speed at which the rotat-
one or two critical angular speeds,, can be determined as the ing heated circular plate loses its stability have been deter-

where a is a small real amplitude parametéee Troger and
SteindI[12]), AN<1, and

N

C3=
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