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J. E. Mottershead

Department of Engineering,
University of Liverpool,
Liverpool L69 3GH, UK

Dynamic Instability of an Elastic
Disk Under the Action of a
Rotating Friction Couple
This paper investigates the instability of the transverse vibration of a disk excited by
corotating sliders on either side of the disk. Each slider is a mass-spring-damper sy
traveling at the same constant speed around the disk. There are friction forces acti
the plane of the disk at the contact interfaces between the disk and each of the two s
The equation of motion of the disk is established by taking into account the ben
couple acting in the circumferential direction produced by the different friction forces
the two sides of the disk. The normal forces and the friction couples produced b
rotating sliders are moving loads and are seen to bring about dynamic instability. Reg
of instability for parameters of interest are obtained by the method of state space.
found that the moving loads produced by the sliders are a mechanism for gener
unstable parametric resonances in the subcritical speed range. The existence of
regions in the parameter space of the simulated example suggests that the disk vib
can be suppressed by suitable assignment of the parameter values of the sliders.
@DOI: 10.1115/1.1795815#
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1 Introduction
Disks are basic mechanical components and can be found in

disk brakes, clutches, saws, computer disk drives, and many o
applications. In these mechanical devices, friction usually plays
essential role. Apart from its useful purposes, the friction fo
acting at the moving contact interface among mechanical com
nents can induce excessive vibration or offensive noise, suc
squeal in a car disk brake. The vibration and noise emana
from a disk brake causes diskomfort to passengers and raises
concern about the safety and reliability of the vehicle. Excess
vibration of a wood saw can cause damage and poor quality o
work piece. Therefore, it is of both academic interest and pract
significance to understand how unstable vibration and noise
generated in disks. The objective of this paper is to explore
friction-induced dynamic instability in a disk modeled as a fl
circular plate. The friction mechanism incorporated is intended
explain the unstable vibration appearing in components in mov
frictional contact, for example, the squeal in a car disk brake.

The study of the vibration of disks subject to moving loads w
initiated in the 1970s. Mote@1# investigated the vibration of a dis
under a pointwise moving load and showed that instability mi
occur in the supercritical speed range. Iwan and Moeller@2# stud-
ied the dual problem of a disk spinning past a stationary ma
spring-damper system in the supercritical speed range. Many
pers have been published since. The parametric excitation
asymmetric disks was analyzed by Yu and Mote@3#. Jiang et al.
@4# looked at axially moving loads acting on a disk. Shen a
Mote @5# explained why a stationary disk could be destabilized
a rotating damper. Shen@6# used the method of multiple scales fo
analyzing different types of parametric resonances of a statio
disk excited by a rotating slider. Large damping forces were
amined by Huang and Mote@7#.

Ono et al.@8# introduced friction as a follower force in thei

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, October
2001; final revision, April 12, 2004. Associate Editor: A. A. Ferri. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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spinning disk model for a computer disk drive. Friction model
as a follower force appeared to originate from North@9# for a very
simple model of a disk brake. Lee and Waas@10# studied a rotat-
ing multilayer disk subjected to a stationary frictional follow
force. Chan et al.@11# investigated the parametric resonances o
stationary disk under a rotating frictional follower force. Motte
shead et al.@12# extended the work to a distributed system
mass, stiffness, damping, and friction. Ouyang et al.@13# com-
bined the frictional follower force and the negative slope
friction-velocity curve and identified some new parametric re
nances. Tseng and Wickert@14# included the friction-induced in-
plane stresses through theory of elasticity into the equation
motion of a spinning disk. Ouyang et al.@15# found rich dynamic
behavior of a stationary disk excited by a rotating slider expe
encing stick-slip vibration due to friction. Ouyang et al.@16# de-
rived a numerical-analytical combined method for the stabi
analysis of a car disk brake with the pads treated as moving lo
The genetic algorithm was used to find optimal placement of
bilizers to suppress friction-induced vibration of a stationary d
@17#. Tian and Hutton@18# presented a general approach for s
bility analysis of disks involving various nonconservative forc
acting on spinning disks. The vibration and dynamic stability
disks were reviewed by Mottershead@19#.

In addition to the follower force hypothesis, the stick-slip sc
nario and the mechanism of the decreasing friction against rela
velocity, there can be other means whereby friction results in
stable vibration. North@20# showed in his two-degrees-of-freedo
model of a car disk brake that the different friction forces
either side of a vibrating disk~modeled as a rigid body! could lead
to instability. Hulten and Flint@21# extended this simple idea to
much more refined model of disk brakes in which the disk and
two pads were modeled as beams.

This paper presents a study of the transverse vibration of a
under two co-rotating sliders. Each slider, driven at the same c
stant speed, is a mass-spring-damper system, which may repr
a pad in the case of a car disk brake. There are friction for
acting in the plane of the disk at the contact interfaces between
disk and the two sliders. The differential friction forces on the tw
sides of the disk produce a bending couple in the circumferen
direction, which fluctuates as it moves around the vibrating d
This investigation furthers North’s idea to a more realistic mo
of the disk as an annular plate and, more importantly, treats
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rotating frictional sliders as moving loads. Moving loads are co
monly found in many mechanical and civil engineering system
Fryba’s monograph summarized many analytical solutions
simple moving load problems@22#.

Friction is a very complicated phenomenon, and it constitute
challenging research topic in its own right. In this paper, the
thors make no attempt to use very sophisticated friction la
Instead they adopt the simple Coulomb friction model, which
able to generate interesting results of instability. Furthermore,
important that excitation by a friction couple can be justifi
physically, whereas the follower-force model, though it produ
an effect similar to what is observed in squealing brakes, has b
the subject of some debate, since it is an internal force. The re
is referred to two comprehensive review papers on the physics
modeling of friction and simulation of friction-induced vibratio
by Oden and Martins@23# and Ibrahim@24#.

2 Theoretical Development
When a car disk brake is applied, two normal forces are app

through the pads, modeled as sliders in this paper, onto either
of the disk. These forces are initially equal in magnitude,
acting in opposite directions. As the disk rotates past the slid
and when the transverse vibration of the disk is initiated, the
normal forces from the sliders vary with time and thus cause
different friction forces acting on the top and the bottom surfa
of the disk in contact with the two sliders, as illustrated in Fig.
The net friction force acting in the plane of the disk plate is tak
to be constant. This is simple and assumed by most researc
However, the two different, time-varying friction forces on th
two sides of the disk, which make up a non-time-varying const
friction force in the plane of the disk, also produce a bend
couple, which has been neglected or omitted by most researc
This couple produced by the two uneven friction forces was fi
considered by North@20# and the idea was recently extended
Hulten @25# in the context of a drum brake modeled as beam

Fig. 1 Circular plate under rotating sliders on both sides
754 Õ Vol. 71, NOVEMBER 2004
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Hulten and Flint@21# later applied the idea to a disk brake an
treated the disk as a beam and the friction force and normal fo
were acting on the entire length of the beam. Popp and Rudo
@26# introduced the same nonconservative friction force into th
14-parameter lumped-mass model of a disk brake. The vibra
of all these models was not considered as a moving load prob

Since car disk-brake squeal tends to appear at low road sp
when centripetal and gyroscopic effects may be omitted, the p
lem is treated instead as a stationary disk excited by two rota
sliders in this paper, as shown in Fig. 1.

The sliders are initially located at polar coordinates of (r 0,0).
As the disk vibrates, the two sliders experience a vertical displa
mentu(t) in the z direction as@27#

u~ t !5w~r 0 ,Ṽt,t ! (1)

which is the transverse deflection of the disk where it is in inst
taneous contact with the sliders. Equation~1! implies that the
sliders always maintain contact with the disk. As a result of
transverse vibration of the disk, the normal forces from the slid
acting on either side of the disk become

pb5N2mü2cu̇2ku, pt5N1mü1cu̇1ku (2)

Consequently, the friction forces illustrated in Fig. 2 on either s
of the disk are

f b5mpb5m~N2mü2cu̇2ku!,

f t5mpt5m~N1mü1cu̇1ku! (3)

These uneven friction forces produce a couple@20,25# in the
circumferential direction of the disk. In the present model, t
couple is

M5h~ f t2 f b!/25mh~pt2pb!/25mh~mü1cu̇1ku! (4)

which brings about a second-order singularity to the equation
motion of the disk modeled as a Kirchoff plate. It should
pointed out that both the two normal forces and the friction cou
are functions of onlyt. This equation of motion in the space-fixe
cylindrical coordinate system shown in Fig. 1 is

Fig. 2 Forces acting on the disk under sliders
rh
]2w

]t2
1D*

]w

]t
1D¹4w5

1

r H Fpb2pt1m~pb1pt!
]w

r ]uGd~r 2r 0!d~u2Ṽt !1
]

r ]u
@M ~ t !d~u2Ṽt !#d~r 2r 0!J

5
1

r H Fpb2pt12mN
]w

r ]uGd~r 2r 0!d~u2Ṽt !1
]

r ]u
@M ~ t !d~u2Ṽt !#d~r 2r 0!J (5)
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where the biharmonic differential operator in the cylindrical co
dinate is

¹45S ]2

]r 2
1

]

r ]r
1

]2

r 2]u2D 2

(6)

Equation~5! describes a circular thin plate under moving conce
trated loads manifested by thed functions in theu direction. The
third term in the first square bracket on the right-hand side of
~5! represents the in-plane friction as a follower force.

The transverse vibration of the disk can be expressed by s
mation of its modes and modal coordinates as

w~r ,u,t !5 (
m50

`

(
n52`

`

cmn~r ,u!qmn~ t ! (7)

where the mode shape functions are

cmn~r ,u!5Rmn~r !exp~ inu!/~rhb2!1/2

~m50,1,2, . . . ;n50,21,1,22,2, . . .! (8)

which satisfy the ortho-normality conditions,
t

e
i
.

Journal of Applied Mechanics
r-

n-

q.

um-

E
a

b

rhc̄klcmnrdrdu5dkmd ln

(9)

E
a

b

Dc̄kl¹
4cmnrdrdu5vmn

2 dkmd ln

where the bar over a symbol denotes the complex conjugatio
Multiplying Eq. ~5! with c̄kl(r ,u), integrating the resultan

equation yields

E E c̄klFrh
]2w

]t2
1D*

]w

]t
1D¹4wG rdudr

5F c̄klS pb2pt12mN
]w

r ]u D G
r 5r 0 ,u5Ṽt

1
mh

2r 0
F ]c̄kl

]u
~pb2pt!G

r 5r 0 ,u5Ṽt

(10)

Substituting Eqs.~2!, ~3!, ~7!, and~8! into ~10! and making use
of Eq. ~9!, the equation of motion of the disk in terms of th
modal coordinates is derived as
q̈kl12jvvklq̇kl1vkl
2 qkl52

2

rhb2 (
m50

`

(
n52`

`

Rmn~r 0!Rkl~r 0!exp@ i~n2 l !Ṽt#H S 12
mh

2r 0
il D @m~ q̈mn12inṼq̇mn2n2Ṽ2qmn!1c~ q̇mn

1 inṼqmn!1kqmn#1
inmN

r 0
qmnJ ~k50,1,2, . . . ;l 50,21,1,22,2, . . .! (11)
e

tate

uced
Equation ~11! indicates that the rotating sliders introduce tim
dependent mass, stiffness, and damping into the disk. The
term in the curly bracket on the right-hand side of Eq.~11! is for
the constant in-plane friction modeled as a follower force. In
case of a disk brake,mN/r 0 is many times smaller thank. In
addition, the dynamic instability generated by this term has b
studied in detail by Chan et al.@11#. For these reasons, this term
omitted in the subsequent derivation and the final calculation
other applications, computer disk drives for example, this te
can be relatively large becausek andh are both small.

The critical speed for the relative rotation of the disk is defin
as

Ṽcr5min
l

~vkl / l ! ~ l 51,2, . . .! (12)

Nondimensional variables are defined as

t5Ṽcrt, bkl5vkl /Ṽcr , V5Ṽ/Ṽcr (13)

Introduce a scaling parameter« such that

«g52m/~rhb2!, «§52c/~rhb2Ṽcr!,

«k52k/~rhb2Ṽcr
2 !, «j5jvṼcr (14)

Thus Eq.~11! becomes
e-
last

he

en
s
In

rm

ed

q̈kl12«jbklq̇kl1bkl
2 qkl

52 (
m50

`

(
n52`

`

Rmn~r 0!Rkl~r 0!

3exp@ i~n2 l !Vt#@12 ilmh/~2r 0!#

3@«g~ q̈mn12inVq̇mn2n2V2qmn!

1«§~ q̇mn1 inVqmn!1«kqmn#

(k50,1,2, . . . ;l 50,21,1,22,2, . . . ) (15)

where the time derivative is now with respect to the new tim
variablet.

It is impossible to get closed-form solutions of Eq.~15!. So it is
usually solved by numerical methods, such as the method of s
space for general cases or by perturbation methods when« is
small.

3 Numerical Solutions by the Method of State Space
To use the method of state space, new variables are introd

as

xkl~t!5exp~ ilVt!qkl~t! ~k50,1,2, . . . ;l 50,21,1,22,2, . . .!
(16)

Equation~15! then becomes

ẍkl12~«jbkl2 ilV!ẋkl1~bkl
2 2 i2«jbkllV2 l 2V2!xkl

52 (
m50

`

(
n52`

`

Rmn~r 0!Rkl~r 0!@12 ilmh/~2r 0!#~«g ẍmn

1«§ ẋmn1«kqmn!

(k50,1,2, . . . ;l 50,21,1,22,2, . . . ) (17)
NOVEMBER 2004, Vol. 71 Õ 755



a

p
t
o
r

n

m

r

t

s
n

n

f

ent
rake
ke

30
/s.
ver,
gion

is
the
, as
ta-
of

of

8

which no longer has time-dependent coefficients. Equation~17!
can be rewritten in matrix form as

~ I1«gQ!ẍ1~A1«§Q!ẋ1~B1«kQ!x50 (18)

where

A52 diag@«jbkl2 ilV#, B5diag@bkl
2 2 i2«jbkllV2 l 2V2#

(19)
xT5$xkl% ~k50,1,2, . . . ;l 50,21,1,22,2, . . .!

and the element of matrixQ on thelth row and thenth column is

Qln5Rkl~r 0!Rmn~r 0!@12 ilmh/~2r 0!#

~k,m50,1,2, . . . ;l ,n50,21,1,22,2, . . .! (20)

When a new vector is introduced asy5ẋ, Eq. ~21! can be
derived from~18! as

d

dt H x
yJ 5F 0 I

2~ I1«gQ!21~B1«kQ! 2~ I1«gQ!21~A1«§Q!
G

3H x
yJ (21)

If the real part of an eigenvalue of the matrix in Eq.~21! is
positive for some parameter values, the whole system is unst
Otherwise, the system is stable. Those parameter values that
to zero real part of at least one eigenvalue and negative real
for all the rest of the eigenvalues form the boundaries of
regions of instability, which are of particular interest to the auth
and the designers. Equation~21! provides numerical solutions fo
general cases. Being numerical, the state-space formulation
not normally lead to any definite conclusions about the effects
a parameter before a computation is made.

If « is small, the method of multiple scales@28# can be used to
derive approximate analytic solutions. The parametric resona
in the subcritical speed range may appear as@11#

~n6 l !V5bmn2bkl1«s ~n. l ,l>0;k,m50,1,2, . . . !
(22)

when the method of multiple scales is used. The detailed for
lation is not presented here.

4 Simulated Example and Analysis
In the subsequent parametric analysis, one of the five par

eters«g, «§, «k, «j, andm is varied while other parameters a
kept constant. The regions of instability dependent on the vary
parameter versusV are found. When each one of these parame
is studied in this way, their roles in the instability of the who
system are established.

To provide a detailed picture of the effects of the parameter
interest in terms of the regions of instability, an example is a
lyzed. The dimensions and properties of a real brake disk mad
gray cast iron are,a50.0805 m, b50.1305 m, h50.02 m, E
5120 GPa,n50.211, r57200 kg m23. The plate model of the
disk is tuned to fit the numerical frequencies and modes of a v
detailed finite element model of the disk. The first 13~one single
and six double! frequencies of the disk are computed by an a
lytical method and are listed in Table 1 (Ṽcr53766 rad•s21).

The rotating sliders are located atr 050.11 m. The damping
coefficient of the sliders is taken to be 2.5%. The friction coe
cient is taken to be a linear function of the relative velocity b
tween the disk and the sliders with negative slope, asm5ms

Table 1 Natural frequencies and nondimensional frequencies
of the disk

Modes (k,l ) 0, 0 0,61 0, 62 0, 63 0, 64 0, 65 0, 66
vkl (rad/s) 7203 4678 7532 16,391 26,535 37,111 48,0

bkl 1.91 1.24 2 4.35 7.05 9.85 12.77
756 Õ Vol. 71, NOVEMBER 2004
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20.0576Ṽr 0 and m50.3 if the formula producesm,0.3. The
value of negative slope is taken from measured data@26#.

The vertical spring constant of the sliders, which can repres
the aggregate result of the stiffness of the pads, caliper and b
fluid, is a very interesting parameter. As a first example, ta
«g50.002,«j51024, «§50, ms50.55. The region of instability
is presented in Fig. 3. The range of rotating speed is limited to
rad/s since squeal tends to occur at low speeds below 30 rad

It spreads over the entire range of the stiffness values. Howe
a small increase of the disk damping can greatly reduce the re
of instability, as shown in Fig. 4.

This indicates that the damping of the disk is stabilizing and
very effective in suppressing the disk vibration. Of course,
addition of damping of the slider can achieve the same effect
shown in Fig. 5. The damping breaks the single region of ins
bility into two smaller halves. Further increase of the damping
the slider can eliminate the first region of instability at smaller«k
in Fig. 5 and leads to only one region of instability like that
Fig. 4.

Fig. 3 Region of instability „msÄ0.55, «jÄ0.0001, «§Ä0,
«gÄ0.002…

Fig. 4 Region of instability „msÄ0.55, «jÄ0.00014, «§Ä0,
«gÄ0.002…

Fig. 5 Regions of instability „msÄ0.55, «jÄ0.0001, «§Ä0.025,
«gÄ0.002…

0
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Both figures reveal that with adequate damping from the disk
from the slider, there is a region of stability within the range
stiffness values. Higher damping can remove instability for
range of parameter values shown in these two figures.

If the friction coefficient is increased, the region of instability
Fig. 3 expands and the region of instability in Fig. 5 expands
may even reconnect to form a larger, single region of instabi
An example of usingms50.6 is presented in Fig. 6.

Interestingly, the influence of the mass of the sliders on
stability of the system shows a similar trend. The region of ins
bility obtained by using«j51024, «§50, ms50.55, and«k
50.02 is given in Fig. 7.

If either the damping of the disk or the damping of the sliders
increased, the region of instability in Fig. 7 reduces, reminisc
of what has happened for«k. Figure 8 shows the reduced regio
of instability when the damping of the disk is increased.

By examining Figs. 3–8, it can be seen that either damping
the disk or the damping of the sliders is stabilizing. Presence
large enough damping can completely eliminate unstable vi
tion. Even if the damping is not great, there are stable regions

Fig. 6 Region of instability „msÄ0.6, «jÄ0.0001, «§Ä0,
«gÄ0.002…

Fig. 7 Region of instability „msÄ0.55, «jÄ0.0001, «§Ä0,
«kÄ0.02…

Fig. 8 Region of instability „msÄ0.55, «jÄ0.00014, «§Ä0,
«kÄ0.02…
Journal of Applied Mechanics
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the ranges of mass parameter values and stiffness paramete
ues. At low speeds, small vertical stiffness of the slider is harm
Large stiffness values are even more detrimental because th
gion of instability expands to the right. The same is true for t
mass of the sliders. The location and size of these stable reg
depend on the specific parameter values involved. This means
by suitable design of the rotating sliders the transverse vibra
of the disk can be suppressed even though the dampings ar
great. This offers a new way for vibration suppression of dis
under a rotating frictional load, other than damping, which m
not always be feasible to enhance.

It should be noted that the above results do not apply to h
rotating speeds, where the stabilizing centripetal and gyrosc
effect needs to be considered. It should also be stressed tha
instability displayed by this friction mechanism is highly spee
dependent. The consequence is that the omission of the rel
rotation between the disk and the sliders~which is a common
practice among researchers of brake squeal!—that is, when the
vibration and squeal of a disk brake is not modeled as a mov
load problem—some significant regions of instability will b
missed. Figures 3–8 are obtained using the particular param
values specified. If the damping of the disk or of the sliders
reduced or the friction coefficient is increased, the regions of
stability will widen to reach even lower rotational speeds th
shown in these figures.

5 Conclusions
In this paper, the instability of the transverse vibration of

circular disk under rotating load of two sliders of mass, sprin
and damper is studied as a moving-load problem. The frict
between the disk and the sliders is modeled as generating a
tuating couple as the sliders move around the top and bot
surfaces of the disk. The friction coefficient is assumed to b
linear function of the relative speed between the disk and
sliders with negative gradient and then becomes a constan
sufficient relative speed. The model is meant to demonstra
mechanism for unstable vibration of a car disk brake and sim
applications. Parametrical analysis allows the following conc
sions to be drawn:

1. At very low damping values, the regions of instabili
spread over the whole range of the stiffness parameter
ues. In the range of parameter considered, the unstable
gion tends to lie within the higher mass values.

2. At normal level of damping of the sliders or with a sma
increase of the disk damping, the regions of instability co
tract and may reveal stable regions.

3. The size and location of the regions of stability depend
the specific parameter values. This phenomenon can be
ploited in designing suitable sliders to suppress the vibrat
of the disk.

4. The damping of the slider and the damping of the disk,
particular, are both stabilizing in the speed range studied

5. The friction coefficient is very destabilizing.
6. The mechanism whereby friction destabilizes the vibrat

of the disk, incorporated in this moving load problem,
seen to be able to generate speed-dependent instability
a wide range of parameter values. The instability of the
bration of the disk is speed-dependent and, therefore, sh
be modeled as a moving-load problem.
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Nomenclature

a, b 5 inner and outer radii of the disk
c, k, m 5 viscous damping, stiffness, mass of a rotating slid

h 5 thickness of the disk
i 5 A21

pb , pt 5 the normal forces acting onto the disk from the bo
tom and the top sliders, respectively

qkl (qrs) 5 modal coordinate fork(r ) nodal circles andl (s)
nodal diameters for the disk

r 5 radial coordinate in the cylindrical coordinate sys-
tem

r 0 5 initial radial position of the rotating sliders
t 5 time

w 5 deflection of the disk in the cylindrical coordinate
system

D 5 flexural rigidity
D* 5 viscous damping of the disk

E 5 Young’s modulus
M 5 a couple produced by the two unequal friction

forces on either side of the disk
Rkl (Rrs) 5 combination of Bessel functions to represent the

mode shape of the disk in the radial direction, cor
responding toqkl (qrs)

d~•! 5 Dirac delta function
dkl 5 Kronecker delta
m 5 kinetic friction coefficient between the disk and th

sliders
ms 5 static friction coefficient between the disk and the

sliders
u 5 circumferential coordinate in the cylindrical co-

ordinate system
n 5 Poisson ratio of the disk material

jv 5 damping coefficient (5D* /(2rhvkl)) of the disk
r 5 mass-density of the disk

ckl 5 mode shape function for the transverse vibration
the disk corresponding toqkl

vkl 5 natural~circular! frequency corresponding toqkl

Ṽ 5 rotating speed of the sliders in radians per second
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Stochastic Stability of Coupled
Oscillators in Resonance: A
Perturbation Approach
A perturbation approach is used to obtain an approximation for the moment Lyap
exponent of two coupled oscillators with commensurable frequencies driven by a
intensity real noise with dissipation. The generator for the eigenvalue problem assoc
with the moment Lyapunov exponent is derived without any restriction on the size o
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1 Introduction
This paper is concerned with stochastic stability of two-degr

of-freedom~dof! systems in the presence ofinternal resonances.
In linear multi-degree-of-freedom systems, resonances occur
to commensurability of the frequenciesv i(m) wherem represents
the system parameters. A relationship of the formm1v1(m)
1 . . . 1mnvn(m)50 exists in this case for some integer valu
of m1 , . . . ,mn . The resonance effects would in this case, per
in all regions of the phase space and is due to a particular ch
of the system parametersm. Almost-sure and moment stability o
coupled oscillators with commensurable frequencies has be
difficult problem to tackle because resonance gives rise to a n
trivial approximate foliation of the phase space. As a result,
equations cannot be reduced to a lower dimension via stan
stochastic approximation methods. Thus, the determination of
moment and maximal Lyapunov exponents of two coupled os
lators in resonance at present is an open problem. The chall
has been to extend the existing techniques@1–3# in order to ex-
plicitly evaluate the moment Lyapunov exponents for such s
tems with commensurable frequencies. It is this need and chal-
lenge that we shall address in this paper.

In the study of stability of solutions of random dynamical sy
tems, the exponential growth rate ofEix(t;x0)ip is provided by
the moment Lyapunov exponent defined as

g~p;x0!5 lim
t→`

1

t
logEix~ t;x0!ip

wherex(t;x0) is the solution process of a linear random dynam
cal system. Ifg(p;x0),0, then, by definition,Eix(t;x0)ip→0 as
t→` and this is referred to aspth moment stability. The connec
tion between moment stability and almost-sure stability for
undamped linear oscillator under real noise excitation was es
lished for the first time by Molc˘anov @4#. These results were ex
tended for an arbitraryd-dimensional system by Arnold@5# where
a concise formulation of the relation between almost-sure sam
stability andpth mean stability is presented. The complete set
results on the so-called moment Lyapunov exponent, its pro

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, January
2002; final revision, March 18, 2004. Associate Editor: A. A. Ferri. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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ties, and generators is obtained in two consecutive papers by
nold et al.@6,7# for white- and real-noise situations, respective

The aim of this paper is to determine an asymptotic expans
for the moment Lyapunov exponent of a noisy 2-dof system giv
by

q̈i1v i
2qi12«2zv i q̇i1«(

j 51

2

ki j qj f „j~ t !…50, i , j 51,2 (1)

where theqi ’s are generalized coordinates,v i is the ith natural
frequency,j(t) is a stationary stochastic process, and«2z repre-
sents a small viscous damping coefficient. This scaling of dam
ing and noise terms is such that the leading-order diffusion p
balances the leading-order drift term, after transforming to po
coordinates as shown in Sec. 2. Under the assumption tha
natural frequencies arenoncommensurable, the small-noise ex-
pansions of the moment Lyapunov exponent for this 2-dof sys
were obtained by Sri Namachchivaya et al.@2# for small p. Sri
Namachchivaya and Van Roessel@3#, extended these to obtain a
asymptotic representation of the moment Lyapunov exponent
finite p. Our interest is in the case when the two frequencies
commensurable, i.e., there exists a relation of the formm1v1
5m2v2 , wherem1 andm2 are integers. As before@2,3# we con-
sider a real-noise excitation with specific infinitesimal genera
G. It is assumed thatG has an isolated simple zero eigenvalue.
this paper, we derive the generatorL(p) for finite p, whose prin-
cipal eigenvalue is the moment Lyapunov exponent, by
asymptotic expansion similar to that presented in Sri Nama
chivaya and Van Roessel@3#. The second method is based o
stochastic averaging, and it is presented in Sri Namachchiv
et al. @8#.

Section 2 presents the formulation of the problem and descr
the general formula of the moment Lyapunov exponent for lin
systems with real noise. In Sec. 3, a small-noise expansio
constructed and we obtain the appropriate eigenvalue problem
the moment Lyapunov exponent. The generator for the eigenv
problem is derived without any restriction on the size ofp. This
equation along with appropriate boundary conditions forms
eigenvalue problem for which moment Lyapunov exponent is
principal eigenvalue. An orthogonal expansion for the eigenva
problem based on Galerkin method is presented in Sec. 4. In
5, various cases of interest are obtained numerically based
Galerkin approximation. One-to-one internal resonances aris
many physical systems. However, the semi-simple form tha
examined in this paper is common in coupled oscillators wh
there is geometric symmetry present in the physical system.
moment Lyapunov exponent in terms of spectral densities is
culated for this special case, which is common in many conse
tive structural and mechanical systems.
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2 Problem Formulation
The stochastic termj(t) is a real-noise process on a smoo

connected Riemannian manifoldM ~with or without boundary!
with f a smooth nonconstant function defined onM. The associ-
ated infinitesimal generator is assumed to have the form

G~j!5(
i 51

n

m i~j!
]

]j i
1

1

2 (
k51

r F(
i 51

n

s i
k~j!

]

]j i
GF(

i 51

n

s i
k~j!

]

]j i
G
(2)

The almost-sure stability of the equilibrium stateq5q̇50 of ~1!
is to be investigated. Using the transformationqi5x2i 21 , q̇i
5v ix2i , i 51, 2, Eq. ~1! may be represented by the followin
system of Stratonovich differential equations:

ẋ5Ax1« f ~j!Bx, x0PR4

(3)

dj5m~j!dt1(
k51

r

sk~j!+dWk , jPM

where

A5F 0 v1 0 0

2v1 22«2zv1 0 0

0 0 0 v2

0 0 2v2 22«2zv2

G ,

B5F 0 0 0 0

2p11 0 2p12 0

0 0 0 0

2p21 0 2p22 0

G , pi j 5
ki j

v i
760 Õ Vol. 71, NOVEMBER 2004
th

Consider the transformation$x1 ,x2 ,x3 ,x4%→$r,f1 ,f2 ,u% given
by

x15er cosf1 cosu, x252er sinf1 cosu
(4)

x35er cosf2 sinu, x452er sinf2 sinu

with the determinant

]~r,f1 ,f2 ,u!

]~x1 ,x2 ,x3 ,x4!
52e2r csc 2u

whererPR, 0<f i<2p, 0,u,p/2. The transformation is singu
lar at u50, p/2. Applying the transformation~4! to ~3! yields the
following set of equations for the logarithm of the amplituder,
phase variables (f1 ,f2 ,u), and noise processj:

ṙ5«q1~f1 ,f2 ,u,j!1«2q2~f1 ,f2 ,u,d!

u̇5«s1~f1 ,f2 ,u,j!1«2s2~f1 ,f2 ,u,d!
(5)

ḟ i5v i1«hi1~f1 ,f2 ,u,j!1«2hi2~f1 ,f2 ,u,d!

dj5m~j!dt1(
k51

r

sk~j!+dWk , jPM

where
q1~f1 ,f2 ,u,j!5
1
4 f ~j!@q1

0~f1 ,f2!1q1
c~f1 ,f2!cos 2u1q1

s~f1 ,f2!sin 2u#

q2~f1 ,f2 ,u,d!5q2
0~f1 ,f2!1q2

c~f1 ,f2!cos 2u

s1~f1 ,f2 ,u,j!5
1
4 f ~j!@s1

0~f1 ,f2!1s1
c~f1 ,f2!cos 2u1s1

s~f1 ,f2!sin 2u#

s2~f1 ,f2 ,u,d!5s2
s~f1 ,f2!sin 2u,

h11~f1 ,f2 ,u,j!5
1
2 f ~j!@h11

0 ~f1 ,f2!1h11
u ~f1 ,f2!tanu#

h21~f1 ,f2 ,u,j!5
1
2 f ~j!@h21

0 ~f1 ,f2!1h21
u ~f1 ,f2!cotu#

h12~f1 ,f2 ,u,d!5h12~f1 ,d!52d1 sin 2f1

h22~f1 ,f2 ,u,d!5h22~f2 ,d!52d2 sin 2f2

q1
0~f1 ,f2!5p11 sin 2f11p22 sin 2f2 , s1

0~f1 ,f2!5p21
2 sinf12p21

1 sinf2

q1
c~f1 ,f2!5p11 sin 2f12p22 sin 2f2 , s1

c~f1 ,f2!5p21
1 sinf12p21

2 sinf2

q1
s~f1 ,f2!5p21

1 sinf12p21
2 sinf2, s1

s~f1 ,f2!5p22 sin 2f22p11 sin 2f1

q2
0~f1 ,f2!52

1
2@d1~12cos 2f1!1d2~12cos 2f2!#

q2
c~f1 ,f2!52

1
2@d1~12cos 2f1!2d2~12cos 2f2!#

s2
s~f1 ,f2!5

1
2@d1~12cos 2f1!1d2~12cos 2f2!#

h11
0 ~f1!5p11~11cos 2f1!, h11

u ~f1 ,f2!5p12~cosf11cosf2!

h21
0 ~f1!5p22~11cos 2f2!, h21

u ~f1 ,f2!5p21~cosf11cosf2!

p21
1 5p216p12, f65f16f2 , d i5zv i
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Since the processes (f1 ,f2 ,u,j) do not depend onr, the pro-
cesses (f1 ,f2 ,u,j) alone form a diffusive Markov process, an
the associated generator is given by

L«5L01«L11«2L2

where

L05G1v1

]

]f1
1v2

]

]f2

L15s1

]

]u
1h11

]

]f1
1h21

]

]f2

L25s2

]

]u
1h12

]

]f1
1h22

]

]f2

It is worthy to note that the influence of smallO(e2) deviations
from the exact commensurable frequencies, i.e.,m1v1(m)1 . . .
e

Journal of Applied Mechanics
d
1mnvn(m)5O(e2), on the moment Lyapunov exponent can
easily incoperated by adding an appropriate detuning term
hi2(f1 ,f2 ,u,d) of ~5!.

Then we obtain the following expression for the norm of t
response:

ix~ t;x0!i5ix0iexpH E
0

t

q«
„j~t!,f1~t!,f2~t!,u~t!…dtJ

where

q«~f1~ t !,f2~ t !,u~ t !,j~ t !,d!5
def

«q1~f1~ t !,f2~ t !,u~ t !,j~ t !!

1«2q2~f1~ t !,f2~ t !,u~ t !,d!

Combining the above result with the definition of mome
Lyapunov exponent yields
g~p;x0!5 lim
t→`

1

t
logEFexpH pE

0

t

q«
„j~t!,f1~t!,f2~t!,u~t!,d…dtJ G for pPR, and fixed x0PR4\$0% (6)
n

son
For pPR, it was shown by Arnold et al.@7# that g(p) is the
principal eigenvalue of

L«~p!5
def

L«1pq«~j,f1 ,f2 ,u,d!5L0~p!1«L1~p!1«2L2~p!
(7)

whereL«(p) acts onC(M3S3) and

L0~p!5G~j!1(
i 51

2

v i

]

]f i
1pq0~f1 ,f2 ,u,j!5L01pq0

L1~p!5s1~f1 ,f2 ,u,j!
]

]u
1(

i 51

2

hi1~f1 ,f2 ,u,j!
]

]f i

1pq1~f1 ,f2 ,u,j!5L11pq1

L2~p!5s2~f1 ,f2 ,u,d!
]

]u
1(

i 51

2

hi2~f1 ,f2 ,u,d!
]

]f i

1pq2~f1 ,f2 ,u,d!5L21pq2

Consider the operatorL«(p) and its adjointL«* (p). Then by the
main theorem in Arnold et al.@7#, g«(p) is an isolated simple
eigenvalue ofL«(p) with non-negative eigenfunctionc«(p) such

that ic«(p)i51. The adjoint operatorL«* (p) has an eigenfunc-
tion m«(p) corresponding tog«(p), which is unique and has th
property^c«(p),m«(p)&51, i.e.,

L«~p!c«~p!5g«~p!c«~p!, ^c«~p!,m«~p!&51 ;pPR
(8)

3 Asymptotic Results for Coupled Oscillators
Here we consider an expansion of the moment Lyapunov ex

nent in powers of«

g«~p!5g0~p!1«g1~p!1«2g2~p!1O~«2!

It has been shown that such an expansion is asymptotic by
Namachchivaya et al.@2#, Arnold et al. @9#, Khasminskii and
po-

Sri

Moshchuk@10#, and Pardoux and Wihstutz@11#. Insertion of these
expansions into~8! leads to the following sequence of Poisso
equations:

@L0~p!2g0~p!#c050 (9)

@L0~p!2g0~p!#c15g1~p!c02L1~p!c0 (10)

@L0~p!2g0~p!#c25g2~p!c01g1~p!c12L2~p!c02L1~p!c1
(11)

¯

¯

@L0~p!2g0~p!#cn5g2~p!cn221g1~p!cn212L2~p!cn22

2L1~p!cn21

¯

¯

We construct a formal expansion of the adjoint problem, i.e.,

m«5m01«m11¯1«NmN1¯

Substituting this expansion and the expansion forL« into the
Fokker-Planck equation yields the following sequence of Pois
equations to be solved form0 , m1 , m2 , . . . :

L0* m050 (12)

L0* m152L1* m0 (13)

L0* m252L1* m12L2* m0 (14)

¯

¯

Our interest is in the case when the two frequencies arecommen-
surable, i.e., there exists a relation of the formm1v15m2v2 ,
NOVEMBER 2004, Vol. 71 Õ 761



s

-

wherem1 and m2 are integers. To solve the above sequence
Poisson equations, it is convenient to consider another tran
mation,$f1 ,f2%→$g1 ,g2% given by

g15v2f12v1f2 , g25v1f2
t

a
r
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of
for-
and the inverse transformation is

f15F1~g1 ,g2!5~g11g2!/v2 , f25F2~g1 ,g2!5g2 /v1

Hence, for anycPC2(M3S3), we define the differential opera
tors in (j,u,g1 ,g2) as
L0c5G1v i

]c

]g j

]g j

]f i
1pq0c5G1v1v2

]c

]g2
1pq0c

L1c5s1

]c

]u
1h11

]c

]g1

]g1

]f1
1h21

]c

]g1

]g1

]f2
1pq1c5s1

]c0

]u
1H1

]c

]g1
1v1h21

]c

]g2
1pq1c

L2c5s2

]c

]u
1h12

]c

]g1

]g1

]f1
1h22

]c

]g1

]g1

]f2
1pq2c5s2

]c

]u
1H2

]c

]g1
1v1h22

]c

]g2
1pq2c

where

q1~g1 ,g2 ,u,j!5
def

q1~f1~g1 ,g2!,f2~g1 ,g2!,u,j!

q2~g1 ,g2 ,u,j!5
def

q2~f1~g1 ,g2!,f2~g1 ,g2!,u,j!

s1~g1 ,g2 ,u,j!5
def

s1~f1~g1 ,g2!,f2~g1 ,g2!,u,d!

s2~g1 ,g2 ,u,j!5
def

s2~f1~g1 ,g2!,f2~g1 ,g2!,u,d!

H1~g1 ,g2 ,u,j!5
def

v2h11~f1~g1 ,g2!,f2~g1 ,g2!,u,j!2v1h21~f1~g1 ,g2!,f2~g1 ,g2!,u,j!

H2~g1 ,g2 ,u,j!5
def

v2h12~f1~g1 ,g2!,f2~g1 ,g2!,u,d!2v1h22~f1~g1 ,g2!,f2~g1 ,g2!,u,d!
-

Before proceeding with the determination of solutions, let us s
some facts about the periodicity and commensurability in the n
variablesg1 , g2 .

Lemma 3.1 If (i) v1 and v2 are commensurable (i.e., v1 /v2
PQ ); and ( i i ) f (x) is both v1 and v2-periodic then f is
v-periodic wherev5gcd(v1 ,v2).

Proof: It follows from ~i! that 'n1 , n2PZ such thatv1 /v2
5n1 /n2 with n1 and n2 relatively prime, which in turn implies
that 'm1 , m2PZ such that m1n11m2n251. Now let v
5defv1 /n15v2 /n2 . Then f (x1v)5 f (x1(m1n11m2n2)v)
5 f (x1m1v11m2v2)5 f (x). h

Then the following result is easily obtained.
Lemma 3.2 If w(f1 ,f2) is 2p-periodic in f1 , then F* w is

v̄2-periodic in g1 , wherev̄25def2pv2 .
Proof: Let W(g1 ,g2)5(F* w)(g1 ,g2). Then

W~g11v̄2 ,g2!5w@F1~g11v̄2 ,g2!,F2~g11v̄2 ,g2!#

5w@F1~g1 ,g2!12p,F2~g1 ,g2!#

5w@F1~g1 ,g2!,F2~g1 ,g2!#5W~g1 ,g2!
h

3.1 Solution to O„1…. Since q0(g1 ,g2 ,u,j)[0, it follows
from the definition ofg(p) that g0(p)[0. Thus the operator
L0(p) reduces toL0 and ~9! becomes

L0c050

Since the equations to be solved involve the differential oper
L0 at each stage, the solution of the corresponding adjoint p
lem L0* m050, along with periodic boundary conditionsm0(f1
12p,f2 ,u,j)5m0(f1 ,f212p,u,j)5m0(f1 ,f2 ,u,j), is re-
quired. However, from Lemma 3.2, it follows that in the ne
ate
ew

tor
ob-

w

coordinates,m0(g1 ,g2 ,u,j) is 2pv1 and 2pv2-periodic in g2
and g1 , respectively. In order to make the problem tractable,G
will be assumed to have anisolated simple zero eigenvalue.
Hence, the only solution ofGu50 is u[constant. It follows that
the associated adjoint operatorG* also has zero as a simple, iso
lated eigenvalue, and the normalized invariant measurev(j)dj
satisfiesG* v(j)50.

Since the frequenciesv1 andv2 are commensurable andG has
an isolated simple zero eigenvalue, the solution toL0* m050 is

m0~g1 ,u,j!5
n~j!F~g1 ,u!

2p

whereF is an arbitrary function of (g1 ,u), which has yet to be
determined. By a similar argument it follows that:

c0Pker~L0!5$C~g1 ,u!:C is an arbitrary function ofg1 ,u%

Therefore,c05c0(g1 ,u), a function of (g1 ,u) which has yet to
be determined.

3.1.1 Solution toO(«). Inserting the above expression forc0
into ~10! results in

L0c15g1~p!c02s1~g1 ,g2 ,u,j!
]c0

]u
2H1~g1 ,g2 ,u,j!

]c0

]g1

2pq1~g1 ,g2 ,u,j!c0 (15)

Premultiplying byn~j! and integrating with respect toj andg2
yields
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ree
e to
E
0

2pv1E
M

n~j!•Gc1djdg21E
M

n~j!E
0

2pv1

v1v2

]c1

]g2
dg2dj

5g1~p!c02E
0

2pv1E
M

n~j!s1~g1 ,g2 ,u,j!
]c0

]u
djdg2

2E
0

2pv1E
M

n~j!H1~g1 ,g2 ,u,j!
]c0

]g1
djdg2

2E
0

2pv1E
M

pn~j!q1~g1 ,g2 ,u,j!c0djdg2
Journal of Applied Mechanics
Since,G* n(j)50 andc1 is 2pv1-periodic in g2 the left-hand
side of the above equation is identically zero, and the last th
terms on the right-hand side of the above equation are zero du
the fact f (j) is mean zero. Hence, the eigenvalueg1(p) is zero.

The solutionc1 , of ~15! with g1(p)50, can be expressed in
terms of the Green’s functiong(j,t;h,0) for the operatorG. Re-
write ~15! as

L0c152
1
4 f ~j!R1~g1 ,g2 ,u!

where
R1~g1 ,g2 ,u!5
def

p@q1
0~g1 ,g2!1q1

c~g1 ,g2!cos 2u1q1
s~g1 ,g2!sin 2u#c01@s1

0~g1 ,g2!1s1
c~g1 ,g2!cos 2u1s1

s~g1 ,g2!sin 2u#
]c0

]u

12@v2h11
0 ~g1 ,g2!2v1h21

0 ~f1 ,f2!1v2h11
u ~g1 ,g2!tanu2v1h21

u ~g1 ,g2!cotu#
]c0

]g1
(16)
If g(h,t;j,0) is a solution of

S ]

]t
2GDg50, with g~h,0;j,0!5d~h2j!

then

c1~g1 ,g2 ,u,j!5
1

4 E0

`

K~j,T!3R1~g1 ,g21v1v2T,u!dT

where

K~j,T!5
defE

M
f ~h!g~h,T;j,0!dh

3.1.2 Solution toO(«2). Employing the above results, Pois
son equation~11! for c2 becomes

L0c252S pq2~g1 ,g2 ,u;j!c01s2~g1 ,g2 ,u,j!
]c0

]u

1H2~g1 ,g2 ,u,j!
]c0

]g1
D2L1c1~g1 ,g2 ,u,j;p!1g2~p!c0

(17)

the first term on the right-hand side of~17! depends on damping
alone while the second term depends onj.

Definition 3.3 „Averaging Operator… Fix cPC`(S33M ),
which is 2pv1-periodic in g2 in its second argument. Definec
PC`(R23M ) by
-

~ c̄ !~g1 ,u,j! 5
de f 1

2pv1
E

0

2pv1

c~g1 ,g2 ,u,j!dg2

for all g1 , uPS2 and jPM .
Once again, premultiplying~17! by n~j! and integrating with

respect toj andg2 yields

g2~p!c02S pq̄2~g1 ,u!c01 s̄2~g1 ,u!
]c0

]u
1H̄2~g1 ,u!

]c0

]g1
D

2E
M

n~j!•L1c1~g1 ,u,j;p!dj50 (18)

We consider the three terms in the bracket in~18!, then

q̄252
1
2~d11d2!2

1
2~d12d2!cos 2u

s25
1
2~d12d2!sin 2u, H̄250

Hence,

S pq̄2c01 s̄2

]c0

]u
1H̄2

]c0

]g1
D ~g1 ,u!

5pH 2
1

2
~d11d2!2

1

2
~d12d2!cos 2uJ c0~g1 ,u!

1
1

2
~d12d2!sin 2u

]c0

]u
~g1 ,u! (19)

We now consider the last term in~18!
E
M

n~j!•L1c1~g1 ,u,j;p!dj5
1

4 EM
E

0

`

n~j!K~j,T!~L1R1
T!~g1 ,u!dTdj5

1

2pv1
E

0

`E
0

2pv1 Rj~t!

4 H s1

]R1
t

]u
~g1 ,g2 ,u!

1H1

]R1
t

]g1
~g1 ,g2 ,u!1v1h21

]R1
t

]g2
~g1 ,g2 ,u!1pq1R1

t~g1 ,g2 ,u!J dg2dt (20)
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R1
T~g1 ,g2 ,u!5

def

R1~g11v1T,g21v2T,u!

and
-

m

e
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Rj~t!5
defE

M
f ~j!n~j!K~j,t!dj

Then, after a lengthy calculation, we get
E
M

n~j!•L1c1~g1 ,u,j;p!dj5@pQc1
~g1 ,u,Sj ,Tj!1p2Q̂c1

~g1 ,u,Sj ,Tj!#c0~g1 ,u!1@mc1
~g1 ,u,Sj ,Tj!

1pm̂c1
~g1 ,u,Sj ,Tj!#

]c0

]u
~g1 ,u!1@nc1

~g1 ,u,Sj ,Tj!1pn̂c1
~g1 ,u,Sj ,Tj!#

]c0

]g1
~g1 ,u!

1
1

2
suu

2 ~g1 ,u,Sj ,Tj!
]2c0

]u2
~g1 ,u!1

1

2
sg1g1

2 ~g1 ,u,Sj ,Tj!
]2c0

]g1
2

~g1 ,u!

1sug1

2 ~g1 ,u,Sj ,Tj!
]2c0

]u]g1
~g1 ,u! (21)
where a typical term, take for example a diffusion coefficient,
evaluated as

suu
2 5E

M
n~j!•$s1

0s1
0T1~s1

0s1
cT1s1

0Ts1
c!cos 2u

1~s1
0s1

sT1s1
0Ts1

s!sin 2u1s1
cs1

cT cos2 2u

1~s1
cs1

sT1s1
cTs1

s!cos 2u sin 2u1s1
ss1

sT sin2 2u%dj

Here the superscriptT in the coefficients1
0T denotes that the vari

ableg2 has been shifted tog21v1v2T. The explicit expressions
for the coefficientsQc1

, Q̂c1
, mc1

, m̂c1
, nc1

, n̂c1
, suu

2 , sg1g1

2 ,

sug1

2 are given in the Appendix. For physical systems with sy
metry, one-to-one resonance is the rule rather than the excep
Hence, while averaging these coefficients in~20!, we have made
use of this specific resonance condition calledone-to-onesemi-
simple resonance, where we define

v5
def

v15v2

and the results for the other resonance cases can easily b
is

-
tion.

ob-

tained. We have also made use of the correlation function off (j)
and the cosine and sine spectrum given, respectively, by

Sj~v!5
def

2E
0

`

Rj~t!cos~vt!dt

and

Tj~v!5
def

2E
0

`

Rj~t!sin~vt!dt

Combining the the right-hand sides of Eqs.~19! and ~21! and
defining

g5
def g1

v

yields the partial differential equation atO(«2), whose principal
eigenvalue is the moment Lyapunov exponent, i.e.,

L̃~p!c05g2~p!c0 (22)

where
ns
d, we

ider
L̃~p!c05
def 1

2
suu

2 ~u,g!
]2c0

]u2
~u,g!1

1

2
sgg

2 ~u,g!
]2c0

]g2
~u,g!1sgu

2 ~u,g!
]2c0

]u]g
~u,g!1@m~u,g!1pm̂~u,g!#

]c0

]u
~u,g!1@n~u,g!

1pn̂~u,g!#
]c0

]g
~u,g!1FpQ~u,g!1

1

2
p2Q̂~u,g!Gc0~u,g! (23)

We reiterate that~22! was derived without any restriction on the size ofp. This equation along with appropriate boundary conditio
forms the eigenvalue problem for whichg2(p) is the principal eigenvalue. In order to reduce the number of cases to be evaluate
can simplify the coefficientspi j by a suitable scaling of the state variablesx. It can be shown as in@3# that it is always possible to take
p1256p215k. Since the semi-simple linear form (v15v25v) natuarally occurs in conservative systems, we shall only cons
p125p215k, in which case the coefficients reduce to

m~u,g!5@su,u
2 ~u,g!1

1
4k2Sj~0!cos~2g!#cot 2u2

1
2L sin 2u1

1
8Sj~2v!~p111p22!k cos~g!cos 2u1

1
8Tj~2v!~p111p22!k sin~g!

2
1
8Sj~0!~p112p22!k cos~g!

m̂~u,g!5
1
2~2A~g!cos 2u2E0!sin 2u1

1
16k@2~p112p22!cos2 2u1~p111p22!cos 2u2~p112p22!#Sj~2v!cos~g!

n~u,g!52
1
8~p112p22!~p111p22!Tj~2v!2

1
2Sj~0!sin~2g!k2 csc2 2u1

1
4k@$~p111p22!Tj~2v!cos~g!

1~p112p22!Sj~0!sin~g!%cos 2u2~p111p22!Sj~2v!sin~g!#csc 2u1
1
4Sj~0!sin~2g!k2
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n̂~u,g!52
1
8k@$~p112p22!1~p111p22!%Sj~2v!sin~g!#csc 2u2

1
8p11p22Sj~0!sin~2g!

su,u
2 ~u,g!5@A01

1
16p11p22Sj~2v!cos~2g!#cos2 2u1C02

1
16$p11p22Sj~2v!12k2Sj~0!%cos~2g!2

1
8k~p11

2p22!Sj~2v!cos~g!cos 2u sin 2u

sg,g
2 ~u,g!5

1
2v2k2H Sj~0!1Sj~2v!1Sj~0!cosS 2

g1

v D J cot2~2u!2
1
2v2k~p112p22!$2Sj~0!1Sj~2v!%cosS g1

v D cot~2u!1
1
8v2F ~p11

2

1p22
2 !Sj~2v!12~p112p22!

2Sj~0!22p11p22Sj~2v!cosS 2
g1

v D G
su,g

2 ~u,g!5
1
4k2Sj~0!sin~2g!cot 2u2

1
4k~p112p22!Sj~0!sin~g!

Q~u,g!5s2~u,g!1
1
2L cos 2u1D1

1
8Sj~0!k2 cos~2g!1

1

8
Sj~2v!~p111p22!k cos~g!sin 2u

Q̂~u,g!52@A01
1

16p11p22Sj~2v!cos~2g!#cos2 2u1E0 cos 2u1F01
1

16Sj~2v!p11p22 cos~2g!1
1
8k~p11

2p22!Sj~2v!cos~g!cos 2u sin 2u1
1
8k~p111p22!Sj~2v!cos~g!sin 2u
v

c
s
n

cter-

d-

the

are

the
or
ap-
rs
ced
e

i-

ua-
e
nd-
with the constants given by

A05
1

32H 4k2S~v1!2(
i 51

2

pii
2S~2v i !J ,

C05
1

32H 4k2S~v2!1(
i 51

2

pii
2S~2v i !J

D05
1
2~L11L2!1

1
8k2@S~v1!2S~v2!#,

E05
1

16$p11
2 S~2v1!2p22

2 S~2v2!%

F05
1

32H 4k2S~v1!1(
i 51

2

pii
2S~2v i !J , L5L12L2

L i52d i1
1
8pii

2S~2v i !, i 51,2

wherev152v i52v andv250.
We note in passing that making terms withg identically zero in

the above equation recovers the equations in Sri Namachchi
and van Roessel@3#. It is clear that the operatorL̃(p) obtained
above is identical to the one in@8# using the method of stochasti
averaging. Hence we are sure of the correctness of the re
obtained in this paper. Except for some special cases, the ge
solution of ~23! cannot be obtained explicitly forg2(p).

The domain for the diffusion process inu andg is

D5H ~u,g!:uPF0,
p

2 G ,gP@0,2p#J
It is obvious thatc0 is 2p—periodic in g. Boundaries for theu
process are not physical, thus it is not clear what boundary c
ditions one should use to solve the eigenvalue problem~22!. In
general it is also possible, to have singularities inu, only the
nonsingular cases will be considered here. In order to obtain the
boundary conditions at the boundariesu50 andp/2, we investi-
gate the asymptotic behavior of the diffusion process near th
boundaries. It is obvious that

su,u
2 ~u,g!uu5p/2,05

1
8k2Sj~2v!1

1
8k2Sj~0!@12cos~2g!#

It can easily be seen from the expressions for the drift te
m~u,g!,

m~u,g!;
1

8
k2$Sj~2v!1Sj~0!@11cos~2g!#%

1

2u
, u→01
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on-
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rm

m~u,g!;
1

8
k2$Sj~2v!1Sj~0!@11cos~2g!#%

21

2S p

2
2u D ,

u→ p2

2

Therefore, the diffusion process near the boundary is chara
ized by the drift term. It follows, therefore, that forkÞ0, the
trajectories close to the boundary atu50 are pushed away from
the boundary due to the positive drift. Similarly, near the boun
ary at u5p/2, the trajectories near the boundaryu5p/2 are
pushed away from the boundary by the negative drift. Thus for
case when both the degrees of freedom are coupled, i.e.,p12Þ0
and p21Þ0, the boundaries atu50 andu5p/2 are not attainable
states. Also, trajectories starting at either of these boundaries
pushed into the interior of the domainD. Moreover, this assertion
can also be justified from transformation~4! thatu50 implies the
amplitude of the first oscillatora1 , is zero andu5p/2 implies the
amplitude of the second oscillatora2 is zero. It is clear physically
that unless the coupling coefficientsp12 andp21 are both zero, it is
not possible to have a solution with eithera1 or a2 identically
zero. For the remaining part of this study, we shall make
assumption thatkÞ0. This assumption is valid and appropriate f
most of the practical situations to which these results can be
plied. The casek50 corresponds to a set of uncoupled oscillato
and, therefore, is not of interest to us here. The results dedu
above imply that the probability flux in a direction normal to th
boundaries atu50 andu5p/2 is identically equal to zero. From
the above observation and based on our earlier work@3# for the
noncommensurable case, weassume a Neumann boundary cond
tion for c0 .

4 Eigenvalue Problem
As in @3,12,13#, the solution of~22! can be calculated from an

orthogonal expansion. The nature of the coefficients of the eq
tion suggests that a double Fourier series is appropriate. Sincc0
is 2p-periodic ing and because of the assumed Neumann bou
ary conditions

]c0

]u
~g,0!5

]c0

]u S g,
p

2 D50 (24)

we may expressc0 as follows:
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Fig. 1 Variation of moment Lyapunov exponent, g 2„p … with p
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e
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lue
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c0~g,u!5a001(
n51

a0n cos 2nu1(
n51

(
m51

~amn cosmg

1bmn sinmg!cos 2nu (25)

Insertion of~25! into ~22! leads to the following equation for th
coefficients:

(
r 50

`

(
s50

` S Ĉrsmn C̄rsmn

D̂rsmn D̄rsmn
D S ars

brs
D5g~p!S amn

bmn
D (26)

where

Ĉrsmn5
defE

0

p/2E
0

2p

L~p!~cosrg cos 2su!3cosmg cos 2nudgdu

C̄rsmn5
defE

0

p/2E
0

2p

L~p!~sinrg cos 2su!3cosmg cos 2nudgdu

D̂rsmn5
defE

0

p/2E
0

2p

L~p!~cosrg cos 2su!3sinmg cos 2nudgdu

D̄rsmn5
defE

0

p/2E
0

2p

L~p!~sinrg cos 2su!3sinmg cos 2nudgdu

The existence of a nontrivial solution to~26! requires that the
determinant of the coefficient matrix be zero. Thus to evalu
g(p), the leading eigenvalue of the coefficient matrix, we co
struct a sequence of approximations by truncating the sums. C
sider the truncated system

(
r 50

M

(
s50

N S Ĉrsmn C̄rsmn

D̂rsmn D̄rsmn
D S ars

brs
D5g~p!S amn

bmn
D (27)

We approximate the solution to~26! by numerically solving the
truncated Eq.~27! for g(p) with M5N

(
r 50

N

(
s50

N S Ĉrsmn C̄rsmn

D̂rsmn D̄rsmn
D S ars

brs
D5g~p!S amn

bmn
D (28)

Let A andB represent the following matrices:
BER 2004
ate
n-
on-

A5F a00 a01 ¯ a0N

a10 a11 ¯ a1N

] ] � ]

aN0 aN1 ¯ aNN

G5F ] ] ] ]

A0 A1 ] AN

] ] ] ]

G
B5F b10 b11 ¯ b1N

b20 b21 ¯ b2N

] ] � ]

bN0 bN1 ¯ bNN

G5F ] ] ] ]

B0 B1 ] BN

] ] ] ]

G
Then ~28! may be written as the following (2N11)(N11) di-
mensional system:

AI r5g~p!r (29)

where

r5@A0 ,A1 , . . . ,AN ,B0 ,B1 , . . . ,BN#T (30)

Thus to evaluateg(p), the leading eigenvalue of AI , we construct
a sequence of approximations by finding the eigenvalues o
sequence of submatrices. The set of approximate eigenvalue
tained by this procedure converges to the corresponding true
genvalues asN→`. However, the amount of calculation in
creases drastically with the increase in the number of te
considered.

5 Numerical Results
We now present some numerical results to illustrate the con

gence of various orders of approximations. For this purpose,
consider the numerical valuesp1151, p2252, k51, d151, d2
52, Sj(2v)5Sj(0)51, Tj(2v)50. We obtain several sets o
results corresponding toN50, 1, 2, 3 giving rise, respectively, to
1, 6, 15, and 28 terms in the Fourier expansion. We compare
6-, 15-, and 28-term expansions for the fourth-order eigenva
approximations. From the results shown in Fig. 1, it is clear t
the results forN52 ~15 terms! and N53 ~28 terms! are essen-
tially the same. Thus, it suffices to use a 15-term expansion
order to obtain a sufficiently accurate expression forg2(p). For
the parameter values given above, the system is almost-su
stable, but moment unstable beyondp'1.77.
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In conclusion, a method to compute the moment Lyapunov
ponent of a 2-dof coupled linear system with commensurable
genvalues, under random parametric excitation was develo
We derive the generatorL(p) for finite p, whose principal eigen-
value is the moment Lyapunov exponent, based on stochastic
eraging. Except for some special cases the general solution of~22!
cannot be obtained explicitly forg2(p). In this paper we have
obtained approximate solutions based on Fourier analysis, and
shown that a 15-term expansion is sufficiently accurate.

The results obtained above can be directly applied to ana
the stochastic stability of a number of nongyroscopic mechani
structural, and diverse other physical systems with symme
These include for instance, surface wave excitations of fluid i
container with nearly square cross-section, transverse motion
flexible spinning disc with time-dependent~random! variation in
the spin rate, randomly loaded shallow arch structures, and be
Journal of Applied Mechanics
ex-
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ed.
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ams

with a rectangular cross-section and excited stochastically at
points of support along the longitudinal direction of the beam.
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Appendix
In this appendix, the explicit expressions for the coefficie

Qc1
, Q̂c1

, mc1
, m̂c1

, nc1
, n̂c1

, suu
2 , sg1g1

2 , sug1

2 in ~21! are evalu-
ated under a specific resonance conditionv5v15v2 .
sug5
def

1
16v@$p21

2 p21
1 Sj~0!@11cos2~2u!#1~p21

121p21
22!Sj~0!cos~2u!%csc~2u!22~p112p22!Sj~0!@p21

1 1p21
2 cos~2u!##sinS g1

v D

sgg5
def1

8
v2H Sj~0!1Sj~2v!1Sj~0!cosS 2

g1

v D J •~p21
2212p21

1 p21
2 cos~2u!1p21

12 cos2~2u!!csc2~2u!2
1

4
v2~p112p22!$2Sj~0!

1Sj~2v!%@p21
2 1p21

1 cos~2u!#cosS g1

v D csc~2u!1
1

8
v2F ~p11

2 1p22
2 !Sj~2v!12~p112p22!

2Sj~0!22p11p22Sj~2v!cosS 2
g1

v D G

suu5
def 1

32F ~p21
122p11

2 2p22
2 !Sj~2v!1p21

22Sj~0!2~p21
22Sj~0!22p11p22Sj~2v!!cosS 2

g1

V D Gcos2~2u!1
1

16
p21

2 p21
1 H @Sj~0!1Sj~2v!#

2Sj~0!cosS 2
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1

32F ~p21
221p11

2 1p22
2 !Sj~2v!1p21

12Sj~0!2~2p11p22Sj~2v!1p21
12Sj~0!!cosS 2

g1

V D G
2

1

16
~p112p22!Sj~2v!cosS g1

V D @p21
1 cos~2u!1p21

2 #sin~2u!

nc1
5
def

2
1

16
vSj~0!$~2p21

121p21
22!14p21

1 p21
2 cos~2u!1p21

22 cos2~2u!%sinS 2
g1
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1

8
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1 cos~2u!
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1 cos~2u!1p21
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2 cos~2u!#%sinS g1
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2 cos~2u!#%sinS g1
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16
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1 p21

2 Sj~0!cos~2u!%sinS 2
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v D
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1
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1 p21
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2 2p22
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v D
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A Correspondence Principle for
Scission-Induced Stress
Relaxation in Elastomeric
Components
A method is presented for calculating the stress relaxation due to scission in elasto
components that operate at a fixed deformation while at an elevated temperatu
relationship is established between stresses at different temperatures that is calle
correspondence principle for scission/healing materials. Two examples involving c
ders illustrate its use. The first example involves combined tension-torsion, for whic
axial force-twisting moment relation is derived, that might be useful in experime
studies to assess the applicability of the correspondence principle. The second ex
provides a criterion for estimating the lifetime of an annular seal.
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1 Introduction
In applications where the mechanical and thermal loads on e

tomeric structural components are benign enough that no cha
in microstructure occur, stresses and deformations can be c
lated using the nonlinear theory of elasticity. However, when
temperature~or deformation! of an elastomeric structural compo
nent is sufficiently large, scission of molecular cross-links a
possible in situ recross-linking~healing! can result in significant
time-dependent softening of mechanical properties as well as
manent set@1,2#. In applications involving elastomeric seals
bushings in automotive or truck suspension systems, for exam
these changes can impair performance and require eventua
placement. In such applications, where it is important to be abl
predict the lifetime of the elastomeric component, the nonlin
theory of elasticity is no longer applicable, and a new means
determining stresses is required.

In this paper, a method is presented which can be used to
culate the stress relaxation due to scission in elastomeric com
nents that operate at a fixed deformation while at elevated t
peratures as, for example, could occur in seals or bushings.
method is based on a correspondence that is established be
stresses in an elastomeric component at different temperat
Because an analogous situation in the linear theory of viscoe
ticity has proven to be very useful@3#, the method presented her
is referred to as thecorrespondence principle for scission/healin
materials.

The proposedcorrespondence principleis restricted to condi-
tions when the deformation is fixed and the temperature is s
tially uniform. There are applications when these conditio
should be at least approximately satisfied. For example, if
surface temperature of a seal is increased, the time required fo
temperature field within the seal to become uniform may be sm
compared to the time for there to be significant scission. Also
seal may be subjected to a large initial deformation and then s
superposed deformations as, for example, would occur if the

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the THE AMERICAN SOCIETY OF ME-
CHANICAL ENGINEERS. Manuscript received by the Applied Mechanics Divisio
March 26, 2002; final revision, October 30, 2003. Associate Editor: K. R. Rajago
Discussion on the paper should be addressed to the Editor, Prof. Robert M. McM
ing, Journal of Applied Mechanics, Department of Mechanical and Environme
Engineering, University of California—Santa Barbara, Santa Barbara, CA 93
5070, and will be accepted until four months after final publication of the paper it
in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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were used in a vibrating pump. Thus, the conditions for the ap
cation of thecorrespondence principlewould be at least approxi-
mately satisfied and would lead to a useful first approximation
the relaxation of stresses in an elastomeric component underg
scission.

The constitutive theory that accounts for scission-induced st
relaxation in an elastomer at an arbitrary fixed deformation
presented in Sec. 2. Thecorrespondence principle for scission
healing materialsis developed in Sec. 3. Two examples involvin
cylinders are presented in Sec. 4. The first involves combi
tension-torsion. A result relating the axial force and twisting m
ment is derived which might be useful in experimental studi
The second example provides a criterion for estimating the l
time of a seal.

2 Constitutive Equation
Tobolsky @1# described experiments in which a rubber strip

room temperature was subjected to a fixed uniaxial stretch
then held at a higher fixed temperature for a specified time in
val. At temperatures aboveTcr ~say 100 °C!, called the
chemorheological temperature, the stress decreased with tim
the end of the specified time interval, the external force was
duced to zero and the specimen was returned to its original t
perature. The specimen was observed to have a permanent st
Tests were carried out for different applied stretches, temp
tures, and time intervals. The decrease in tensile stress with
and the permanent stretch were measured. Results of more r
experiments can be found in the article by Wineman, Jones,
Shaw@2#. Tobolsky analyzed the data assuming the elastome
be instantaneously neo-Hookean, for which the relation betw
tensile~Cauchy! stresss(t) and uniaxial stretch ratiol is

s~ t !52n~ t !kTS l22
1

l D (1)

whereT is the absolute temperature,k is the Boltzmann constant
and n(t) is the current cross-link density. The decrease ins(t)
was attributed to scission of molecular network cross-links, res
ing in a decrease inn(t). The permanent stretch was attributed
a new network that formed in the stretched state~healing!. At
temperatures belowTcr , the stress-stretch relation for the syste
consisting of the two networks was assumed to be

,
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s52n1kTS l22
1

l
D 12n2kTF S l

l̂
D 2

2S l̂

l
D G (2)

wherel̂ is the stretch ratio of the original network while held
the high temperature,n1 is the cross-link density of the origina
network at the end of the test, andn2 is the cross-link density of
the new network. Equation~2! expresses the assumptions that!
the total stress is the sum of the stresses in each network, ii! each
network acts as an incompressible isotropic neo-Hookean el
material, and iii! broken cross-links reform to produce a new n
work that is stress free when the stretch ratio of the original n
work is l̂ @1,4#.

Tobolsky’s data suggested thatn(t) in ~1! is independent of the
stretch ratiol̂ up to a value of about 4. This was supported by t
results of Scanlan and Watson@5#. According to Eq. ~1!,
s(t)/s(0)5b(T,t) and n(t)5b(T,t)no where no is the initial
cross-link density.b(T,t) is a material property function that ca
be obtained experimentally~see@1#, Fig. V.4!. Tobolsky ~@1#, p.
226! suggested thatb(T,t) can be represented in the form

b~T,t !5f„a~T!t… (3)

for a number of elastomers. For a particular natural rubber vu
nizate in the temperature range 100 °C<T<130 °C, Tobolsky
showed that

b~T,t !5exp„2a~T!t…, (4)

with

a~T!5
kB

kP
T exp~2Eact /RT! (5)

kB is Boltzmann’s constant,kP is Planck’s constant,Eact is an
activation energy whose value was found to be 30.4 kcal/mol,
R is the gas constant.

Neubert and Saunders@6# carried out tests similar to those o
Tobolsky, but for a pure shear deformation. They measured
manent biaxial stretch upon removal of stress and reduction o
temperature to its original value, and found that predictions ba
on the assumption of a neo-Hookean response led to inacc
predictions of permanent set. They modified assumption ii! by
modeling the rubber as a Mooney-Rivlin material, and show
that this model led to better agreement with the measured pe
nent biaxial stretch. Fong and Zapas@7# later proposed using the
Rivlin-Saunders model to determine the permanent biaxial stre

These results are now used as a guide for the development
constitutive framework for the three-dimensional response o
rubber undergoing scission while at a fixed homogeneous de
mation and constant temperature history. For a detailed discus
of the constitutive equation, see Wineman and Shaw@8#. Consider
a rubbery material in a stress-free reference configuration
temperatureT. There is a range of deformations and temperatu
for which the material response can be regarded as incomp
ible, isotropic, and nonlinearly elastic. Ifx is the position at cur-
rent timet of a particle located atX in the reference configuration
the deformation gradient isF5]x/]X. The left Cauchy-Green
tensor isB5FFT and the Cauchy stresss is given by

s52pI12
]W

]I 1
B22

]W

]I 2
B21 (6)

wherep is an arbitrary hydrostatic pressure arising from the c
straint that deformations are isochoric.I 1 , I 2 are the first and
second invariants ofB, respectively, andW(I 1 ,I 2 ,T) is the strain
energy density associated with the original material. In Eq.~6!,
s,B, andT are evaluated at the current time t, which is omitt
from the notation for brevity. For many proposed models of ru
ber elasticity, the strain energy density function is written
W(I 1 ,I 2 ,T)5nokTWo(I 1 ,I 2), that is, the dependence on tem
perature and deformation is separable. Note that the subscri
770 Õ Vol. 71, NOVEMBER 2004
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superscripto indicates the scission-independent part of a quant
This is the case for the phantom model, affine model, constra
chain model, localization model, liquidlike model, and eight-cha
model @9#. Accordingly, Eq.~6! can be restated as

s52pI1so~B,T! (7a)

where

so~B,T!52nokTSo~B!, So~B!5
]Wo

]I 1
B2

]Wo

]I 2
B21.

(7b)

For temperaturesT,Tcr and moderate deformations, no micro
structural changes are assumed to occur, and the stress is giv
Eq. ~6!, (7a), or (7b). If the material is held at a fixed homoge
neous deformation and the temperature is increased to a fi
valueT>Tcr at timet50, scission of the original microstructura
network is assumed to occur continuously in time. The volu
fraction of the original network cross-link density at timet is
denoted asb(T,t), a monotonically decreasing function oft sat-
isfying b(T,0)51.

The current stress is given by

s52pI1bF2
]W

]I 1
B22

]W

]I 2
B21G , (8a)

or, alternatively,

s52pI12bnokTF]Wo

]I 1
B2

]Wo

]I 2
B21G , (8b)

whereb ands are evaluated at the current timet. This constitu-
tive equation extends the ideas inherent in Eq.~1! to arbitrary
homogeneous deformations. Neubert and Saunders@6# used it in
their analysis of the permanent set due to new networks
formed during a pure shear deformation.

Several comments are in order regarding constitutive Eq.~8!.
First, in accordance with Tobolsky’s experimental results,b(T,t)
is assumed to be independent of the deformation. This is stri
justified only for fixed uniaxial extensions withl,4. There is a
lack of experimental evidence for other deformations. Seco
although Tobolsky assumed the response of the original and ne
formed networks to be neo-Hookean, Neubert, and Saunders@6#
and Fong and Zapas@7# considered other possibilities. Thu
Wo(I 1 ,I 2) is left unspecified. Third, consistent with assumpti
iii ! above, new networks that result from cross-linking are form
in a stress-free state. Provided the deformation is held fixed, th
new networks do not contribute to the stress and no further c
stitutive assumptions are required.

3 Correspondence Principle for Scission-Healing
Materials

Consider an elastomeric body that has been subjected to a
homogeneous deformation and is in equilibrium at a spatially u
form temperatureTo,Tcr . Let its deformed configuration be de
noted byk. Surface tractions are specified on the portion of t
deformed surface denoted as]k (s) and the current positions o
particles are specified on the portion of the deformed surface
noted as]k (d). Let x̂ denote the prescribed current particle po
tions on ]k (d), T̂(s) denote the prescribed surface traction
]k (s), and T̂(d) denote the computed surface traction on]k (d).
The stress and deformation fields satisfy the following conditio

div s50 in k, (9a)

sn5T̂~s! on ]k~s!, (9b)

x5 x̂ on ]k~d! (9c)

wheren denotes the unit outer normal at a point of the exter
surface. The constitutive equation is given by Eqs. (7a) and (7b),
which when substituted into Equation (9a), gives
Transactions of the ASME
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d in
2gradpo12nokTo div So50 (10)

Boundary condition (9b) with (7b) can be written in the form

2pon12nokToSon5T̂~s! (11)

Equations~9c!, ~10!, and ~11! define a boundary value problem
for the scalar fieldpo(X) and deformationxo(X). The corre-
sponding stresses are given by

so52poI12nokToSo~Bo! (12)

whereBo is calculated fromxo(X). The surface tractionsT̂(d) on
]k (d) are

T̂~d!5son52pon12nokToSo~Bo!n (13)

Now, suppose the body is brought to a higher, spatially unifo
temperatureT1.Tcr and is in equilibrium at a fixed deformation
According to various researchers~e.g.,@1,5#!, the volume changes
associated with the temperature change of interest and the pro
of scission and subsequent reforming of cross-links are sm
enough to be neglected. It is thus assumed that the body ha
same deformation as when at the lower temperatureTo,Tcr , that
is x5xo(X). Constitutive Eq. (8b) gives

s152p1I12b~T1 ,t !nokT1So~Bo! (14)

Equilibrium condition (9a) becomes, using Eq.~14!,

div s152gradp112b~T1 ,t !nokT1 div So~Bo!50 (15)

Sincepo(X) andxo(X) satisfy Eq.~10!, Eq. ~15! becomes

div s152gradp11b~T1 ,t !T1 /To gradpo

5grad~2p11pob~T1 ,t !T1 /To!50 (16)

If we let p15po(X)b(T1 ,t)/T1 /To , the equilibrium equation is
satisfied.

The corresponding stress is found from Eq.~14!,

s15b~T1 ,t !T1 /To@2poI12nokToSo~Bo!# (17)

Boundary condition (9c) is automatically satisfied because
the assumed deformation. The tractions on the deformed exte
surface are calculated using Eq.~17!,

s1n5b~T1 ,t !T1 /To@2pon12nokToSo~Bo!n# (18)

Evaluating Eq.~18! on ]k (s) gives b(T1 ,t)T1 /ToT̂(s) and on
]k (d) givesb(T1 ,t)T1 /ToT̂(d).

The results of this section establish the following:
Correspondence Principle for Scission/Healing Materials
Let x5xo(X) be an equilibrium deformation for an incompres
ible isotropic elastomeric body at a spatially uniform temperat
To,Tcr and let the corresponding stress field be denoted
so(X). Thenx5xo(X) is also an equilibrium deformation whe
the body is brought to a higher, spatially uniform temperat
T1.Tcr , where it undergoes the scission-recross-linking proc
The corresponding stresses ares1(X,t)5b(T1 ,t)T1 /Toso(X),
whereb(T1 ,t) is the material’s scission response function, i.
the ratio of the current to the original cross-link density for t
original material. If the surface tractions areT̂(s) on ]k (s) and
T̂(d) on ]k (d) at To,Tcr , then atT1.Tcr the surface tractions ar
b(T1 ,t)T1 /ToT̂(s) andb(T1 ,t)T1 /ToT̂(d), respectively.

4 Applications of the Correspondence Principle for
ScissionÕHealing Materials

In this section, two examples are presented to examine the
sequences of thecorrespondence principle for scission/healin
materials. The first example discusses a nontrivial multiaxial d
formation state that could lead to a nice experimental assess
of the validity of the proposed correspondence principle. The s
Journal of Applied Mechanics
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ond example is a practical application of the correspondence p
ciple, showing a method for determining the lifetime of an ela
tomeric seal at an elevated temperature.

Combined Tension-Torsion of a Circular Cylinder. Con-
sider a circular cylinder at a uniform temperatureTo,Tcr with
length L , inner radiusRi , and outer radiusRo . The inner and
outer cylindrical surfaces are traction free and axial forceN and
twisting momentM are applied to its end surfaces~see Fig. 1!.
The cylinder is in equilibrium under these applied loads.

The resulting deformation is assumed to be axially symmet
in which plane cross sections remain plane, displace along
rotate about the axis of symmetry, and cylindrical surfaces defo
into cylindrical surfaces. Let a cylindrical coordinate system
introduced that is coaxial with the cylinder and has its origin
one end. A material point at (R,Q,Z) in the reference configura
tion deforms to (r ,Q,z) in the current configuration. The mappin
describing this deformation has the form

r 5F1

l
R21gG1/2

u5Q1clZ (19)

z5lZ

l andc are constants that represent the uniform axial stretch r
and uniform cross-sectional rotation per current length, resp
tively. If r i and r o are the radii of the deformed inner and out
surfaces, then

1

l
5

r o
22r i

2

Ro
22Ri

2 , g5
Ro

2r i
22Ri

2r o
2

Ro
22Ri

2 (20)

Consider a possible experiment in whichl andc are specified
and the cylindrical surfaces are traction free in the current c
figuration. Using the notation of Sec. 3, the inner and outer cy
drical surfaces form]k (s) andT̂(s)50. The ends of the cylinder
z50 andz5lL , form the surface]k (d). x̂ is obtained by evalu-
ating the mapping in Eq.~19! at Z50 andZ5L .

An analysis of the combined torsion and tension of a circu
cylinder can be found in@10#. A scalar fieldpo(r ) can be found so
that the equilibrium equation is met. The radiir i and r o of the
deformed cylindrical surfaces are determined from the first of
~20! and the boundary condition thatT̂(s)50 on ]k (s). The con-
stantg is then known. Expressions for the stress are presente

Fig. 1 Hollow cylinder subjected to axial force and torsion
NOVEMBER 2004, Vol. 71 Õ 771
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@9# but are omitted here for brevity. Of particular interest here
the expressions for the axial force and twisting moment app
the ends of the cylinder,

N52pE
r i

r o

szzrdr (21a)

M52pE
r i

r o

szur 2dr (21b)

Suppose that the temperature of the cylinder is increase
T1.Tcr . According to the correspondence principle, the deform
tion x5xo(X) is given by Eq.~19!. The traction on]k (s) is
b(T1 ,t)T1 /ToT̂(s)50. On ]k (d), szzuT1

5b(T1 ,t)T1 /ToszzuT0
,

and szuuT1
5b(T1 ,t)T1 /ToszuuTo

. Since Eq.~21! applies at all
temperatures, it follows that

NuT1
52pE

r i

r o

szzuT1
rdr 52pE

r i

r o

b~T1 ,t !T1 /ToszzuT1
rdr

5b~T1 ,t !T1 /ToNuTo
(22a)

In a similar manner it can be shown that

M uT1
5b~T1 ,t !T1 /ToM uTo

(22b)

It also follows that

NuT1

M uT1

5
NuTo

M uTo

(23)

is a constant, independent of time. Thus, the axial force and tw
ing moment have the same decrease with time. This is a result
could potentially be assessed experimentally by measuring
time dependence of the normal force and twisting moment at h
temperatures to determine the validity of the proposed corres
dence principle.

Lifetime Prediction for Elastomeric Seals. Consider the
cylinder of the previous example once again at a uniform temp
ture To,Tcr . Let it now be force fit and thus seal the annul
space between an inner rigid cylindrical of radiusr i.Ri and outer
rigid cylinder of radiusr o,Ro . Let the ends of the cylinder be
traction free~see Fig. 2!.

The resulting deformation is assumed to be axially symmet
The end surfaces form the portion of the boundary]k (s) and the

Fig. 2 Elastomeric seal and rigid die
772 Õ Vol. 71, NOVEMBER 2004
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cylindrical surfaces form the portion of the boundary]k (d). Sup-
pose it is assumed that the deformation is given by Eq.~19! with
c50. It can then be shown thatM50. Sincer i andr o are speci-
fied,l andg are determined from Eq.~20!. In general, the bound-
ary conditionT̂(s)50 cannot be satisfied at each point on]k (s).
Instead, let the relaxed boundary conditionN50 be imposed. The
scalar fieldpo(r ) and the stress components are then comple
determined.s rr , the radial stress, is the only nonzero stress co
ponent acting on]k (d), and the pressure between the seal an
rigid cylinder isus rr u. Suppose that the pressure between the s
and a cylindrical surface must be at leastp* if a leak is to be
avoided. WhenTo,Tcr , r i and r o can be chosen so tha
us rr (r o)uTo

.p* and us rr (r i)uTo
.p* .

Suppose that the temperature of the seal is increased toT1
.Tcr at t50. According to the correspondence principle, the d
formation is unchanged. Using the discussion from the first
ample, it can be shown thatNuT1

50. The pressures fort.0 be-
tween the seal and the inner and outer rigid cylinders a
respectively,

pinner~ t !5us rr ~r i !uT1
5b~T1 ,t !T1 /Tous rr ~r i !uTo

,
(24)

pouter~ t !5us rr ~r o!uT1
5b~T1 ,t !T1 /Tous rr ~r o!uTo

.

Because of scission, these pressures will relax with time. Leak
is predicted to occur at the smallest timet* when

min$pinner~ t* !,pouter~ t* !%5p* (25)

is reached, thereby giving an estimate of the seal’s useful life
temperatureT1 .

5 Summary and Conclusions
A correspondence principle has been introduced which can

used to calculate the stress relaxation due to scission in an el
meric component at an elevated temperatureT1 in terms of the
stresses in the component at a lower temperatureTo where there is
no scission. The application of the principle assumes knowle
of two items: 1! the stress distribution at temperatureTo , deter-
mined by either analytical or numerical methods and 2! a material
propertyb(T,t) that can be determined from uniaxial stress rela
ation experiments at different constant temperatures. The co
spondence principle requires that the deformations be the sam
T1 andTo and that the temperature fields be homogeneous. W
these conditions are at least approximately satisfied, the co
spondence principle can give a useful first approximation to
actual stresses during scission. Two examples illustrate the a
cation of the correspondence principle. In the first, a tensi
torsion experiment can be used to assess the validity of the p
ciple. In the second example, the usable lifetime of a seal at h
temperature can be predicted.
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Elastoplastic Modeling of Metal
Matrix Composites Containing
Randomly Located and Oriented
Spheroidal Particles
Micromechanics-based effective elastic and plastic formulations of metal matrix com
ites (MMCs) containing randomly located and randomly oriented particles are develo
The averaging process over all orientations upon three elastic governing equation
aligned particle-reinforced MMCs is performed to obtain the explicit formulation of
fective elastic stiffness of MMCs with randomly oriented particles. The effects of vo
fraction of particles and particle shape on the overall elastic constants are stud
Comparisons with the Hashin-Shtrikman bounds and Ponte Castaneda-Willis bo
show that the present effective elastic formulation does not violate the variational bo
Good agreement with experimental elastic stiffness data is also illustrated. Furtherm
the orientational averaging procedure is employed to derive the overall elastoplastic
function for the MMCs. Elastoplastic constitutive relations for the composites are
structed on the basis of the derived composite yield function. The stress-strain resp
of MMCs under the axisymmetric loading are also investigated in detail. Finally, ela
plastic comparisons with the experimental data for SiCp/Al composites are perform
illustrate the capability of the proposed formulation.@DOI: 10.1115/1.1794699#
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1 Introduction
Metal matrix composites~MMCs! have evolved over the pas

40 years, and have been applied as structural materials in a
space and automotive industries, due to their high-performa
specific mechanical properties in service. The stress-strain
sponse of MMCs generally represents their basic mechanica
havior; i.e., the elastic stiffness, yield stress, and plastic flow@1#.
The prediction of effective~overall! elastic and plastic behavior o
MMCs are of considerable interest to researchers and enginee
many science and engineering disciplines.

Although the constitutive relations of discontinuously rei
forced MMCs were widely studied in recent years, most of
research efforts have been directed to unidirectionally alig
particle-reinforced composites. For MMCs containingrandomly
orientedparticles, the first elastic study seems attributed to C
@2# who considered the effects of random orientation of short
bers on the stiffness and strength of paper and other fibrous
terials. However, Cox’s results did not take into account inter
tions between fiber and matrix phases. Christensen and cowo
@3,4# proposed a geometric averaging method for determining
effective isotropic elastic properties of randomly oriented fib
composites. Christensen’s averaging method is directly base
the stiffness-type mechanical properties of aligned continuou
ber composites so that the end effects of short fibers are negle
Since the 1980s, more investigators were involved in predic
the effective elastic behavior of composites based on micro
chanical approaches@5–20#. For example, Chou and Nomura@5#
derived the elastic formulation of randomly oriented compos
based on the results from both the mathematical bounds and

1
Author to whom correspondence should be addressed.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, August 20, 20
final revision; December 29, 2003. Associate Editor: A Needleman. Discussion o
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
774 Õ Vol. 71, NOVEMBER 2004 Copyright ©
t
ero-
nce
re-
be-

f
rs in

-
he
ed

ox
fi-
ma-
c-

kers
the
er

on
fi-
ted.

ing
e-

tes
the

self-consistent method for each orientation. Takao et al.@6#, Tan-
don and Weng@7#, Benveniste@8#, and Ferrari and Johnson@9#
showed the effect of misoriented fiber on the overall elastic c
stants of composites, based on the Mori-Tanaka mean-field th
@21#, coupled with different fiber distribution functions. Pon
Castaneda and Willis@15# developed the refined variationa
bounds for randomly oriented composites. Riccardi and Month
let @18# proposed a generalized self-consistent method to pre
the effective elastic moduli of composites.

For the elastoplastic behavior of MMCs with randomly orient
particles, Qiu and Weng@22,23# considered the overall composit
behavior, using a secant moduli approach coupling with either
Mori-Tanaka method@7,21,24# or the energy method proposed b
the authors earlier@25#. Li et al. @26# derived the elastoplastic
response of the composites, based on the variational proce
developed by Ponte Castaneda@27,28#. Dunn and Ledbetter@29#
also proposed a micromechanical model to predict the elastop
tic behavior of MMCs with orientation-preferred~textured! rein-
forcements. From a numerical point of view, Bao et al.@30# cal-
culated particle orientation effects on discontinuously reinforc
MMCs by considering randomly oriented needle-type elastic re
forcements and disc-type elastic particles embedded in an ela
plastic matrix. Moreover, Sorensen et al.@31# and Dong et al.@32#
employed micromechanical finite element methods to simulate
effects of reinforcement misalignment on the tensile elastopla
response of MMCs.

The objective of the present paper is to develop
micromechanics-based effective elastoplastic model of MM
containing randomly located and randomly oriented sphero
particles. The averaging process over all orientations upon th
governing equations for aligned spheroidal particle-reinforc
composites is performed to obtain the constitutive relations
isotropic elastic stiffness of MMCs with randomly oriented sph
roidal particles. The effects of the volume fraction of particles a
the particle aspect ratio on the overall elastic constants of
composites are discussed. The comparisons with the Has
Shtrikman bounds@33#, Ponte Castaneda-Willis bounds@15#, and
the available experimental data are also illustrated. Furtherm
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the orientational average is utilized to derive the overall yie
function for the composites based on the previous results@34,35#
for the aligned particle-reinforced MMCs. As a demonstration,
overall elastoplastic stress-strain curves under uniaxial loading
studied in detail. Comparisons between the present theore
predictions and experimental data are performed to illustrate
capability of the proposed model. Finally, initial yield surfac
and effects of stress ratio on the MMCs under axisymmetric lo
ing are investigated.

2 Effective Elasticity of MMCs With Randomly Ori-
ented Particles

Let us start by considering a two-phase composite consistin
a linearly elastic isotropic matrix~phase 0, with the stiffnessC(0))
and linearly elastic isotropic spheroidal particles~phase 1, with
the stiffnessC(1)), as shown in Fig. 1~a!. The randomly oriented
particles are also randomly located in the matrix. The aspect r
of the spheroidal particles is defined asa5a1 /a wherea1 anda
are the semi-axes of the spheroids@Fig. 1~b!#. It is assumed that
the two phases are perfectly bonded at the interfaces.

The transformation between local coordinates of particles
global coordinates of composites is demonstrated first. As sho
in Fig. 2, the local axes of a spheroidal inclusion are denoted
the primed coordinate system (x18 ,x28 ,x38) with axis x18 being the
symmetric axis of a spheroid. The global or fixed axes are rep
sented by the unprimed coordinate system (x1 ,x2 ,x3). Each com-
ponent of the coordinate transformation matrix@Qi j # is simply the
cosine between theith primed andjth unprimed axes. Thus, we
have~c.f. @7#!

$xi8%5@Qi j #$xj% (1)

where the transformation matrix has the following form

@Qi j #5F cosu sinu cosg sinu sing

2sinu cosu cosg cosu sing

0 2sing cosg
G (2)

with u ~0<u<p/2! denoting the angle betweenx1 andx18 , andg
~0<g<2p! representing the angle betweenx3 andx38 . Therefore,
any second-rank tensor, e.g., the stress tensor, can be transfo
between the global and the local as

s i j8 5QikQjl skl (3)

or

s i j 5QkiQl j skl8 (4)

Fig. 1 „a… A composite containing randomly dispersed and
randomly oriented spheroidal particles, and „b… the sketch of a
spheroid
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2.1 Orientation-Averaged Constitutive Equations. To ob-
tain effective constitutive equations of random heterogene
composites, one typically performs the ensemble-volume and
entational averaging procedures~homogenizations! within a me-
soscopic representative volume element~RVE!. In particular, Ju
and Chen@36# performed the ensemble-volume homogenizati
and derived the governing stress-strain equations for parti
reinforced composites under the applied far-field stresss0. In the
case of the first-order approximation~where the near-field strong
interparticle interactions are neglected!, the three governing con-
stitutive equations take the form@36#:

s̄5C~0!:~ «̄2f«̄* !

«̄5«01fS: «̄* (5)

«̄* 52~S1A!21:«0

where s̄, «̄, and «̄* are the ensemble-volume averaged stre
strain, and eigenstrain tensors of composites, respectively.

corresponding far-field strain is«05C(0)21
:s0 and the elastic

mismatch tensor readsA5@C(1)2C(0)#21
•C(0). The operation

symbol ‘‘:’’ denotes the contraction between a fourth-rank tens
and a second-rank tensor while the symbol ‘‘•’’ represents the
multiplication between two fourth-rank tensors. In addition,f de-
fines the volume fraction of particles, andS is the fourth-rank
Eshelby’s tensor of an ellipsoid. For spheroidal particles, the
helby’s tensorS can be expressed as@37#

Si jkl 5SIK
~1!d i j dkl1SIJ

~2!~d ikd j l 1d i l d jk! (6)

where the second-rank tensorsSIK
(1) andSIJ

(2) are given in Appendix
A. It is noted that Mura’s@38# tensorial indicial notation is fol-
lowed in the above expressions; i.e., upper-case indices take
the same numbers as the corresponding lower-case ones bu
not summed up. The effective stiffness tensor of aligned partic
reinforced composites can be easily obtained from the forego
three governing equations. The explicit expression of effect
stiffness is of the transversely isotropic form as shown in R
@34#.

Fig. 2 Transformation between local coordinate system x i8
and global coordinate system x j
NOVEMBER 2004, Vol. 71 Õ 775
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When all of the reinforcements of composites are random
located and randomly oriented in the three-dimensional~3D!
space, the orientation-averaging process is further applied to
~5!. For example, the orientational average ofs̄ is defined as

^s̄&,E
0

2pE
0

p/2

s̄P~u,g!sinududg (7)

where the range of the two Eulerian anglesu andg ~see Fig. 2! are
0<u<p/2 and 0<g<2p, respectively. Further, the functio
P(u,g) represents the probability density function of the rand
orientation. In what follows, the random orientation of particles
assumed to be uniform so thatP(u,g)51/2p is a constant. The
three governing equations of composites together with the
formly random orientation of particles can be formulated as

^s̄&5C~0!:~^«̄&2f^«̄* &!

^«̄&5L:«0 (8)

^«̄* &52V:«0

where the fourth-rank tensorsL andV read

L i jkl 5I i jkl 2
f

2p E
0

2pE
0

p/2

QmiQn jSmnpq~Apqst

1Spqst!
21QskQtl sinududg (9)

and

V i jkl 5
1

2p E
0

2pE
0

p/2

QmiQn j~Amnpq1Smnpq!
21QpkQql sinududg

(10)

It is noted thatI signifies the fourth-rank identity tensor. Emana
ing from Eq.~8!, the effective elastic stiffness tensor for random
oriented particle-reinforced composites can be derived as

^C̄&5C~0!
•~ I1fV•L21! (11)

2.2 Explicit Effective Stiffness. Before we explicitly derive
the isotropic elastic constants for composites with randomly
ented spheroidal particles, we need to consider the following
mula. For any transversely isotropic fourth-rank tensor, sayL,
which is expressed as

Li jkl 5LIK
~1!d i j dkl1LIJ

~2!~d ikd j l 1d i l d jk! (12)
s
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and satisfyingL12
(1)5L13

(1) , L21
(1)5L31

(1) , L22
(1)5L23

(1)5L32
(1)5L33

(1) ,
L12

(2)5L21
(2)5L13

(2)5L31
(2) , and L22

(2)5L23
(2)5L32

(2)5L33
(2) , the follow-

ing orientational average formulation can be obtained a
lengthy but straightforward manipulations:

^Li jkl &5
1

2p E
0

2pE
0

p/2

QmiQn jLmnpqQpkQql sinududg

5jd i j dkl1h~d ikd j l 1d i l d jk! (13)

where

j5
1

15@L11
~1!14L12

~1!14L21
~1!16L22

~1!12L11
~2!24L12

~2!12L22
~2!#

(14)
h5

1
15@L11

~1!2L12
~1!2L21

~1!1L22
~1!12L11

~2!16L12
~2!17L22

~2!#

The above formulation shows that any transversely isotro
fourth-rank tensor, after the 3D orientational average, become
isotropic fourth-rank tensor, as expected.

Based on Eq.~13!, the transforming tensorL between the mac-
roscopic strain̂ «̄& and the far-field strain«0 can be constructed a

L i jkl 52fL1d i j dkl1~122fL2!~d ikd j l 1d i l d jk! (15)

where

L15
@S11

~1!14S21
~1!12S11

~2!#@12G1124G12#110S21
~1!G12

30@Z21S11
~2!#

2
2S12

~2!

15@Z21S12
~2!#

1
@3S22

~1!12S12
~1!13S22

~2!#@324G2126G22#26S22
~2!15S12

~1!G21

45@Z21S22
~2!#

(16)

and

L25
@S11

~1!2S21
~1!12S11

~2!#@12G111G12#

30@Z21S11
~2!#

1
S12

~2!

5@Z21S12
~2!#

1
@S22

~1!2S12
~1!1S22

~2!#@112G2122G22#16S22
~2!

30@Z21S22
~2!#

(17)

with
G I15
@Z11Z21S22

~1!1S22
~2!#@Z11SI1

~1!#2@Z11S21
~1!#@Z11SI2

~1!#

@Z11Z21S22
~1!1S22

~2!#@Z112Z21S11
~1!12S11

~2!#2@Z11S12
~1!#@Z11S21

~1!#

G I25G I35
@Z112Z21S11

~1!12S11
~2!#@Z11SI2

~1!#2@Z11S12
~1!#@Z11SI1

~1!#

2@Z11Z21S22
~1!1S22

~2!#@Z112Z21S11
~1!12S11

~2!#22@Z11S12
~1!#@Z11S21

~1!#
be
Z15
l0m12l1m0

~m12m0!@2~m12m0!13~l12l0!#

Z25
m0

2~m12m0!
(18)

It is noted thatlb andmb are the Lame constants of theb-phase
~b50,1!. Furthermore, an inverse formula for the transversely i
tropic fourth-rank tensor is utilized; see, Appendix B.

Similarly, the transforming tensorV between the orientationa
eigenstrain̂ «̄* & and the far-field strain«0 can be constructed as

V i jkl 5V1d i j dkl1V2~d ikd j l 1d i l d jk! (19)
o-

l

in which

V15
12G1124G12

30@Z21S11
~2!#

2
1

15@Z21S12
~2!#

1
124G2126G22

30@Z21S22
~2!#

(20)

and

V25
12G111G12

30@Z21S11
~2!#

2
1

10@Z21S12
~2!#

1
71G212G22

60@Z21S22
~2!#

(21)

Therefore, from Eq.~11!, the overall bulk moduluskcomp and
shear modulusmcomp of the randomly oriented composites can
derived as
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kcomp5
k0

122fL2
F122fL212fV2

1
3f~V112fL1V222fL2V1!

123fL122fL2
G

(22)

mcomp5
m0~122fL212fV2!

122fL2

wherek0 andm0 are the bulk modulus and shear modulus of t
matrix, respectively.

Alternatively, the overall Young’s modulusEcomp and Poisson
ratio ncomp of the randomly oriented composites can be obtain
as

Ecomp5
9kcompmcomp

3kcomp1mcomp

(23)

ncomp5
3kcomp22mcomp

6kcomp12mcomp

To illustrate the capability of the proposed effective elastic
model, let us compare our analytical results@Eq. ~22!# with the
variational bounds for the isotropic elastic stiffness of composi
The current stiffness bounds for randomly oriented isotropic co
posites are available from Hashin and Shtrikman@33# and Ponte
Castaneda and Willis@15#. The celebrated Hashin-Shtrikma
~H-S! upper and lower bounds for the bulk modulus and sh
modulus of isotropic composites were developed by Hashin
Shtrikman@33#, and generalized by Hill@39# and Walpole@40,41#.
By utilizing the theorems of minimum energy and minimu
complementary energy, the H-S upper and lower bounds for
effective bulk moduluskcomp and shear modulusmcomp of a two-
phase composite are described as@39–42#

f

11
~12f!~k12k0!

~k01k l !

<
kcomp2k0

k12k0
<

f

11
~12f!~k12k0!

~k01ku!
(24)

f

11
~12f!~m12m0!

~m01m l !

<
mcomp2m0

m12m0
<

f

11
~12f!~m12m0!

~m01mu!

where for (m12m0)(k12k0)>0,

k l5
4
3m0

ku5
4
3m1 (25)

m l5
3

2 F 1

m0
1

10

9k018m0
G21

mu5
3

2 F 1

m1
1

10

9k118m1
G21

and for (m12m0)(k12k0)<0,

k l5
4
3m1

ku5
4
3m0 (26)

m l5
3

2 F 1

m0
1

10

9k118m0
G21

mu5
3

2 F 1

m1
1

10

9k018m1
G21

Figure 3 shows the comparisons between our analytical pre
tions @Fig. 3~a! for the bulk modulus and Fig. 3~b! for the shear
modulus# and the H-S bounds for the SiC hard particle~Young’s
modulusEp5450 GPa and Poisson rationp50.2) reinforced Al
Journal of Applied Mechanics
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~Young’s modulusEm570 GPa and Poisson rationm5n050.3)
metal matrix composites. Similar comparisons are also made
the soft particle (Ep520 GPa andnp50.25) filled Al composites,
as illustrated in Figs. 4~a! and~b!. These comparisons demonstra
that the present analytical results always lie within the H
bounds. In addition, for the spherical particle~with the aspect ratio
a51! reinforced composite, our elastic prediction is identical
the H-S lower bound if the reinforcement is harder than the m
trix, and coincides with H-Supperbound if the reinforcement is
softer. Moreover, it is observed from Figs. 3~a! and ~b! that the
composites withoblate aspect ratios of particles are more effe
tive in enhancingkcomp andmcomp, whereas the spherical particle
are least effective. These results are consistent with those of
@43# and Tandon and Weng@7#. By contrast, if the matrix is the
harder phase, the trend of the overall elastic moduli of compos
is completely reversed, as shown in Figs. 4~a! and ~b!. It is also
noted that there is a continuous transition of elastic proper
between the upper and lower bounds with relative change
constituent moduli. Furthermore, care must be exercised to
vent the spheroidal reinforcements from overlapping with ea
other. Such cases would occur if the aspect ratios of the spher
were extremely high or extremely low.

From Eq.~24!, it is clear that the H-S bounds are related to t

Fig. 3 The overall „a… bulk modulus and „b… shear modulus of
composites with randomly located and oriented harder par-
ticles as a function of the volume fraction and aspect ratio of
particles
NOVEMBER 2004, Vol. 71 Õ 777



n

a

d

e

i

e Al

s.
rted
and
s
.

sent
duli
e the
ons

ori-
astic
volume fraction of reinforcements and elastic constants of
constituent phases. Nevertheless, the H-S bounds are indepe
of the shapes, spatial locations, or spatial orientations of partic
Based on Hashin and Shtrikman@33#, Walpole @40,41#, Willis
@44#, and Ponte Castaneda and Willis@15# further refined the
variational methodology of the overall stiffness bounds for ra
domly oriented isotropic composites, which directly depend
the aspect ratio of misoriented spheroidal particles. Two ca
were explicitly provided~as shown in Fig. 8 in@15#!: effective
shear modulus lower bound for isotropic composites with r
domly oriented rigid spheroids, and effective shear modu
bound of isotropic materials with randomly oriented spheroi
voids. These two cases can be directly compared with the pre
predictions resulting from Eq.~22!. It is shown from Figs. 5~a!
and~b! that predictions from our proposed model are mostly id
tical with the bounds for various aspect ratios of spheroids. T
effective shear modulimcomp are plotted as a function of sphero
density parameterfa introduced by Ref.@15#. The density param-
eterfa is equal tofa2 for prolate spheroids and is equal tof/a
for oblate spheroids.

We further compare our analytical predictions with the expe
mental data reported by Yang et al.@45#, as displayed in Fig. 6.

Fig. 4 The overall „a… bulk modulus and „b… shear modulus
of composites with randomly located and oriented softer par-
ticles as a function of the volume fraction and aspect ratio of
particles
778 Õ Vol. 71, NOVEMBER 2004
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The composites are made of SiC particulates dispersed in th
matrix. The input data are taken asEm575 GPa,nm50.33, Ep
5420 GPa, andnp50.17, in accordance with the constituent
The mean aspect ratio of 2.0 for the SiC particulates is conve
to 3.0 based on the volume equivalence between particulates
spheroidal particles@46#. The present elastic formulation perform
very well for the volume fraction of particles up to about 25%
When the volume fraction of particles becomes larger, the pre
predictions somewhat underestimate the effective Young’s mo
as compared with the experimental data. This is expected sinc
present formulation neglects the near-field direct interacti
among the spheroidal particles in the composites.

3 Effective Elastoplasticity of MMCs With Randomly
Oriented Particles

3.1 Orientation-Averaged Constitutive Equations. Let us
consider two-phase MMCs containing randomly located and
ented elastic spheroidal particles embedded in the elastopl
matrix. For simplicity, the commonly used von MisesJ2-yield

Fig. 5 The comparisons between the present predictions and
the Ponte Castaneda-Willis bounds †15‡ for „a… effective shear
modulus of composites with randomly oriented spheroidal
rigid particles and „b… effective shear modulus of porous mate-
rials with randomly oriented spheroidal voids
Transactions of the ASME
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Fig. 6 Comparison between the present predictions and the experimental Young’s
moduli of SiCp ÕAl composites „Yang et al., †44‡…
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criterion with an isotropic hardening law is assumed for the ma
material; i.e., at any matrix material pointx, the local stresss(x)
must satisfy the following yield criterion:

F~s,em
p !5AH~s!2A2

3@sy1h~em
p !q#<0 (27)

wheresy , h, q, andem
p signify the initial yield strength, the linea

hardening parameter, the exponential hardening parameter,
the effective equivalent plastic strain of the matrix material,
spectively. Furthermore,H(s) represents the square of the stre
norm at matrix pointx, defined byH5s:Id :s, with Id being the
deviatoric part of the fourth-rank identity tensor.

The overall yield function of MMCs with randomly located an
oriented spheroids can be derived by employing the aforem
tioned orientational averaging process upon the analytical for
lation for the randomly located, yet unidirectionally aligned, sph
roidal particle-reinforced MMCs, which was previous
developed by Ju and Sun@34#. Following Ju and Sun@34#, the
ensemble-volume-averaged stress normH̄ reads

H̄5s0:T:s0 (28)

where the transversely isotropic fourth-rank tensorT takes the
form:

Ti jkl 5TIK
~1!d i j dkl1TIJ

~2!~d ikd j l 1d i l d jk! (29)

with the second-rank tensorsTIK
(1) andTIJ

(2) given in Appendix A.
Since the far-field stresss0 is independent of the local orienta

tions of particles, the orientational average ofH̄ can be simply
obtained as

^H̄&5s0:^T&:s0 (30)

where the fourth-rank tensor^T̄& reads

^Ti jkl &5T1d i j dkl1T2~d ikd j l 1d i l d jk! (31)
Mechanics
rix
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e-
ss

d
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Note that^T̄& is an isotropic fourth-rank tensor, and its two com
ponents are calculated as

T15
1

15@T11
~1!14T12

~1!14T21
~1!16T22

~1!12T11
~2!24T12

~2!12T22
~2!#

(32)

T25
1

15@T11
~1!2T12

~1!2T21
~1!1T22

~1!12T11
~2!16T12

~2!17T22
~2!#

In Eq. ~30!, ^H̄& is expressed in terms of the far-field stresss0.
Alternatively, the orientation-averaged square of the stress n
can also be formulated via the macroscopic~orientation-
ensemble-volume-averaged! stresŝ s̄&. The relationship between
the far-field stresss0 and the orientation-averaged stress^s̄& can
be established through Eq.~8! as follows

s05^P&:^s̄& (33)

where the isotropic fourth-rank tensor^P& reads

^Pi jkl &5P1d i j dkl1P2~d ikd j l 1d i l d jk! (34)

with

P15
f~L12V1!

@112f~V22L2!#@11f~3V112V223L122L2!#
(35)

P25
1

214f~V22L2!

As a result, Eq.~30! can be rephrased as

^H̄&5^s̄&:^T̄&:^s̄& (36)

where

^T̄i jkl &5T̄1d i j dkl1T̄2~d ikd j l 1d i l d jk! (37)

with
NOVEMBER 2004, Vol. 71 Õ 779
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T̄15~3P112P2!2T112P1~3P114P2!T2 (38)

T̄254P2
2T2

Therefore, the effective~orientation-ensemble-volume-average!
yield function of randomly oriented particle-reinforced MMC
can be proposed as

^F̄&5~12f!A^s̄&:^T̄&:^s̄&2A2

3
@sy1h~^ēp&!q#<0

(39)

where^ēp& denotes effective equivalent plastic strain of the co
posites. It is noted that the effective yield function is press
dependent and not of the von Mises type anymore.

The total macroscopic strain̂«̄& is composed of an elastic pa
and plastic part:

^«̄&5^«̄e&1^«̄p& (40)

where^«̄e& and ^«̄p& are the macroscopic~orientation-ensemble
volume-averaged! elastic and plastic strains of the composite
respectively. The elastic constitutive relation reads

^s̄&5^C̄&:^«̄e& (41)

where the effective elastic stiffness tensor^C̄& has previously been
given in Eq.~11!. The effective plastic constitutive law is assum
to satisfy the associated flow rule:

^«G p&5l̇
]^F̄&
]^s̄&

5~12f!l̇
^T̄&:^s̄&

A^s̄&:^T̄&:^s̄&
(42)

where l̇ is the plastic consistency parameter to be determi
from the plastic consistency condition. It is noted that, when
riving Eq. ~42!, only the first term of the load function̂F̄& in Eq.
~39! should be differentiated with respect to^s̄&.

Consequently, the overall elastoplastic constitutive model
randomly oriented particle-reinforced MMCs is established
above. In the following subsection, a specific example is provi
to illustrate the capability of the proposed effective elastopla
formulation.

3.2 Axisymmetric Loading. For axisymmetric loading, the
symmetrical axis is assumed parallel to thex1 axis of the global
coordinates. The overall stresses^s̄& satisfy

^s̄11&.0, ^s̄22&5^s̄33&5R^s̄11&, ^s̄12&5^s̄23&5^s̄31&50
(43)

where the stress ratioR is a function of the loading history. Fo
simplicity, only a constantR is considered here. IfR50, the
uniaxial tension loading is recovered. On the other hand,R51
recovers the pure hydrostatic loading. Under the axisymme
loading, the effective elastic strains can be expressed as

^«̄ i j
e &5

^s̄11&

EcompFD1 0 0

0 D2 0

0 0 D2

G (44)

where

D15122ncompR
(45)

D252ncomp1~12ncomp!R

On the basis of Eq.~39!, the effective yield function for the axi-
symmetric loading becomes

^F̄&5~12f!F~R!^s̄11&2A2
3@sy1h~^ēp&!q#<0 (46)

where

F~R!5AT̄112T̄214RT̄114R2~ T̄11T̄2! (47)
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The initial yield surface of the composites can be secured fr
Eq. ~46! with h50 andq50. By introducing the volumetric stres
^s̄v&,^s̄kk&/35(^s̄11&12^s̄22&)/3 and the effective stres
^s̄e&,A3^s̄i j &^s̄i j &/25^s̄11&2^s̄22& ~where ^s̄& is the deviatoric
part of the macroscopic stress^s̄&), the initial yield surface of the
composites can be written as

9~3T̄112T̄2!S s̄v

sy
D 2

14T̄2S s̄e

sy
D 2

5
2

~12f!2
(48)

The overall elastoplastic stress-strain relationship is thus
pressed as

^«̄ i j &5
^s̄11&

EcompFD1 0 0

0 D2 0

0 0 D2

G1
~12f!l

F~R! F L1 0 0

0 L2 0

0 0 L2

G
(49)

where the first term on the right-hand side of the above equa
represents the elastic part and the second term is attributed t
plastic effect. In addition, the matrix componentsL1 andL2 are

L15T̄112RT̄112T̄2 (50)
L25T̄112RT̄112RT̄2

The cumulative plastic consistency parameterl is determined as

l5
1

A2/3~12f!
FA3/2~12f!F~R!^s̄11&2sy

h G1/q

(51)

In all subsequent numerical simulations in this subsection, un
otherwise noted, the matrix is assumed to be an aluminum a
and the Young’s modulusEm , the Poisson rationm , the initial
yield stresssy , and the linear and exponential isotropic hardeni
parametersh andq are taken as 70 GPa, 0.3, 300 MPa, 1000 MP
and 0.5, respectively. The Young’s modulusEp and Poisson ratio
np of reinforcements are 450 GPa and 0.2, respectively, simila
those of SiC reinforcements.

The mechanical behavior of MMCs in practice often involv
the monotonic uniaxial stress-strain relationship. To demonst
the present effective elastoplastic micromechanics-based m
for randomly oriented particle-reinforced MMCs, it is of intere
to consider the special case of uniaxial tensile stress loading
R50. Figure 7 provides the illustration of uniaxial overall stres
strain responses of the composites. From Fig. 7~a!, it is clearly
observed that, with increasing reinforcement concentration,
effective yield strength and plastic hardening modulus increa
However, the strengthening effects are not as significant as th
of the composites with unidirectionally aligned particles; see, S
and Ju@35#. In addition, Fig. 7~b! exhibits the effects of particle
shape on the stress-strain behavior of MMCs. Unlike the alig
particle-reinforced MMCs, the aspect ratio of particles does
result in a significant difference in the elastoplastic behavior of
randomly oriented MMCs. However, the composites with ra
domly orientedoblate particles correspond to stiffer~higher! re-
sponses than those with prolate particles. Figure 7~c! also indi-
cates that the composites with higher Young’s modulus
reinforcements result in higher~stiffer! stress-strain responses.

As a step further, the present effective elastoplastic unia
predictions of MMCs with randomly oriented particles are co
pared with the experimental data reported by Yang et al.@45#; see
Fig. 8. Here, we adopt the elastoplastic parametersEm575 GPa,
nm50.33, sy550 MPa, h5320 MPa, andq50.265, in accor-
dance with the aluminum matrix material. Moreover, elastic co
stants for the SiC particles are taken asEp5420 GPa, andnp
50.17. Again, the mean aspect ratio of 2.0 for randomly orien
particulates is converted to 3.0 as previously discussed. As
picted in Fig. 8, the overall elastoplastic behavior of the compo
is well modeled by the present formulation, for particle volum
fractions up to 48%. Since the effect of aspect ratio of partic
Transactions of the ASME



Fig. 7 Effects of „a… volume fraction, „b… aspect ratio, and „c… Young’s modulus of particles on the uniaxial elastoplastic
behavior of randomly oriented particle-reinforced MMCs
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seems not to be significant for uniaxially elastoplastic respon
of randomly oriented particle-reinforced MMCs~see Fig. 7~b!!,
the predictions for spherical particle-reinforced MMCs~a51! are
also plotted in Fig. 8 for comparison purposes. It is observed
the simulation froma51 underestimates the elastoplastic r
sponses but its difference is not significant compared with
prediction froma53. It is further noted that, rigorously speakin
since the present micromechanics-based model does not con
the near-field direct interactions among particles, our effec
elastoplastic formulation should only be valid for moderate c
centrations of particles. Based on these preliminary validation
seems that the proposed framework along with the assumptio
associated plastic flow rule is adequate and satisfactory.

The overall initial yield surfaces of the composites under a
symmetric loading are displayed in Figs. 9~a! and ~b!. It is ob-
served that all yield surfaces are pressure~mean stresŝs̄v&) de-
pendent. Furthermore, Fig. 9~a! illustrates that, for the composite
with prolate spheroidal particles, the initial yielding point for th
effective stresŝs̄e& increases with increasing volume fraction
particles, whereas the yielding point for volumetric stress^s̄v&
Journal of Applied Mechanics
ses

hat
e-
the
,
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n-
, it

n of

xi-

e
f

decreases. On the other hand, Fig. 9~b! demonstrates that the com
posites with smaller aspect ratios exhibit more strengthening
fect in terms of the volumetric stress^s̄v&. However, the particle
shape does not have a significant influence on^s̄e&. In general, it
is difficult to find a certain aspect ratio or volume fraction
particles in the composite that would produce the strongest c
posite under all loading conditions. This observation suggests
the selection of MMCs for the most effective strengthening ap
cation depends on the specific applied service load conditio
While only initial yield surfaces are demonstrated, subsequ
loading surfaces with nonzero equivalent plastic strain would
expected to be different, but following the isotropic hardeni
rule.

Finally, effects of the stress ratioR on the overall stress-strain
behavior of MMCs with randomly oriented particles are shown
Fig. 10. The loading combination has a considerable effect on
overall response of the composites. AsR increases from zero, the
stress-strain relationship of the symmetricalx1-axis direction of
spheroidal inclusions tends to render more strengthening e
until the opposite plastic strain effect~‘‘bendover’’! appears for
NOVEMBER 2004, Vol. 71 Õ 781
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R.1, as indicated in Fig. 10~a!. The reason for the ‘‘bend-over’
behavior is that the plastic strain^«̄11

p & may become negative du
to the fact that the magnitude of combined negative lateral pla
strains from the 22- and 33-directions gradually becomes gre
than that from the 11-direction. It is also noted that effect
stresses are high when the stress ratioR is close to 1, indicating
that the local stress level in randomly oriented particles may
ceed the fracture strength of particles and/or interfacial bond
between the matrix and particle. Correspondingly, particle cra
ing and/or interfacial debonding may occur under such circu
stance. Future research is focused on the detailed interfacial
onding processes.

From Fig. 10~b!, it is observed that the effect of the aspect ra
of particles is no longer insignificant when stress ratioR increases.
The aspect ratio of randomly oriented particles plays a signific
role on the elastoplastic responses of MMCs under purely hy
static loading.

4 Concluding Remarks
The effective elastic and elastoplastic models of MMCs w

randomly located and oriented reinforcements are developed.
averaging process over all orientations upon three elastic gov
ing equations for aligned particle-reinforced composites is p
formed to obtain the effective constitutive relations and isotro
elastic stiffness of MMCs with randomly oriented particles. T
effects of volume fraction of particles and particle shape on
overall elastic constants of the composite are presented. Com
sons with the elasticity bounds show that the present analy
formulation does not violate the variational bounds. Good agr
ment with experimental data is also illustrated.

Furthermore, the orientational averaging procedure is utilize
derive the overall yield function for the underlying MMCs. Ela
toplastic constitutive relations for the MMCs are systematica
established. The overall elastoplastic stress-strain behaviors u
monotonic uniaxial tensile loading are studied in detail. Furth
more, comparisons between the present analytical predictions
experimental data are performed to illustrate the capability of
proposed formulation. Finally, the initial yield surfaces and effe
of stress ratioR upon the MMCs under axisymmetric loading a
also discussed.

Fig. 8 Comparison between the model predictions and the ex-
perimental data of uniaxial elastoplastic behavior of randomly
oriented particle-reinforced MMCs
782 Õ Vol. 71, NOVEMBER 2004
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The proposed micromechanics-based homogenization fra
work allows the overall elastic and plastic behavior of random
oriented particle-reinforced MMCs to be analytically and expl
itly predicted in terms of the 3D far-field loading histories an
microstructural information, such as the mechanical propertie
the constituent phases and the spatial concentration and geom
of reinforcements. Good agreement between the theoretical
dictions and experimental data are observed and provide pre
nary assessment of the capability of the proposed formulatio
quantitatively predicting the overall elastoplastic behavior of
MMCs.

In the present study, with an assumption ofJ2 von Mises plastic
flow in the metal matrix, the overall elastoplastic yield function
MMCs is micromechanically derived to be quadratic a
pressure-dependent, which is not of theJ2 type anymore. How-
ever, in general, this form may not be universal for all MMCs. F
example, Dvorak and co-workers@47,48# suggested that the over
all yield function of anisotropic composites be constructed fro
piecewise smooth sections and not from a single smooth surf
We would need to consider more complicated local yield mec

Fig. 9 Effects of „a… volume fraction and „b… aspect ratio of
particles on the overall initial yield surfaces of randomly ori-
ented particle-reinforced MMCs
Transactions of the ASME
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nisms in the matrix and connections between the matrix and r
forcements to render a sophisticated multisurface piecew
smooth elastoplasticity model. Furthermore, since isotropic h
ening is postulated in the present model, elastoplastic respons
MMCs under complex loading such as cyclic loading should
render the Bauschinger effect which could be an essential com
nent for fatigue behavior of MMCs. More general isotrop
kinematic hardening laws and an alternative nonassociated
rule can be considered within the proposed framework based
reliable experimental data and evidence; see, e.g., Dvorak e
@47# for kinematic hardening law and a nonassociated flow r
for boron-aluminum composites. These issues can be furthe
vestigated within the proposed context in the future, but with c
siderably more effort. It is noted, however, that the present pa
does not purport to include all continuum plasticity aspects
features. Instead, we apply the micromechanical and ensem
volume-orientational averaging methodology to the sim
J2-type plastic yield function with the power-law isotropic har

Fig. 10 Effects of stress ratio R on the overall elastoplastic
behavior of randomly oriented particle-reinforced MMCs under
axisymmetric loading
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ening rule and the associated flow rule as an illustration of
proposed concept and framework. In addition, we have not c
sidered the effect of interfacial particle/matrix debonding upon
overall elastoplastic behavior. Future work is needed to impr
the proposed method.
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Appendix A

The two second-rank tensorsSIK
(1) and SIJ

(2) in Eq. ~6! are ex-
pressed as

S11
~1!5F4n01

2

a221
Gg~a!14n01

4

3~a221!

S12
~1!5S13

~1!5F4n02
2a211

a221
Gg~a!14n02

2a2

a221

S21
~1!5S31

~1!5F22n02
2a211

a221
Gg~a!2

2a2

a221

S22
~1!5S23

~1!5S32
~1!5S33

~1!5F22n01
4a221

4~a221!
Gg~a!1

a2

2~a221!

S11
~2!5F24n01

4a222

a221
Gg~a!24n01

12a228

3~a221!

S12
~2!5S13

~2!5S21
~2!5S31

~2!5F2n02
a212

a221
Gg~a!22n02

2

a221

S22
~2!5S23

~2!5S32
~2!5S33

~2!5F2n02
4a227

4~a221!
Gg~a!1

a2

2~a221!

with a denoting the aspect ratio of particles,n0 denoting the Pois-
son ratio of the matrix, and

g~a!55
a

~12a2!3/2
@a~12a2!1/22cos21 a#, a,1

a

~a221!3/2
@cosh21 a2a~a221!1/2#, a.1

The two second-rank tensorsTIK
(1) and TIJ

(2) in Eq. ~29! are ex-
pressed as

TIK
~1!52

1

3
1

2f

4725~12n0!2BII BKK

@1575~122n0!2G II GKK

121~25n0223!~122n0!~G II DK1GKKD I !121~25n022!

3~122n0!~G II 1GKK!13~35n0
2270n0136!D IK17~50n0

2

259n018!~D I1DK!22~175n0
22343n01103!#
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TIJ
~2!5

1

2
1

f

1575~12n0!2BIJBIJ
F ~70n0

22140n0272!D IJ

2~175n0
22266n0175!

D I1DJ

2
1350n0

22476n01164G
where

BIJ52@Z21SIJ
~2!#

D15
3@12a4f ~a2!#

12a4
, D25D35

1

2
~32D1!

D115
5@21a423a4f ~a2!#

2~12a4!2

D125D215D135D315
15a4@231~112a4! f ~a2!#

4~12a4!2

D225D235D325D335
15a4@112a41~124a4! f ~a2!#

16~12a4!2

with

f ~a!55
cos21 a

aA12a2
, a,1

cosh21 a

aAa221
, a.1

Appendix B
Consider a transversely isotropic fourth-rank tensorQ of the

following type:

Qi jkl 5QIK
~1!d i j dkl1QIJ

~2!~d ikd j l 1d i l d jk!

whereQIK
(1) andQIJ

(2) are the second-rank tensors andQIJ
(2) is sym-

metric. The inverse of the tensorQ takes the form from Sun@49#:

Qi jkl
21 52

QIK
~3!

2QII
~2!

d i j dkl1
1

4QIJ
~2!

~d ikd j l 1d i l d jk!

where the second-rank tensorQIK
(3) can be calculated from

H QI1
~3!

QI2
~3!

QI3
~3!
J 5F Q11

~1!12Q11
~2! Q21

~1! Q31
~1!

Q12
~1! Q22

~1!12Q22
~2! Q32

~1!

Q13
~1! Q23

~1! Q33
~1!12Q33

~2!
G 21

3H QI1
~1!

QI2
~1!

QI3
~1!
J ~ I 51,2,3!
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Numerical Simulation of Steady
Liquid-Metal Flow in the
Presence of a Static Magnetic
Field
We describe a novel approach to the mathematical modeling and computational si
tion of fully three-dimensional, electromagnetically and thermally driven, steady liq
metal flow. The phenomenon is governed by the Navier-Stokes equations, Maxwell’s
tions, Ohm’s law, and the heat equation, all nonlinearly coupled via Lorentz
electromotive forces, buoyancy forces, and convective and dissipative heat transfe
ploying the electric current density rather than the magnetic field as the primary ele
magnetic variable, it is possible to avoid artificial or highly idealized boundary conditi
for electric and magnetic fields and to account exactly for the electromagnetic intera
of the fluid with the surrounding media. A finite element method based on this app
was used to simulate the flow of a metallic melt in a cylindrical container, rotat
steadily in a uniform magnetic field perpendicular to the cylinder axis. Velocity, press
current, and potential distributions were computed and compared to theore
predictions.@DOI: 10.1115/1.1796450#
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1 Introduction
Numerous industrial processes involve the flow of a liqu

metal in the presence of an applied magnetic field.Staticmagnetic
fields are used, for example, to dampen undesirable melt fl
such as buoyancy-driven convection, in metal casting and cry
growth processes@1,2#. When applied in conjunction with DC
currents, static magnetic fields can also be used to activat
drive liquid-metal flows; this is exploited, for example, in MH
pumps and reactor cooling blankets@3,4#. Rotatingmagnetic fields
have long been applied in industrial devices, such as induc
furnaces and electromagnetic stirrers@5,6#. More recently, both
static and rotating fields have garnered much attention as a m
of controlling the melt flow in crystal-growth processes@7–11#.

In all of these and many other processes, the flow of a meta
melt is modified by means of Lorentz forces, resulting from t
interaction of an applied magnetic field with impressed or indu
currents in the melt. Qualitative and quantitative understandin
the ensuing flow patterns is of critical importance in achiev
optimal operating conditions. Efficient and accurate experime
and computational techniques are needed to measure and to
dict velocity, current, and temperature distributions in the m
Despite considerable research efforts over the past three dec
the methodology is still in need of development. This is due to
complexity of the underlying flow phenomena, which are, in ge
eral, fully three-dimensional, highly nonlinear, and characteri
by the interaction of multiple physical effects.

Much of the pertinent literature on analytical and numeri
issues is based on simplifying assumptions that lead to spat
two-dimensional~2D! problems and at least partial decoupling
the underlying PDEs, allowing, in particular, the separation
fluid flow and electromagnetic computations. Induced magn

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dece
ber 27, 2002; final revision, April 24, 2004. Associate Editor: D. A. Siginer. Disc
sion on the paper should be addressed to the Editor, Prof. Robert M. McMee
Journal of Applied Mechanics, Department of Mechanical and Environmental E
neering, University of California—Santa Barbara, Santa Barbara, CA 93106-5
and will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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fields and buoyancy effects due to temperature fluctuations in
melt are frequently neglected, and so is the electromagnetic in
action of the melt with other conductors in the vicinity.

There is, for example, a substantial body of analytical and
merical work devoted to the electromagnetic stirring of rou
strands of liquid metal by the rotating-field method; see Moff
@12#, Spitzer et al.@6#, or Davidson and Hunt@13# for seminal
studies. In this method, a rotating magnetic field is generated in
inductor, surrounding a stationary column of liquid metal. T
traveling magnetic field induces eddy currents in the melt, and
the interaction of the magnetic field with these currents that bri
about the stirring effect. If one assumes a circular-cylindrical
ometry and averages the electromagnetic body force azimuth
the problem becomes axisymmetric and thus, spatially tw
dimensional. Its numerical solution then amounts to solving
stationary Navier-Stokes equations in two dimensions, unde
known distribution of time-averaged Lorentz forces. The latter
determined from an asymptotic solution of the magnetic induct
equation under appropriate boundary conditions for the magn
field. Witkowski et al.@10# investigated the validity of azimutha
averaging and found the deviation from axisymmetry to be sm
under suitable assumptions on the flow parameters. However,
ondary effects due to induced magnetic fields or buoyancy for
were neglected. Fully three-dimensional computational mod
accounting for magnetic induction and/or thermal effects, ha
been proposed only recently@14,15#.

Although based on the same general principle, the effec
rotating the melt in a stationary, transverse magnetic field is q
different from that of rotational stirring. In particular, the resultin
flow field cannot be expected to be rotationally symmetric; in fa
the induced flow is symmetric with respect to the given axis of
magnetic field rather than the axis of rotation~see the discussion
at the end of Section 4!. As a consequence, the flow is full
three-dimensional, even in the simplest experimental configu
tions ~cylindrical crucible of circular cross section, uniform ma
netic field perpendicular to the cylinder axis, uniform temperat
distribution!. Moreover, careful analysis shows that, in gener
secondary effects due to induced magnetic fields and tempera
fluctuations in the melt are not negligible and of comparable m
nitude ~see the discussion at the end of Section 2!.
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While the importance of thermal effects has long been rec
nized @2,8,9#, induced magnetic fields are rarely accounted f
The main problem, in this context, is the fact that electric a
magnetic fields transcend the fluid region and must be determ
in all of space~unless one imposes idealized or artificial bounda
conditions on the surface of the fluid region!. Accounting for both,
magnetic induction and thermal effects leads to a fully coup
system of equations; fluid flow, heat flow, and electromagn
computations cannot be separated, and the magnetic fields
inside and outside the fluid must be determined simultaneo
with the fluid velocity and the current and temperature distrib
tions in the melt.

The objective of this paper is to address these issues by
senting a new approach to the modeling and simulation of ste
liquid-metal flow in the presence of a static magnetic field. O
approach differs from earlier work in that it is based on the dir
numerical simulation of the full, nonlinear, three-dimension
electromagnetically and thermally coupled flow problem. T
mathematical foundation is a mixed variational formulation a
finite element discretization of the~stationary! Navier-Stokes
equations, Maxwell’s equations, Ohm’s law, and the heat eq
tion, coupled via Lorentz and electromotive forces, buoyan
forces, and convective and dissipative heat transfer. One key
ture is the use of the electric current density~rather than the mag
netic field! as the primary electromagnetic variable. This a
proach, in which the induced magnetic field is computed from
current density via the Biot-Savart integral, renders idealized
artificial electromagnetic boundary conditions obsolete and allo
us to account for both interior and exterior fields, while effective
confining computations to the fluid region itself. A simila
‘‘integral-closure’’ approach was developed by Natarajan and
Kaddah @15–17#, in the context of electromagnetic stirring an
separation processes. We refer to Meir and Schmidt@18,19# for
mathematical details regarding our method and to Meir a
Schmidt @20,21# for prior applications to electromagneticall
driven flows. While the present numerical implementation is li
ited to the simulation ofstationaryflow problems, our approach
can be easily extended to the time-dependent case~see@22#!. This
extension, as well as the incorporation of a turbulence mode
the subject of ongoing research.

The paper is organized as follows. Section 2 contains a deta
description of the mathematical model and concludes with a c
ful order-of-magnitude analysis. Section 3 is concerned wit
mixed variational formulation of the problem, its finite eleme
discretization, and implementation issues. In Section 4 we
scribe preliminary computational experiments, thus far limited
the laminar flow regime and not accounting for temperature fl
tuations, where our method is applied to simulate the flow o
metallic melt in a circular-cylindrical crucible, rotating steadily
a uniform magnetic field perpendicular to the cylinder axis.
corresponding experimental apparatus and measurement
nique are described in a companion paper by Bakhtiyarov e
@23#.

2 Mathematical Model
We are concerned with the steady flow of a viscous, inco

pressible, electrically and thermally conducting fluid, confined
a vessel with solid walls, in the presence of gravity, an app
static magnetic field, and a radiative heat source; see Bakhtiy
et al.@23# for a detailed description of the experimental appara
that motivated this investigation. We assume the presence of
on top of the fluid, thus avoiding the complication of a free s
face; also neglected is the thickness of the vessel walls. The p
lem is governed by balance equations for momentum, mass,
energy, along with Maxwell’s equations and Ohm’s law; s
Hughes and Young@24# for the physical background.

The momentum balance is given by the stationary Nav
Stokes equations,

2h¹2V1r~V•¹!V1¹p5F ~ in the fluid! (1)
Journal of Applied Mechanics
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whereV is the flow velocity,p the hydrodynamic pressure,F the
sum of all body forces, including buoyancy and Lorentz forc
The dynamic viscosityh is assumed to be constant, while th
densityr is allowed, at least for now, to vary with temperatur
Conservation of mass is enforced through the continuity equat

¹•~rV!50 ~ in the fluid! (2)

Equations~1! and ~2! must be supplemented with a bounda
condition for the fluid velocity. If the vessel is at rest, the usu
no-slip condition for viscous fluids requiresV to vanish at the
walls. Allowing for a possible rigid motion of the vessel, we im
pose a more general boundary condition of the form

V5V0 ~at the walls! (3)

whereV0 denotes the velocity field associated with the rigid m
tion of the vessel.

The balance of energy can be written as a scalar convect
diffusion equation in terms of the temperatureT,

2k¹2T1rc~V•¹!T5H ~ in the fluid! (4)

whereH is the sum of all heat sources, including dissipative a
radiative heating. The thermal conductivityk and specific heat~at
constant pressure! c are assumed to be constant in the relev
temperature range. As a boundary condition, we assume tha
heat flux across the walls is proportional to the temperature
ference between the fluid and the exterior of the vessel,

2k~¹T!•n5g~T2Text! ~at the walls! (5)

Here,n denotes the unit outward normal vector field on the s
face of the fluid region;g is the~constant! heat transfer coefficien
of the walls, andText stands for the given ambient temperature

The electric current distribution is determined by Ohm’s law

J5s~2¹f1V3B! ~ in the fluid! (6)

along with the continuity equation,

¹•J50 ~ in the fluid! (7)

whereJ is the electric current density,f a scalar electric potential
B the magnetic flux density, ands the ~constant! electric conduc-
tivity of the fluid. Since the exterior of the vessel is assumed to
nonconducting, the obvious boundary condition forJ is that

J•n50 ~at the walls! (8)

The magnetic field can be decomposed as

B5Ba1Bi

whereBa andBi represent, respectively, the applied field and t
field induced by the currentJ. The latter satisfies Maxwell’s equa
tions,

¹3Bi5mJ ~ in the fluid!

¹3Bi50 ~ in the exterior! (9)

¹•Bi50 ~ throughout space!

Since the fluid is heated beyond the Curie point,m is the magnetic
permeability of free space. In addition,Bi must be continuous
across the vessel walls~constant permeability, no surface current!
and vanish at infinity~finite source!:

@Bi #50 ~across the walls!
(10)

Bi50 ~at infinity!

For any reasonably regular current distributionJ, Eqs. ~9! and
~10! admit a unique solutionBi5B(J), which is given by the
Biot-Savart formula~a volume integral over the fluid region!:

B~J!~r !52
m

4p E r2s

ur2su3
3J~s!d3s (11)
NOVEMBER 2004, Vol. 71 Õ 787
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The body forceF on the right-hand side of Eq.~1! includes the
Lorentz force,J3B and the force of gravityrg, whereg is gravi-
tational acceleration. We employ the Boussinesq approximatio
account for buoyancy forces due to temperature gradients; tha
we assume thatT fluctuates in a narrow range about a referen
temperatureTref and that the density, in this temperature ran
decreases linearly withT:

r

r ref
512b~T2Tref!

Here,r ref andb denote the density and thermal expansion coe
cient of the fluid at the reference temperature. The force of gra
is then given by

rg5¹pref2br ref~T2Tref!g

where¹pref5r ref g is the hydrostatic pressure gradient at the r
erence temperature, whilebr ref(T2Tref)g represents the buoy
ancy force. Summarizing, we have

F5J3@Ba1B~J!#1¹pref2br ref~T2Tref!g (12)

Following standard practice, we now introduce a reduced p
surep85p2pref and a reduced temperatureT85T2Tref , and we
replace the densityr in Eqs. ~1!, ~2!, and ~4! by r ref . Also, for
notational convenience, we drop the primes inp8 andT8 and the
subscript inr ref ; that is, from now onp, T, andr will denote the
reduced pressure, reduced temperature, and reference densi
spectively.~Note that Eqs.~4! and~5! remain unchanged after thi
reduction, except thatText must be replaced byText2Tref .)

The source termH in Eq. ~4! comprises dissipative heating du
to electric currents and viscous drag as well as radiative hea
due to the presence of heating elements. Thus,

H5s21uJu21
1
2 hu¹V1~¹V! tru21h (13)

whereh is a given function of position, depending on the chara
teristics of the heating elements. For the apparatus describe
Bakhtiyarov et al.@23#, the following ansatz seems reasonable

h~r !5I 0x~r !exp@2ad~r !# (14)

Here, I 0 is the output intensity of the quartz lamps,x~r ! an em-
pirical function describing the intensity distribution in the lig
cone, a the absorption coefficient of the fluid~in the relevant
frequency range, at the reference temperature!, andd(r ) the pen-
etration depth. For any pair of reasonably regular vector fieldV
andJ, Eqs.~4! and~5!, with H given by~13! and~14!, constitute
a linear, uniformly elliptic boundary-value problem, which adm
a unique solutionT5T(V,J).

We emphasize that, given any sufficiently regular velocity fie
V and current distributionJ, both the reduced temperatureT~V,J!
~the unique solution of the linear, elliptic boundary-value proble
~4!–~5!! and the induced magnetic fieldB~J! ~the unique solution
of the linear div-curl system~9!–~10!! are relatively easy to com
pute in a variety of ways and to any desired numerical accur
In what follows, we will, therefore, focus our attention on th
remaining coupled, nonlinear boundary-value problem for the
locity V, current densityJ, reduced pressurep, and electric poten-
tial f, as obtained from Eqs.~1!–~3! ~along with ~12!! and ~6!–
~8!:

2h¹2V1r~V•¹!V1¹p

5J3@Ba1B~J!#2brT~V,J!g ~ in the fluid!

s21J1¹f5V3@Ba1B~J!# ~ in the fluid!
(15)

¹•V50 and ¹•J50 ~ in the fluid!

V5V0 and J•n50 ~at the walls!

Note that the above, due to the presence of the operatorsB and
T, is in fact a system of integro-differential equations~B is a
788 Õ Vol. 71, NOVEMBER 2004
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linear, first-order integral operator,T a nonlinear, second-orde
integral operator!. As a consequence, some care must be exerc
in choosing linearization/iteration schemes for the numerical
lution of the discretized equations, in order to avoid the occ
rence of dense matrices~see Section 3!.

To assess the relative importance of the various terms in
equations, it is useful to normalize the dependent and indepen
variables and to combine the physical parameters of the prob
into nondimensional groups. To this end, letR be a characteristic
length, for example, the radius of the vessel holding the fluid, a
let V0 be a characteristic speed, for example, the magnitude of
given velocityV0 of the walls (V05vR in the case of a cylindri-
cal vessel of radiusR, rotating with angular velocityv!. Given a
characteristic magnitudeB0 of the magnetic fieldB, Ohm’s law
~6! yieldsJ05sV0B0 as a characteristic magnitude of the curre
densityJ. Moreover, Ampe`re’s law, the first equation in~9!, im-
plies that the induced field Bi5B(J) is of order mRJ0
5msRV0B0 . The numbermsRV0 ~the magnetic Reynolds num
ber! is small under laboratory conditions~see below!; conse-
quently, the induced fieldBi is small compared to the total field
B5Ba1Bi . We may, therefore, chooseB0 to be the magnitude of
the appliedfield Ba . A characteristic valueT0 of the temperature
fluctuation in the fluid~that is, a typical deviation from the refer
ence temperatureTref) must be determined experimentally. I
liquid-metal experiments, the metal is usually heated to just ab
its melting-point, which may then serve as the reference temp
ture Tref .

Normalizing the spatial variables byR, the principal unknowns
V, J, B, and T by their respective characteristic valuesV0 , J0

5sV0B0 , B0 , andT0 , the auxiliary unknownp and f by rV0
2

and mR2V0J0 , and the source termsg and h by g5ugu and
rcR21V0T0 , we obtain the following nondimensional versions
the momentum balance, Ohm’s law, Ampe`re’s law, and the heat
equation:

2Re21¹2V1~V•¹!V1¹p5Re21 Ha2JÃB2Re22 GrTg

Rm21J1¹f5Rm21V3B

¹3Bi5RmJ

2Pe21¹2T1~V•¹!T5Re21 Ec~Ha2uJu21
1
2u¹V1~¹V! tru2)1h

Here, Re, Rm, and Pe denote the Reynolds number, mag
Reynolds number, and Pe´clet number, respectively:

Re5h21rRV0 , Rm5smRV0 , Pe5k21rcRV0

The remaining three nondimensional groups, Ha2, Gr, and Ec, are
the square of the Hartmann number, the Grasshoff number,
the Eckart number:

Ha25h21sR2B0
2, Gr5h22bgr2R3T0 , Ec5c21T0

21V0
2

The relative importance of the various terms in the equation
gauged by the ratios in the first and second columns of Tabl
The numerical values in the third column are for liquid aluminu
at temperatures just above the melting-point~see Table 2!; the
orders of magnitude in the fourth column are estimates for
experimental apparatus described in Bakhtiyarov et al.@23#,
whereR'1 cm, V0'20 cm/s,B0'0.1 T, andT0'10 K. Conclu-
sions, as pertaining to the laboratory conditions in@23#, can be
summarized as follows.

a. Lorentz forces and inertial forces are of comparable mag
tude; both are large compared to buoyancy and visc
forces, which are comparable.

b. The induced magnetic field is small compared to the app
field ~but less so if the vessel is rotating at high speed!.

c. Convective heat transfer dominates diffusion~but less so if
the vessel is rotating slowly!. Viscous heating is small com
pared to Joule heating; both are negligible compared to
fusion and convection.
Transactions of the ASME
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Table 1 Order-of-magnitude analysis „for liquid aluminum under laboratory conditions …

Ha2/Re Lorentz force to inertia 2.143103 RB0
2/V0

O(1)
Re2/Gr inertia to buoyancy force 8.793102 V0

2/(RT0) O(102)
Gr/Re buoyancy to viscous force 9.343102 R2T0 /V0 O(1)
1/Rm total magnetic field to induced field 1.5631021/(RV0) O(102)

Pe thermal convection to diffusion 2.503104 RV0 O(10)
Re/(PeEcHa2) thermal diffusion to Joule heating 2.0231025 T0 /(R2V0

2B0
2) O(103)

Ha2 Joule heating to viscous heating 1.763109 R2B0
2 O(103)
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It is, therefore, feasible to neglect Joule and viscous hea
when computing the temperature distribution. Neglecting te
perature fluctuations~and thereby, buoyancy forces! altogether,
that is, settingT~V,J!50, is viable only as a first approximation
The same can be said with regard to the induced magnetic
B~J!.

3 Finite Element Discretization
The numerical solution of the boundary-value problem~15! is

based on a mixed variational formulation in the spirit of the we
known Babuska-Brezzi theory; see, for example, Brezzi and F
tin @26#. This formulation is obtained by multiplying the fou
PDEs by suitable test functionsW ~for the velocity!, K ~for the
current density!, q ~for the pressure!, andc ~for the electric po-
tential! and integrating the equations over the fluid region. T
two identities resulting from the momentum balance and Oh
law are added together, and so are the identities resulting from
two continuity equations. After some algebra and several inte
tions by parts~using the boundary conditions!, one arrives at two
equations of the form

a0„~V,J!,~W,K !…1a1„~V,J!,~V,J!,~W,K !…1b„~W,K !,~p,f!…

5 f „~V,J!,~W,K !… (16)

b„~V,J!,~q,c!…50 (17)

wherea0 ~a bilinear form!, a1 ~a trilinear form!, andb ~a bilinear
form! are given by

a0„~W1 ,K1!,~W2 ,K2!…5hE ~¹W1!•~¹W2!1s21E K1•K2

1E ~~K23Ba!•W12~K13Ba!•W2!

a1„~W1 ,K1!,~W2 ,K2!,~W3 ,K3!…

5
r

2 E @„~W1•¹!W2…•W32„~W1•¹!W3…•W2#

1E $@K33B~K1!#•W22@K23B~K1!#•W3%

b„~W,K !,~q,c!…52E ~¹•W!q1E K•~¹c!

Table 2 Universal constants and properties of liquid alumi-
num at temperatures near the melting point, 933.4 K „quoted
from Meyer et al. †25‡…

g gravitational acceleration~sea level! 9.81 m/s2

m magnetic permeability~free space! 1.2631026 H/m
s electric conductivity 5.103106 mho/m
r mass density 2.383103 kg/m3

h dynamic viscosity 2.9031023 kg/m-s
c specific heat~at constant pressure! 1.083103 J/kg-K
k thermal conductivity 1.033102 W/m-K
b thermal expansion coefficient 1.1631024/K
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while f ~a nonlinear forcing term! is given by

f „~W1 ,K1!,~W2 ,K2!…52brE T~W1 ,K1!g•W2

Under mild assumptions on the data, the original bounda
value problem~15! is equivalent to the followingweak problem:
Find vector fieldsV andJ and scalar fieldsp andf such thatV
5V0 on the boundary of the fluid region and Eqs.~16! and ~17!
are satisfied for all relevant test functionsW, K , q, and c. The
boundary condition forV is anessentialboundary condition and
must be enforced explicitly; as a consequence, the velocity
functions must vanish on the boundary. The boundary condi
for J is a natural boundary condition and can be recovered fro
Eq. ~17!. We refer to Meir and Schmidt@18,19# for mathematical
details, including the choice of appropriate test function spa
and a rigorous proof that the weak problem, as stated abov
equivalent to the original boundary-value problem~15!.

Note that Eq.~16! incorporates the first two PDEs in~15!, that
is, the momentum balance and Ohm’s law, while Eq.~17! incor-
porates the divergence constraints onV and J. In the weak for-
mulation of the problem, the pressurep and potentialf play the
role of Lagrange multipliers associated with these divergence c
straints. Numerically, both will be determined simultaneou
with V and J, just as the pressure is determined simultaneou
with the velocity field in the standard mixed variational formul
tion of the Navier-Stokes equations~see, for example,@27#!.

A finite element discretization of the weak problem is obtain
by requiring that Eqs.~16! and ~17! be satisfied for only a finite
number of test functions, namely, the basis functions of suita
chosen finite element spaces. Also, the essential boundary co
tion for V must be approximately satisfied in an appropriate sen
for example, by requiring thatV5V0 at the boundary nodes of th
finite element grid~assuming the use of Lagrangian element!.
This leads to a finite-dimensional system of nonlinear, algeb
equations that can be solved by way of linearization and iterat

The nonlinear equation~16! is linearized by replacing the firs
arguments of the formsa1 and f by initial guesses or previously
computed valuesVold and Jold for the velocity field and current
density. In terms of the original PDEs, this amounts to lagging
first velocity in the inertia term~V•¹!V, the induced magnetic
field B~J!, and the temperature distributionT~V,J!. Lagging mag-
netic field and temperature also prevents the occurrence of d
matrices despite the presence of the integral operatorsB and T.
Given an initial guess or previously computed pair (Vold ,Jold), the
linearized equations are solved to update~V,J! and to compute
(p,f). The solution is unique only up to additive constants inp
andf; but this is easily dealt with by settingp andf equal to zero
at one node each of the finite element grid. The process is iter
until the change in~V,J!, as measured in a suitable norm, dro
below a given tolerance. Of course, at the beginning of each
eration, the induced magnetic fieldB(Jold) and the temperature
distribution T(Vold ,Jold) must be determined. The fieldB(Jold)
can be computed by evaluating the Biot-Savart integral~11! or by
solving the linear div-curl system~9! and ~10! in any other way.
The temperatureT(Vold ,Jold) is obtained by solving the linear
elliptic boundary-value problem~4! and~5!, with H given by~13!
and ~14!, for example, using a standard finite element discreti
NOVEMBER 2004, Vol. 71 Õ 789
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tion. Figure 1 shows a simplified flow diagram for the iterati
scheme. Note that onlyV andJ need to be initialized.

In order to guarantee stability and convergence of the a
rithm, some care must be exercised in choosing finite elem
spaces. The main restriction is that the elements used to app
mate velocity and pressure as well as those used for electric
rent density and potential must satisfy so-called inf-sup conditi
or LBB ~Ladyzhenskaya-Babuska-Brezzi! conditions. In the
present implementation of the method, we construct a Lipsch
continuous coordinate transformation that maps the physical
main ~a circular cylinder! onto a circumscribed square cylinde
~the computational domain!, allowing all computations to be per
formed on a logically rectangular grid. The square cylinder
decomposed into rectangular parallelepipeds of equal size.
allows us to use standard Taylor-Hood elements for velocity
pressure, namely, continuous piecewise triquadratics for the ve
ity and continuous piecewise trilinears for the pressure. Th
elements are known to satisfy the LBB condition. It is natural

Fig. 1 Simplified flow diagram for the iterative solution of the
discretized problem
790 Õ Vol. 71, NOVEMBER 2004
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use continuous piecewise triquadratics for the electric potentia
well, but the LBB condition then requires a somewhat nonsta
ard finite element space for the current density, this space m
contain the gradients of continuous piecewise triquadratics. T
the elements used to approximate theith component of the curren
density are piecewise linear and generally discontinuous in theith
variable, but continuous and piecewise quadratic in the remain
two variables.

Basis functions for the above finite element spaces are c
structed using standard 27-node Lagrange elements for the v
ity and potential, standard 8-node Lagrange elements for the p
sure. For theith component of the current density, we use Herm
elements with nine nodes, namely, those nodes of the stan
27-node Lagrange element that are not on faces perpendicul
the ith coordinate axis; two degrees-of-freedom are associa
with each of these nodes, namely, the value of the function and
value of its derivative with respect to theith variable.~Instead of
9-node Hermite elements, we could of course use 18-n
Lagrange elements, but we would then be unable to utilize
same nodes as for velocity, pressure, and potential.! Since pres-
sure and potential can be determined only up to additive c
stants, both are set equal to zero at one node each of the
element grid. The essential boundary condition for the veloc
field is enforced by settingV5V0 at all boundary nodes.

With these choices, and in light of general results of finite e
ment theory, the discretization error is expected to decrease
dratically with the grid size. For further details, including rigoro
error estimates and a numerical validation of the predicted q
dratic rate of convergence, we refer to Meir and Schmidt@18#.

4 Numerical Experiments and Discussion
The method described in the previous section was impleme

and tested in a series of computer experiments, simulating
laboratory conditions described in Bakhtiyarov et al.@23#. Al-
though these experiments are of a preliminary nature, they d
onstrate the feasibility of the approach.

While the present implementation allows the computation
the induced magnetic fieldB~J!, via evaluation of the Biot-Savar
integral~11!, it does not yet incorporate the effect of temperatu
fluctuations; that is,T~V,J! is assumed to be zero. According t
the remarks at the end of Section 2, this is viable only as a
approximation. Adding a subroutine for the computation ofT~V,J!
poses no problem in principle, but requires laboratory experime
to validate the proposed model~14! for the radiative heat source
~including measurements of the intensity distribution in the lig
cone and infrared absorption properties of the metal samples!.

Besides neglecting temperature fluctuations, the computat
have thus far been limited to the laminar flow regime with sm
angular velocities and modest magnetic fields. All computatio
were done on a workstation, which, in conjunction with the sh
size of this fully three-dimensional problem, precluded the use
all but very coarse finite element grids. The simulation of mo
realistic flow conditions would require much higher spatial res
lution ~that is, much finer grids! and ultimately, the incorporation
of a turbulence model.

We used the discretization and iteration scheme describe
Section 3 on a grid of 432 elements with a total of 4225 nod
The ensuing sparse linear systems, with roughly 30,000 unkno
~not counting the induced magnetic field!, were solved directly,
using a standard linear-algebra package. Stiffness matrices
load vectors were computed with a high-order Gaussian qua
ture rule on the reference element. The induced magnetic field
determined by evaluating the Biot-Savart integral via Gauss
quadrature.

Given below are the results of a simulation of one of the e
periments described in Bakhtiyarov et al.@23#, where a cylindrical
column of liquid aluminum is steadily rotated in a uniform ma
Transactions of the ASME
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netic field perpendicular to the cylinder axis; see Fig. 2 for
geometry of the configuration and Table 3 for the data and par
eter values used.

Figures 4–7 show the computed current, potential, velocity,
pressure distributions. Clearly visible is a closed current loop p
allel to the planey50 ~which contains both the axis of the mag
netic field and the axis of rotation!. Significant potential gradients
arise only near the top and bottom of the column. The veloc
field is almost purely horizontal, the pressure almost purely rad
Figure 8, depicting the flow pattern in the planez50, reveals
significant counter-rotation associated with two kidney-sha
vortices, centered on thex-axis~the axis of the magnetic field! and

Fig. 2 Geometry of the configuration „not to scale; aspect
ratio LÕ2R is 4 …

Fig. 3 Induced current and flow field

Table 3 Data and parameter values for computer experiment

R cylinder radius 1.2731022 m
L cylinder height 10.1631022 m
v angular frequency of rotation 1.05/s~10 rpm!
B0 magnitude of applied magnetic field 0.1 T
r mass density 2.383103 kg/m3

h viscosity 1.831023 kg/m-s
s electric conductivity 4.13106 mho/m
m magnetic permeability 1.2631026 H/m
Journal of Applied Mechanics
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equidistant from the center. The same general pattern is foun
horizontal cross sections along much of the cylinder axis. Due
the no-slip boundary condition, a transition to rigid rotation occu
near the top and bottom, but the transition layers are fairly t
~compare Figs. 8 and 9!.

More quantitative information can be inferred from azimuth
velocity profiles, parallel or perpendicular to the magnetic fie
Figure 10 shows they-velocity along thex-axis, Fig. 11 the nega-
tive of the x-velocity along they-axis, both in the planez50.
Figures 12 and 13 give essentially the same information, but w
respect to the rest frame of the cylinder; that is, they show
azimuthal components of theinducedvelocity V2V0 ~whereV0
is the velocity field associated with the rigid rotation of the cyli
der!. The induced velocity is generally antiparallel toV0 and of

Fig. 4 Current density
NOVEMBER 2004, Vol. 71 Õ 791
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the same order of magnitude. As a consequence, the fluid is
tually at rest in the region between the two vortices seen in F
8 and 9. Figures 14 and 15 support the observation that the
duced velocity does not appreciably decrease along much of
cylinder axis~it must, of course, go to zero in the transition laye
at the top and bottom!.

The results of the simulation are easily explained, at least qu
tatively, by inspection of the leading-order terms in the Navi
Stokes equations and Ohm’s law. The velocity field associa
with the rigid rotation of the cylinder isV05v(2yi1xj ). This is
a solution of the Navier-Stokes equations with zero body forc
No viscous shear is associated withV0 , and inertia is balanced by
a radial pressure gradient:r(V0•¹)V052¹p0 with p0

51/2rv2(x21y2). Due to the presence of the applied magne
field Ba5B0i, a currentJ05sV03Ba52svB0xk is induced.
This current is parallel to thez-axis and concentrated in two nea
wall regions centered on thex-axis ~see Fig. 3!; it is not accom-
panied by a potential gradient~sinceV03Ba is solenoidal!. The
finite length of the cylinder forces return currents to flow paral
to the x-axis in boundary layers~Hartmann layers! near the top
and bottom of the cylinder; those are associated with poten
gradients.

The currentJ0 and applied fieldBa generate a Lorentz force
J03Ba52svB0

2xj . This force is rotational and cannot be ba
anced by a pressure gradient; it thus accelerates the fluid, resu
in a secondary velocityV1 , antiparallel toV0 ~see Fig. 3!. This
explains the general flow pattern~and, in particular, the kidney-
shaped vortices! seen in Figs. 8 and 9. According to the remarks
the end of Section 2, it must be the inertial force,r(V1•¹)V1 ,
which balancesJ03Ba . A characteristic magnitude ofV1 is thus

Fig. 5 Electric potential
792 Õ Vol. 71, NOVEMBER 2004
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given by V15(sv/r)1/2RB0 , and the ratio V1 /V0

5(s/rv)1/2B0 is roughly of order one.~This scaling argument
applies as long as the hydrodynamic Reynolds number is la
compared to unity, which is the case even for fairly smallv, but of
course not in the limitv→0.!

The main observation is that already moderate magnetic fie
and angular velocities result in significant counter-rotation of t
melt in the two near-wall regions, centered on the axis of t
applied field, where the currentJ0 is concentrated.

5 Conclusions
A new aproach to the mathematical modeling and compu

tional simulation of fully three-dimensional, electromagnetica
and thermally driven liquid-metal flow was developed and appl

Fig. 6 Velocity field
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to simulate the flow of a metallic melt in a cylindrical crucible
rotating steadily in a uniform magnetic field perpendicular to t
cylinder axis. A finite element based discretization and iterat
scheme was designed for the numerical solution of the underly

Fig. 7 Pressure distribution

Fig. 8 Flow pattern in the plane zÄ0
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,
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Fig. 9 Flow pattern in the plane zÄ5L Õ12

Fig. 10 Azimuthal velocity in the plane zÄ0, along the x -axis
„parallel to the magnetic field …

Fig. 11 Azimuthal velocity in the plane zÄ0, along the y -axis
„perpendicular to the magnetic field …
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Fig. 12 Induced azimuthal velocity VÀV0 in the plane zÄ0,
along the x -axis

Fig. 13 Induced azimuthal velocity VÀV0 in the plane zÄ0,
along the y -axis

Fig. 14 Induced azimuthal velocity VÀV0 in the plane z
Ä5L Õ12, along the x -axis
794 Õ Vol. 71, NOVEMBER 2004
nonlinear PDEs. The results of preliminary computer experime
~limited to the laminar flow regime and not accounting for tem
perature fluctuations! were shown to agree with theoretical predi
tions. It was found that already modest magnetic fields and an
lar velocities lead to significant counter-rotation in the melt.
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Fracture Simulation Using an
Elasto-Viscoplastic Virtual
Internal Bond Model With Finite
Elements
A virtual internal bond (VIB) model for isotropic materials has been recently propose
Gao (Gao, H., 1997, ‘‘Elastic Waves in a Hyperelastic Solid Near its Plane Strain Equ
axial Cohesive Limit,’’ Philos. Mag. Lett.76, pp. 307–314) and Gao and Klein (Gao, H.
and Klein, P., 1998, ‘‘Numerical Simulation of Crack Growth in an Isotropic Solid W
Randomized Internal Cohesive Bonds,’’ J. Mech. Phys. Solids46(2), pp. 187–218), in
order to describe material deformation and fracture under both static and dynamic l
ing situations. This is made possible by incorporating a cohesive type law of intera
among particles at the atomistic level into a hyperelastic framework at the contin
level. The finite element implementation of the hyperelastic VIB model in an ex
integration framework has also been successfully described in an earlier work by
authors. This paper extends the isotropic hyperelastic VIB model to ductile materia
incorporating rate effects and hardening behavior of the material into a finite deforma
framework. The hyperelastic VIB model is formulated in the intermediate configuratio
the multiplicative decomposition of the deformation gradient framework. The results
taining to the deformation, stress-strain behavior, loading rate effects, and the mat
hardening behavior are studied for a plate with a hole problem. Comparisons are
made with the corresponding hyperelastic VIB model behavior.
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1 Introduction
It is well established that plastic deformation takes place

regions of high stress concentrations and that fracture at the c
tip is preceded by some degree of plastic deformation. To be m
realistic the numerical simulations of crack initiation, propagati
and branching must, therefore, include the elastoplastic beha
of the material. Among the finite-element-based numerical m
els, which are becoming widely accepted, is the cohesive sur
modeling of fracture. Many researchers, including Barenblatt@1#,
Dugdale@2#, Willis @3#, Xia and Shih@4#, and Xu and Needleman
@5#, to mention a few, have worked on propagating and advanc
this methodology. The fundamental basis of these models lie
defining discrete cohesive surfaces in which the traction and s
ration at the boundaries are described by nonlinear cohesive l
These models do not require any separate fracture criterion. H
ever, these surfaces, which lie in between element bounda
must be defined a priori, and separate cohesive elements mu
introduced in between boundaries of the regular finite elemen

In contrast to the approach described above, Gao@6,7# and Gao
and Klein @8# proposed an approach called the Virtual Intern
Bond ~VIB ! model, wherein theconstitutive modeldirectly incor-
porates a cohesive-type law. In the VIB approach, the continuum
is treated as a random network of material points, interconne
by bonds, which obeys a cohesive law. The bonds are physic
described by a bond energyU( l ), wherel is the bond length, and
its derivative with respect to the bond lengthU8( l ) is the cohesive

1
Corresponding author.
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, Janu
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until four months after final publication of the paper itself in the ASME JOURNAL OF
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bond force. By describing this bond energy in a hyperelas
framework of finite deformation, the appropriate stress and st
measures, such as the Green-Lagrange strain tensor and the
ond Piola-Kirchoff stress tensor, can be derived. The macrosc
description of the continuum is determined by the Cauchy-B
rule @9# of crystal elasticity, by equating the macroscopic stra
energy function at the continuum level to the potential ene
stored in the cohesive bonds at the microscale. The descriptio
the bond lengthl in terms of the Green-Lagrange strain tens
provides the link between the two scales.

Klein and Gao@10# have described the application of the VI
model~based on the hyperelastic framework! to fracture initiation
and propagation and have further studied the crack dynamics
ing this model. An implicit second-order integration scheme w
used to simulate quasi-static and dynamic loading proble
Zhang et al.@11# implemented this model, using an implicit inte
gration scheme, in a UMAT subroutine in ABAQUS@12#. The
softening region of the cohesive models presents a major is
with the numerical implementation, using implicit integratio
schemes. Thiagarajan et al.@13# found that the explicit integration
scheme is better suited for the finite element~FE! implementation
of the VIB model. The model was implemented using the u
subroutine VUMAT in ABAQUS. The influence of mesh shap
and size, loading rate, and other related issues were studie
both quasi-static and dynamic impact loading cases@13#. The ex-
perimental verification and validation of the VIB model was stu
ied for the case of dynamic fragmentation of brittle materials u
der impact loading by Thiagarajan et al.@14#.

The work presented here stems from the previous work by
authors and is motivated by the observation that it is necessa
incorporate plastic deformation in regions of high stress conc
trations. There are two basic approaches of incorporating pla
ity into the VIB model. One is at the atomistic level by the co
sideration of individual dislocations~millions of them! and other
microstructural features. This method is numerically daunt

ry
per

lied
y of
pted
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even with the current level of supercomputers. The second
proach, which is adopted in this research, is to incorporate p
ticity and/or viscoplasticity at the continuum level by using we
established plasticity and viscoplasticity models.

The incorporation of viscoplastic effects into the VIB model
done within the framework of the multiplicative decomposition
the deformation gradientF5FeFp proposed by Lee@15# and ad-
vanced by numerous authors. This description is outlined in a l
section. The fracture simulation of a ductile material is studied
treating it as an elasto-viscoplastic solid. The elastic behavio
modeled as a hyperelastic VIB material and the plastic an
viscoplastic response is defined in the so-called intermediate
figuration. The model is studied using 6061 Al for which the v
coplastic material properties are available.

In this paper, Section 2 gives a brief description of the we
known finite deformation kinematic formulations in order to e
tablish the scientific basis for the choice of the intermediate c
figuration. The elasto-viscoplastic constitutive formulation for t
intermediate configuration is then described in Section 3. Sec
4 describes the details of the explicit integration scheme det
and Section 5 describes the numerical finite element impleme
tion, along with the results from various case studies. The con
sions are presented in Section 6.

2 General Kinematic Formulations
The choice of an appropriate strain and strain-rate measu

critical to the elasto-viscoplastic formulation of fracture for du
tile materials using the VIB model. At the outset, various kin
matic frameworks, both small strain and finite strain, are
scribed below along with the possible situations to which th
may be applied. The choice of the kinematic formulation tha
best suited for the elastoplastic VIB model is then described
detail.

2.1 Small Strain Formulation. For problems where tota
strains are small, the additive decomposition of total strains~of
the order of 0.001! are given as

e i j 5e i j
e 1e i j

p (1)

where the elastic strains are of the order of 0.001~0.1%!.
The uniaxial strains for ductile materials can reach the orde

unity due to plastic flow, especially in metal-forming problems.
these cases the elastic strains~0.001! are very small compared to
the total strains and can be neglected. The hydrostatic stre
such cases does not affect yielding, and only the deviatoric pa
the stress causes yielding. The plastic flow can be expressed
functional as shown below:

ė i j
p 5 f i j ~s,ṡ ! (2)

As the elastic strains are neglected, the total strain rate ca
expressed in terms of the derivatives of the velocity field as
lows:

ė i j 5 ė i j
p (3)

5
1

2 S ]v i

]xj
1

]v j

]xi
D (4)

Final deformations are obtained by integrating Eq.~4! over time.
This formulation is well known as the rigid plastic model an
although the total strains are finite, there is no need to use fi
strain kinematics.

2.2 Finite Deformation Theory. The finite deformation
framework is applicable to cases where the total strains are fi
and the magnitude of elastic and plastic strains are compara
Examples of these include cases where the inertia forces are
due to rapid loading as in explosive and impact loading. Ela
strains of the magnitude of 25% or more have been reported
explosive loading@16#, which would necessitate a kinemat
Journal of Applied Mechanics
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framework where both elastic and plastic strains can be of fi
magnitude. The kinematics involved in the formulation of fini
elastic and inelastic deformations are based on the multiplica
decomposition of the deformation gradient and described in de
below.

2.3 Multiplicative Decomposition of Deformation Gradi-
ent. The effective decouplingof the elastic and plastic laws ca
be achieved by using the unstressed configuration for deforma
changes. It is assumed that yielding is not affected by the hyd
static Cauchy stresses and that the elastic constants are no
fected by plastic deformations. In this paper, capital-letter s
scripts are used for the initial configuration while lowerca
subscripts are used for the deformed configuration.

A multiplicative framework for large deformation inelastic be
havior is adopted@15–21# as follows:

F5Fe"Fp detFe,detFp.0
(5)

FiJ5FiI
e FIJ

p

whereF is the deformation gradient,Fe is the elastic deformation
gradient andFp is the plastic deformation gradient. As shown
Fig. 1, such a characterization allows for the definition of
imaginary intermediate relaxed~stress-free! configurationV̄. V0
and V are the configurations at timet5t0 and t5tn11 , respec-
tively. In this paper any quantity with an overbar~̄ ! refers to its
value in the intermediate configuration. The intermediate confi
ration is commonly considered as a stress-free configuration
tained by elastically unloading the body from the current config
ration. It can be physically considered to represent the total ef
of dislocations without any lattice distortions~mapped byFp),
while the lattice distortions and rotations transform the interme
ate configuration to the current configuration~mapped byFe). The
basic kinematic variables associated with the three configurat
are now described.

2.3.1 Undeformed ConfigurationV0. The primary kine-
matic tensors associated with the undeformed configurationV0
are the left Cauchy-Green deformation tensorC and the Green-
Lagrange strain tensorE, which are expressed as follows:

C5FT"F or CIJ5FiI FiJ (6)

E5
1
2~C2G! or EIJ5

1
2~CIJ2GIJ! (7)

whereG is the metric tensor in the undeformed configuration.
the Cartesian coordinate systemGIJ5d IJ whered IJ is the Kro-
necker delta. Since the plastic deformation gradient maps the
tial configuration to the intermediate configuration, the plas

Fig. 1 Multiplicative decomposition of deformation gradient F
with its effect on shape and microstructure
NOVEMBER 2004, Vol. 71 Õ 797
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parts of the left Cauchy-Green deformation tensorCp and the
Green-Lagrange strain tensorEp can be expressed as follows:

Cp5FpT"Fp or CIJ
p 5FiI

p FiJ
p (8)

Ep5
1
2~Cp2G! or EIJ

p 5
1
2~CIJ

p 2GIJ! (9)

From the above definitions, the elastic component of the Gre
Lagrange strain tensor is defined using the additive decompos
@22# as

Ee5E2Ep (10)

2.3.2 Intermediate ConfigurationV̄. The Green-Lagrange
strain in the intermediate configurationĒ can be defined as a
push-forward transformation ofE usingFp as follows:

Ē5Fp2T
EFp21

(11)

5Ēe1Ēp (12)

where

Ēe5
1
2~FeT

"Fe2I ! (13)

Ēp5
1
2~ I2Fp2T

"Fp21
! (14)

The deformation gradientsFe, Fp may not strictly be continuously
differentiable mappings. They have sometimes been describe
point matrix functions.

2.3.3 Current or Deformed ConfigurationV. The deforma-
tion gradients mapping the initial and the intermediate configu
tions into the current configuration~Fig. 1! are the totalF and
elasticFe parts, respectively. Consequently, the primary strain t
sors associated with the current configuration may be express

b5F"FT or bi j 5FiI F jI (15)

e5
1
2 ~g2b21! or ei j 5

1
2~gi j 2bi j

21! (16)

be5Fe"FeT or bi j
e 5FiI

e F jI
e (17)

ee5
1
2~g2be21! or ei j

e 5
1
2~gi j 2bi j

e21! (18)

whereb and be are the total and elastic right Cauchy-Green d
formation tensors ande and ee are the total and elastic Euleria
strain tensors, respectively. The additive decomposition of the
lerian strain tensor leads to

ep5e2ee (19)

Following Marsden and Hughes@23#, the tensorse andep may be
referred to as the push forward, usingFp, of the tensorsE andEp,
respectively.

2.4 Rate of Deformation and Spin Tensors. The velocity
gradient, rate of deformation, and spin tensors can be express
the current and intermediate configurations as described belo

2.4.1 Current Configuration. The velocity gradient of a par
ticle defined in the current configuration is expressed as

L5
]v

]x
5ḞF215D1W (20)

D5symm~L ! (21)

W5skew~L ! (22)

whereD is the rate of deformation or velocity tensor represent
the stretching part andW is the spin rate tensor. By substitutin
the multiplicative decomposition of the deformation gradient
the above equation, one can derive the following expression:

L5~ Ḟe"Fe21
!1~Fe"Ḟp"Fp21

"Fe21
!5~Le!1~L p! (23)

5~De1We!1~Dp1Wp! (24)
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where Le and L p are the definitions of the elastic and plast
velocity gradient tensors andDe, Dp, We, Wp are the elastic and
plastic parts of the stretching-rate and spin-rate tensors, res
tively. In theory it can be assumed that not only the symme
part DP but also the skew symmetric partWp is governed by
constitutive equations. For rate-dependent materials@24#, these
constitutive equations can be expressed as

DP5FeDp~FeTFe,a!Fe21
(25)

WP5FeWp~FeTFe,a!Fe21
(26)

where a is a set of parameters that describe structural chan
caused by lattice defects. Wang’s@25# representation theorem
yields Wp50, thereby ignoring the effect of the plastic spin-ra
tensor.

2.4.2 Intermediate Configuration.Since the velocity gradi-
ent has a covariant-contravariant character, using an approp
pull back from the current configuration, the expression for
representation in the intermediate configuration results in

L̄5Fe21
LFe (27)

5Fe21
Ḟe1ḞpFp21

5L̄e1L p (28)

whereL̄e and L̄ p are the elastic and plastic velocity gradient te
sors. The rate of deformation tensors in the intermediate confi
ration can be expressed as

D̄5symm~ L̄ !5
1
2~C̄eL̄1L̄TC̄e!5FeTDFe (29)

D̄e5symm~ L̄e!5
1
2~C̄eL̄e1L̄eTC̄e!5FeTDeFe (30)

D̄p5symm~ L̄p!5
1
2~C̄eL̄p1L̄pTC̄e!5FeTDpFe (31)

3 Elastic-Viscoplastic Constitutive Assumptions
In the approach proposed in this paper, the hyperelas

viscoplastic response of the VIB model is based on the follow
assumptions:

1. The intermediate configuration is assumed to be the basi
the definition of the plastic variables. As the intermedia
configuration is considered to be a fixed configuration as
ciated only with lattice deformations, the elastic bonds b
tween the particles are not affected. This configuration
obtained by elastically unloading the material from the c
rent configuration. The original hyperelastic VIB model
hence set up in the intermediate configuration.

2. Theflow rule is specified in terms of the plastic part of th
velocity gradientL̄ p. This is assumed to be a function of th
Piola-Kirchoff stress and other internal variables.

3. The solid is considered to be isotropic in the intermedi
configuration leading to the assumption that the plastic p
of the spin tensor is zero (W̄p50).

4. A unified viscoplastic model is assumed, where inelas
strains include plastic and creep strains, by specifying
single set of flow rules and evolutionary equations.

5. The stress rate is assumed to have no effect on the ev
tionary equations, i.e., instantaneous plasticity is neglect

6. Plastic deformations are assumed to be incompressibl
det(Fp)51.

3.1 Intermediate Configuration Formulation. Based on
the hypothesis of formulating the hyperelastic part of the elas
viscoplastic VIB formulation in the intermediate configuratio
the final kinematic quantities used in this formulation are summ
rized as follows:
Transactions of the ASME
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F5Fe"Fp

L5ḞF215D1W

L5~ Ḟe"Fe21
!1~Fe"Ḟp"Fp21

"Fe21
!5~Le!1~FeL̄ pFe21

!

5Le1L p5~De1We!1~Dp1Wp!

L̄5Fe21
LFe5Fe21

Ḟe1ḞpFp21
5L̄e1L̄ p

L̄e5Fe21
"Ḟe

L̄ p5Ḟp"Fp21

3.2 Hyperelastic Constitutive Equations. The original Vir-
tual Internal Bond~VIB ! elastic model has been formulated in th
reference configuration@6,7,10#. The Cauchy-Born rule of crysta
elasticity is used to derive the overall constitutive equations
equating the internal strain energy of the bonds to the poten
energy stored in the continuum due to external forces. The in
and the deformed configurations are defined using the Lagran
coordinates X5XI and the Eulerian coordinatesx5x(X,t)
5xi(XI ,t), respectively. The deformation gradientF and the
Green-Lagrange strain tensorE are used in the basic elast
description.

Consider an arbitrary microstructural bond at an angleu andf,
whereu is the angle between the bond and the vertical posi
z-axis, andf is the angle in the horizontal plane with respect
the positivex-axis ~in polar coordinates!, respectively. The unit
vector along this direction is given a
j5~sinu cosf,sinu sinf,cosu! with respect to the undeforme
configuration. The stretch of this bond can be given as

l 5 l oA112j IEIJjJ (32)

The macroscopic strain energy density function is derived us
the Cauchy-Born rule@9,26# as

c~EIJ!5^U~ l !& (33)

where^ . . . & represents the weighted average with respect to
bond density functionDd . U( l ) is the potential energy function
between each bond. Assuming that all bonds have the same i
length l o , for the general case this is given as,

^¯&5E
0

2pE
0

p

¯Dd~u,f!sinududf (34)

The termDd(u,f)sin(u)dudf represents the number of bonds p
unit volume between the bond angles (u,u1du) and (f,f
1df). For isotropic solids the bond density function is taken a
constantDo . Hence the macroscopic strain energy density fu
tion can be now given as

c~EIJ!5DoE
0

2pE
0

p

U~ l !sinududf (35)

For a two-dimensional isotropic solid subjected to plane stress
bond density function can be expressed asDdd@u2(p/2)# and
the strain energy density function becomes

c5DoE
0

2p

U~ l !df (36)

From the strain energy density functionc, the symmetric second
Piola-Kirchoff stressSIJ and the elastic modulusAIJKL can be
derived as follows:

S5
]c

]E
or SIJ5

]c

]EIJ
(37)

AIJKL5
]2c

]EIJ]EKL
(38)
Journal of Applied Mechanics
e

by
tial
tial
gian

c

ive
to

ing

the

itial

er

s a
c-

the

The modulus derived from this potential satisfies the major a
minor symmetries,AIJKL5AJIKL5AIJLK5AKLIJ , as well as the
Cauchy symmetry,AIJKL5AIKJL . This results in only one isotro-
pic elastic constant being needed. This is due to the fact that
Cauchy symmetry is satisfied by the fourth-order isotropic elas
ity tensor only for the case ofl5m, wherel andm are the two
Laméconstants.

3.2.1 Adaptation to the Proposed Model.In the proposed
model, since the intermediate configuration is considered to b
fixed configuration associated only with lattice deformations,
elastic bonds between the particles are not affected in this c
figuration. Hence, the elastic VIB response in the intermed
configuration can now be expressed as

S̄5
]c̄~Ēe!

]Ēe
or S̄IJ5

]c̄

]ĒIJ
e

(39)

where S̄ is the equivalent of second Piola-Kirchoff stress in t
intermediate configuration.

3.3 Viscoplastic Response Formulation. The intermediate
configuration can be uniquely described by the plastic part of
deformation gradientFp, and the evolution equations can be s
up to describe it using an appropriate flow rule. The two inter
variables, namely, the backstressā and the effective accumulate
plastic strainēp5*0

t eG pdt, and the evolution equations in the rat
dependent form are described here. The constitutive equations
mulated here is based on the elasto-viscoplastic response
material following theJ2 flow theory.

The expressions for the deviatoric form of the second Pio
Kirchoff stress and the backstress~in the intermediate configura
tion! can be expressed as follows:

S̄d5S̄2
1
3~S̄:C̄e!C̄e21

(40)

ād5ā2
1
3~ ā:C̄e!C̄e21

(41)

and the hydrostatic pressurep is given by the equation 3Jp
5S̄:C̄e, whereJ is the determinant of the deformation gradien

Yield function. The yield function in the intermediate configu
ration is described as

F̄~S̄,ā,ēp!50 (42)

For theJ2 flow theory the yield function takes the form

F̄5s̄eq
2 2k250 (43)

where the equivalent stress in the intermediate configuratio
given as

seq
2 5

3
2~S̄d2ād!:~S̄d2ād!C̄eC̄e (44)

Flow rule. The flow rule is expressed as the evolution of t
plastic part of the velocity gradient as follows:

L̄ p5ḞpFp21
5D̄p1W̄p (45)

5l̇n̄~S̄,ā,ēp! (46)

where n̄ is a second-order tensor representing the direction
plastic flow. Adopting the associated flow rule, this direction
normal to the yield surface. Using Eq.~44!, the plastic flow direc-
tion can be expressed as

n̄5
3

2s̄eq
~S̄d2ād!C̄eC̄e (47)

and the evolution of the effective plastic strain rate is then giv
as follows:

eG p5l̇5
F̄~S̄,ā,ēp!

h
(48)
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whereh is the viscosity parameter of the material~also referred to
as the fluidity coefficient!. The plastic part of the spin tenso
(W̄p50) is not considered. These considerations result in a
duced form of the flow rule shown below

D̄p5l̇symm~ n̄! (49)

Hardening rule. The evolution of backstress is given by
kinematic hardening rule as follows:

aG 5l̇h̄~S̄,ā,ēp! (50)

whereh̄ is the hardening function.

4 Integration Procedure
The details and issues involved with the numerical implem

tation of the model proposed above are described in this sec
The steps outlined here are presented in a format that is sui
for implementation using the ABAQUS subroutine VUMAT. I
the material model, which involves the integration of the con
tutive equations, the following data are given as input fro
ABAQUS: Ft , Ft11 , Dt, which represent the deformation grad
ents at the previous and current time step and the incremen
time, respectively. The elastic and plastic deformation gradien
time t denoted byFt

e andFt
p , respectively, and the effective plas

tic strainēp are designated and computed as state variables w
the material model subroutine. The Cauchy stresss t from the
previous time step is also returned back by ABAQUS for use
needed. The Cauchy stress tensor at time~t11!, s t11 , along with
the updated values ofFt11

p , Ft11
e , ēp are calculated and stored a

the end of the current time step.

4.1 Numerical Integration Procedure

Step 1. The flow rule is integrated using animplicit exponential
approximation, keeping the flow direction and the plastic modul
fixed during the current time step, as follows:

* Fn11
p 5exp@Dēn11

p n̄n#F̄n
p (51)

The tensor exponential function in Eq.~51! can be represente
by a series representation as shown below

exp@A#5(
n50

`
1

n!
@A#n (52)

Considering the first two terms of the expansion of Eq.~51! and
using the series representation, the flow rule and the resulting
plastic deformation gradient can be expressed as given below

* Ft11
p 5@ I1Dē t11

p n̄t#F̄t
p (53)

whereI is the second order identity tensor.
Step 2. Thetrial elastic deformation gradient for the curre

step is computed as follows:

* Ft11
e 5~F! t11Ft11

p21

(54)

* FiJ
e 5~FiK ! t11~FkJ! t11

p21

Step 3. The Green strain can then be computed as shown b

* Ēt11
e 5

1
2 @* Ft11

eT
* Ft11

e 2I # (55)

Step 4. Thetrial elastic second Piola-Kirchoff stress~based on
the computation of new bond lengths in the intermediate confi
ration and assuming that the hyperelastic potential is based o
elastic stretch only! is calculated using the following equation:
800 Õ Vol. 71, NOVEMBER 2004
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* S̄t115
]c̄~* Ēt11

e !

]* Ēt11
e

(56)

* ~S̄IJ! t115
]c̄

]* ĒIJ
e

Step 5. The trial backstress is then updated by the follow
equation:

* ā t115ā t1Dē t11
p hn (57)

Step 6. The equivalent plastic strain, actual equivalent str
and internal scalar or tensor variables can then be solved usi
Newton iteration. The equivalent plastic strain increment can
expanded as

Dē t11
p 5DteG p~* S̄t11 ,* Ft11

p ,Dē t11
p ,ā t11! (58)

The equivalent plastic strain increment in Eq.~58! is solved from
the steps described using the Newton-Raphson technique wit
initial guess of zero. This value is incremented until Eq.~58! is
satisfied to some acceptable tolerance. The algorithm descr
above is a combination of both explicit and implicit steps.

5 Numerical Implementation
The numerical implementation of the finite deformation visc

plastic VIB model, described in the above sections, has b
tested on a plate with a center-hole~PWH! problem. A number of
issues, such as crack initiation and propagation, stress-strain
havior of cracked elements, development of plastic strain in e
ments, time of solution, etc., have been studied. The results
presented in this paper. Simulations have also been run using
elastic VIB model described in@13,14# and compared with the
viscoplastic model.

In the simulations, 6061 Al has been used with a Youn
Modulus of 70 GPa and a Poisson ratio of 0.3. The material ha
initial yield stresss̄05135 MPa. The size of the quarter plate
taken as 1003100 mm. The plastic flow for this material is de
scribed by a power law given by the following equation@27#:

s̄5a1b~c1k!d (59)

where the material constants witha525 MPa, b5466 MPa, c
50.003, and the exponentd50.293.k is the equivalent plastic
strain. The fluidity coefficienth used in the effective plastic
strain-rate equation~48! is 5000 MPa/s.

5.1 Plate With Hole Problem: Unidirectional Displace-
ment Loading. The loading cases studied for this problem a
shown in Fig. 2. The displacement at the top edge of the plat
increased linearly in all cases with the rate being controlled by

Fig. 2 Loading cases studied for plate with hole
Transactions of the ASME
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final displacement value. All displacements are given during a
time of 1 s. The four cases correspond to a maximum displa
ment~U2! of 1.5, 2.5, 3.5, and 5.3 mm, respectively, of the top
the plate. Both the elastic VIB model and the elasto-viscopla
VIB ~EPVIB! model have been run on the same data set.

For case 1~U251.5 mm!, no cracking was observed for bot
the models, and hence, the results are not shown graphically.
ures 3 and 4 show the deformation of the VIB and EPVIB mode
respectively, for case 2~U252.5 mm!. A fully cracked band at the
bottom edge can be seen for the elastic case~Fig. 3! while no
cracking is observed in the EPVIB case~Fig. 4!. For subsequen
load cases the elastic deformation pattern is not shown as
bottom edge is fully cracked in all cases and is similar to t
shown in Fig. 3. Figure 5 shows the final deformation for load
case 3~U253.5 mm! with the EPVIB model. A small crack is
seen to develop at the bottom left edge with two or three elem
showing cracks. Figure 6 shows the deformation pattern for ca
~U255.3 mm! at time 0.7 s from which it can be seen that t
crack tip located at about one-third of the base length from
edge of the hole.

Figure 7 shows the stress distribution along the path define
the bottom edge of the plate~for loading case 4!, showing the
stress values with increasing time, after cracking. The peak s
is indicative of the current location of the crack tip, shifts to t
right. After the crack has fully propagated throughout the bott
edge, the stresses in these elements drop significantly, as sho
Fig. 7 at time stepst50.9 s. Figure 8 shows the plot of crack t
location with time up to the time of 0.875 s. It was observ
earlier that at 0.9 s the crack suddenly propagates throughou
bottom of the plate.

Fig. 3 Final deformation for elastic VIB model „case 2 …

Fig. 4 Final deformation for viscoplastic VIB model „case 2 …
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The stress-strain behavior comparison of a critical elemen
studied by plotting the stress along the loading directions22 with
the logarithmic strainLE22, for the left-bottom corner elemen
~the first element at the edge of the hole!. The results have been
presented comparing the elastic and the viscoplastic respons
various loading cases. For loading case 3 the response is show

Fig. 5 Final deformation for viscoplastic VIB model „case 3 …

Fig. 6 Final deformation for viscoplastic VIB model „tÄ0.7 s…
„case 4 …

Fig. 7 Stress „syy … distribution along bottom edge of plate
„after cracking …
NOVEMBER 2004, Vol. 71 Õ 801
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Fig. 9. The peak of the viscoplastic response is higher than
elastic response and is due to the incorporation of the harde
behavior exhibited by the material.

Figure 10 shows the plot of the equivalent Mises stress with
equivalent plastic strain, for the left-bottom corner element. T
intent of this figure is to study the effect of rate of loading on t
development of plastic strains. After yielding, for loading case
and 2 equivalent plastic strains are allowed to develop as

Fig. 8 Plot of crack tip location with time

Fig. 9 Stress-strain curve for left-bottom corner element „case
3…

Fig. 10 Mises stress-equivalent plastic strain plots for left-
corner element
802 Õ Vol. 71, NOVEMBER 2004
the
ing

the
he
e
1

the

loading rates are fairly low. In cases 3 and 4, which are simula
at a higher loading rate, the equivalent Mises stresses develo
are higher while the plastic strains developed are lower compa
to loading cases 1 and 2. The sudden drop in the stress in loa
cases 3 and 4 are a consequence of the cracking of the elem

Figure 11 shows the comparative response for various load
cases for the viscoplastic model for the left corner element. T
elastic response, which is not shown here, for these loading r
was observed to be identical for all the loading cases up to
point of maximum stress. The deviations in the softening reg
are due to numerical issues. For the viscoplastic model~Fig. 11!,
as the loading rate increases the peak stress and peak strain
tained appears to decrease. This might indicate that, for hig
loading rates, the tendency to fracture is higher as plastic str
do not have time to develop.

The influence of material parameters~such as yield strength,
fluidity coefficient, and hardening coefficient! on fracture proper-
ties, particularly, the cohesive strength and strain at the cohe
strength, have been studied. Figures 12–14 show the stress-s
behavior of the left-bottom corner element of the plate for diffe
ent values of yield strength, fluidity coefficient, and hardness
efficient, respectively. The loading rate was kept the same in
these simulations.

From Fig. 12, which shows the variation for different yiel
strength values with the hardness and fluidity coefficient rema
ing the same, it can be seen that cohesive strength is not affe
very much by the change in yield strength. The cohesive strain

Fig. 11 Comparison of viscoplastic model stress-strain curves

Fig. 12 Comparison of stress strain curves for different yield
strengths
Transactions of the ASME
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yield strength of an 85 MPa value is lower compared to the yi
strength values of 110, 135, and 185 MPa, which have very si
lar cohesive strain values.

Figure 13 shows the variation of the stress-strain behavior
the left-bottom corner element with varying fluidity coefficien
values. It can be clearly seen that as the fluidity coefficient
creases, both the cohesive stress and the cohesive strain v
decrease, indicating that the there is a faster tendency to frac
Figure 14, which shows the variation of the stress strain curves
different values of hardness coefficientk, indicates that the hard-
ness coefficient has negligible influence on fracture.

5.2 Plate With Hole Problem: Biaxial Loading. The PWH
problem was repeated with a biaxial load. The magnitude of lo
ing was similar to that of loading case 3 of the uniaxial case w
the loading now applied in two directions. A uniform velocity i
both thex andy directions was applied over one second. Figur
15 and 16 show the final cracked configuration for the elastic
viscoplastic cases, respectively. A crack emanating from appr
mately the center of the quarter circular arc and propagating
45-deg angle can be clearly seen. The elastic model cracks ea
than the viscoplastic model case and also propagates much fur
From Fig. 17, which shows a comparison of the stress and
logarithmic strain for the biaxial and uniaxial cases, it can be s
that the cohesive stress for biaxial stretching is lower and occ
at a lower strain value when compared to the uniaxial case. T
observation is consistent with the theoretical derivation shown

Fig. 13 Comparison of stress strain curves for different fluid-
ity coefficients

Fig. 14 Comparison of stress strain curves for different hard-
ness coefficients
Journal of Applied Mechanics
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~Fig. 6 of Gao and Klein@8#!. Figure 18 shows the comparison o
the Mises stress and the equivalent plastic strain plots. Since
cohesive stress for the biaxial case is lower, the overall deve
ment of the equivalent plastic strain is also lower.

Fig. 15 Cracked pattern for biaxial load case with elastic VIB
model

Fig. 16 Cracked pattern for biaxial load case with viscoplastic
VIB model

Fig. 17 Comparison of stress and logarithmic strains for the
elastic and viscoplastic models
NOVEMBER 2004, Vol. 71 Õ 803
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6 Conclusions
In this paper an effective and robust finite element implem

tation of a hyperelasto-viscoplastic virtual internal bond mo
has been presented to simulate crack initiation, propagation,
branching in ductile materials. The following conclusions can
drawn from the paper.

1. Since the model is set up in an explicit integration fram
work, the softening region does not pose any difficulties d
to possible negative eigenvalues or singularities in the s
ness matrix.

2. The effect of the plastic zone ahead of the crack tip is cle
demonstrated in the deformation patterns exhibited by
elastic and the viscoplastic VIB model.

3. The effect of strain hardening is also seen in the form
increased cohesive stress limits in the viscoplastic case.

4. The effect of loading rate on the development of plas
strains and crack formation has also been shown. It is s
that as loading rate increases, while the Mises stresses
higher, the plastic strains developed are lower. The mate
tends to crack earlier as the loading rate increases.

5. In parametric studies in which the effect of yield streng
fluidity coefficient, and hardness coefficient on fracture w
studied, it was found that the yield strength and the hardn
coefficient did not have a significant influence on the co
sive stress. However, an increase in the fluidity coeffici
resulted in a decrease in the cohesive stress as well a
strain value.

6. The cohesive stress for biaxial stretching is lower and occ
at a lower strain value when compared to the uniaxial ca
This observation is consistent with the theoretical derivat
shown in~Fig. 6 of Gao and Klein@8#!.
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A Superposition Framework for
Discrete Dislocation Plasticity
A superposition technique is introduced that allows for the application of discrete d
cation (DD) plasticity to a wide range of thermomechanical problems with reduced c
putational effort. Problems involving regions of differing elastic and/or plastic behav
are solved by superposing the solutions to i) DD models only for those regions o
structure where dislocation phenomena are permitted subject to either zero tractio
displacement at every point on the boundary and ii) an elastic (EL) (or elastic/cohe
zone) model of the entire structure subject to all desired loading and boundary condit
The DD subproblem is solved with standard DD machinery for an elastically hom
neous material. The EL subproblem requires only a standard elastic or elastic/cohe
zone finite element (FE) calculation. The subproblems are coupled: the negative o
tractions developed at the boundaries of the DD subproblem are applied as body forc
the EL subproblem, while the stress field of the EL subproblem contributes a driving
to the dislocations in the DD subproblem structure. This decomposition and the ge
boundary conditions of the DD subproblem permit the DD machinery to be easily ap
as a ‘‘black-box’’ constitutive material description in an otherwise elastic FE formulat
and to be used in a broader scope of applications due to the overall enhanced com
tional efficiency. The method is validated against prior results for crack growth alon
plastic/rigid bimaterial interface. Preliminary results for crack growth along a met
ceramic bimaterial interface are presented.@DOI: 10.1115/1.1794167#
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1 Introduction
The proliferation of increasingly smaller structures has hig

lighted the necessity of developing accurate modeling techniq
for material deformation at these scales. Currently, micron s
analysis is important for micromachines and microelectronic co
ponents, as well as for the fundamental modeling of fracture p
cesses. A wealth of experimental evidence has shown that in m
specimens having characteristic dimensions less than 100mm,
plastic flow exhibits a size effect: smaller is stronger@1,2#. Clas-
sical continuum plasticity does not include a length scale, prec
ing any size effects. Thus the application of classical plastic c
stitutive laws to micron scale specimens is questionable.
micron-size scale effectively lies in an intermediate regime tha
too large for fully atomistic modeling, but small enough that i
dividual dislocation effects are important and cannot be avera
into a classical continuum plasticity constitutive law. Over the l
decade several new methods have been developed that can
accurately predict deformation at smaller scales.

Numerous nonlocal plasticity theories have been develope
an attempt to reproduce size effects@3–5#. These theories intro-
duce a length scale that aims to account for the effect of geom
cally necessary dislocations. As continuum theories, most no
cal models can be incorporated into existing finite element~FE!
architecture with only slight modifications. However, there rem
several drawbacks to nonlocal formulations. Like classical p
ticity, these are phenomenological theories that do not accoun
the fundamental basis of plasticity, i.e., the motion of dislocatio
The specification of the various length scales, usually chosen
fit to experimental data, is also an outstanding issue@6#.

An alternative technique is the discrete dislocation~DD!
method of Van der Giessen and Needleman@7#. The DD approach

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, February
2003; final revision, October 30, 2003. Associate Editor: E. Arruda. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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solves boundary value problems~bvp! for isotropic elastic bodies
containing mobile dislocations, which carry the information abo
plastic deformation. No assumptions about the material pla
constitutive response are necessary although a set of constit
rules governing dislocation motion, nucleation, and annihilat
are required. The DD method has the benefit of being a t
mechanism-based theory of plasticity; plastic flow arises dire
from dislocation motion. The DD method has recently been
plied to study flow in composites of varying microstructure@8#,
crack growth in plastic materials@9#, fatigue crack growth@10#,
and size effects in model Al/Si alloys@11#. The DD method has
also proven useful in acting as a numerical experiment for co
parison with various nonlocal theories@6,12#. One limitation of
the method is its significant computational cost, particularly
bodies containing elastic inhomogeneities@7# and/or large num-
bers of dislocations. For this reason much of the work to date
focused on elastically homogeneous systems, often with some
gree of symmetry to further simplify the computation. Cons
quently, many interesting physical problems that demand nonc
tinuum treatments have yet to be examined within the powe
DD framework.

Here a new superposition technique is presented that allows
a computationally efficient solution of elastically inhomogeneo
DD problems. The problem of interest is solved by superpos
the solutions to i! a DD model of only that portion of the structur
where dislocation phenomena are permitted subject to spe
boundary conditions and ii! an elastic~EL! model of the entire
structure subject to all desired loading and boundary conditio
The DD subproblem is homogeneous and solved with stand
DD machinery, including a contribution to the Peach-Koeh
forces on the dislocations coming from the EL subproblem. T
EL subproblem is solved with a standard elastic FE calculat
including special body forces that emerge from the DD proble
This technique is basically a special application of the Eshe
method @13#. It is similar to the coupled atomistic/continuum
method of Shilkrot et al.@14#, although here the formulation is
purely continuum in nature. The new technique also simplifies
application of the DD method to other problems because it se
rates out a generic DD subproblem that can be considered
material constitutive law. Finally, the superposition method
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ideal for using the DD machinery in a parallel-computing en
ronment. The technique is validated against prior results on t
dimensional~2D! plane-strain crack growth along a rigid/elasti
plastic bimaterial interface, and preliminary results on the fract
of more realistic elastic-plastic/elastic bimaterial interfaces is p
sented. The superposition formulation and examples discus
will be limited to 2D plane strain. Fundamentally, the technique
equally valid in 3D, although the DD mechanics becomes cons
erably more complex@15#.

The formulation is presented in dyadic notation. Vectors a
tensors are given by bold faced symbols, denotes the inner p
uct, and: the trace product. With respect to a Cartesian basisei ,
a"b5aibi , A:B5Ai j Bji , and (L:B) i j 5Li jkl Blk , with implied
summation over repeated indices. Latin indices run from 1 to
Greek indices from 1 to 2 only. The gradient operator is deno
as¹. The fourth-order identity tensor isI.

The remainder of this paper is organized as follows. Sectio
contains a concise overview of the standard DD formulation
inhomogeneous bodies. Section 3 presents the new superpos
technique. The material parameters, validation, and prelimin
bimaterial results are presented in Section 4. Section 5 discu
other applications of this formulation, and summarizes our resu
Computational efficiency for problems involving a nonlinear c
hesive zone requires special techniques in the EL subproblem.
Appendix describes an efficient technique for solving the inc
mental FE equations for anelasticbimaterial model with a non-
linear cohesive zone, which is used to solve the EL subproblem
the bimaterial interface crack growth problems.

2 Discrete Dislocation Methodology
The standard DD formulation for the inhomogeneous probl

of an elastic-plastic body containing an elastic inclusion has b
derived by Van der Giessen and Needleman@7#. The derivation is
briefly reviewed here, with a focus on when the implementat
becomes computationally expensive. This motivates the deve
ment of the new superposition technique, presented in Sectio

The discrete dislocation formulation models edge dislocatio
as line defects in an isotropic elastic material, constrained to g
on a fixed slip plane. Long-range dislocation interactions oc
through their continuum elastic fields. Short-range interactions
governed by constitutive rules for dislocation motion, nucleatio
and annihilation. In addition, dislocations can become pinned
obstacles and are released when the resolved shear stress o
dislocation exceeds the obstacle strength. Nucleation occurs
the expansion of Frank-Read dislocation loops, which in 2D
represented by the creation of a dislocation dipole.

The general discrete dislocation boundary value problem
shown in Fig. 1 for a body of volumeV, subject to boundary
conditionsu5uo on Su , andT5To on St . The body is composed
of an elastic-plastic ‘‘matrix’’ regionVM and an elastic ‘‘inclu-
sion’’ region VE with tensors of elastic moduliL andLE, respec-

Fig. 1 General discrete dislocation boundary value problem
„fields u DD , sDD… is written as the superposition of: „i… disloca-
tion fields in infinite space of homogeneous matrix material
„ũ,s̃… and „ii … corrective fields to account for the inclusion and
proper boundary conditions „û,ŝ…
806 Õ Vol. 71, NOVEMBER 2004
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tively. The problem of interest is solved as the superposition o
problem containing dislocations in an infinite body of homog
neousmatrix material, yielding the displacement, strain, and stre
fields ũ, ẽ, ands̃, and a complementary problem that corrects
the actual boundary conditions and the presence of the inclus
yielding the fieldsû, ê, andŝ. The fields in the problem of inter-
est are then obtained by superposition as

uDD5ũ1û eDD5 ẽ1 ê sDD5s̃1ŝ in V (1)

The elastic fields of an isolated dislocation in an infinite bo
are known analytically@16# and given byui , ei , si . Again by
superposition, the (̃) fields fromnd dislocations are given by

ũ5(
i

ui ẽ5(
i

ei s̃5(
i

si ~ i 51, . . . ,nd! (2)

These fields produce tractions and displacements at the
boundary of interest given by

n"s̃5T̃ on St (3)
u5Ũ on Su

wheren is the outward normal toS.
The corrective field is designed such that when superposed

the infinite space dislocation fields, the desired boundary va
problem is obtained. The governing equations for the correc
fields are thus

¹•ŝ50 ê5¹û in V (4)

ŝ5L: ê in VM (5)

ŝ5LE: ê1~LE2L!: ẽ in VE (6)

subject to the ‘‘corrective’’ boundary conditions

n"ŝ5T̂5To2T̃ on St (7)
û5uo2Ũ on Su

Since the (̃ ) fields are singular only at the dislocation cores a
since dislocations occur in dipole pairs or terminate on tracti
free surfaces, the (˜ ) fields on the boundaryS and the boundary
conditions ~7! for the corrective field problem are smooth, an
thus the corrective field problem can be solved with the conv
tional FE method.

With the dislocation structure and all fields known at som
instant, the evolved structure and fields are desired after an in
ment in applied loading. Based on the known dislocation str
ture, the boundary fieldsŨ and T̃ are calculated. The correctiv
FE problem is then solved for an increment of applied loadi
With the total fields determined, the evolution of the dislocati
structure is accomplished by i! evaluation of the Peach-Koehle
force on each dislocation and ii! application of the rules for dis-
location motion, nucleation, and annihilation. The updated dis
cation structure and new fields are now known, and this proced
is repeated for all subsequent increments. The Peach-Koe
force f (I ) on theIth dislocation is computed as

f ~ I !5ni
~ I !S ŝ i j 1(

JÞI
s i j

~J!D bj
~ I ! (8)

whereni
(I ) is the slip plane normal andbi

(I ) is the Burgers vector
of the Ith dislocation. A key point is that the method does n
solve for equilibrium dislocation distributions. The dislocation v
locity is linearly related to the Peach-Koehler force; no dissipat
mechanism to slow the dislocations is included. At any instant,
dislocation structure is a snapshot of the constantly evolving
location structure. Since an equilibrium solution is not bei
sought, no self-consistent iteration between the two subprobl
is necessary. The FE framework used here is that of Clever
et al. @9#, which is quasi-static and uses a virtual work expans
to step forward in time without iteration.
Transactions of the ASME
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The additional termp̂5(LE2L): ẽ5(LE:L212I):s̃ in Eq. ~6!
that corrects for the presence of the inclusion is known as
polarization stress. In an incremental FE scheme the polariza
stress must be computed at each inclusion integration point, w
requires the stress field of each dislocation to be evaluated at t
points. This is a major computational limitation when applying t
DD method to elastically inhomogeneous structures. As the nu
ber of dislocations becomes large and/or the number of inclus
elements increases, evaluation ofp̂ can dominate the FE calcula
tion. For this reason most of the DD literature has focused
homogeneous materials. This motivates our development of a
DD technique.

3 Superposition Method for DD Plasticity
The new superposition technique is shown schematically in F

2. The general problem is exactly the same as in Fig. 1, howe
a different decomposition is used. The desired boundary va
problem is solved as the superposition of a DD subproblem s
ject to generic boundary conditions and a fully elastic~EL! sub-
problem subject to all actual boundary conditions.

The DD subproblem models only that part of the structu
where dislocations are permitted to exist; the regions of ela
inhomogeneity are not modeled in the DD subproblem. The
neric boundary conditions of the DD subproblem are chosen
uDD50 and TDD50 on Su and St , respectively. Additionally
uDD50 is prescribed on the boundarySb between the matrix and
inclusion. Thus, the only information about the full problem th
is used in the solution of the DD subproblem is the geometry
the plastic region and the knowledge of whether displacemen
traction boundary conditions are applied on boundaries share
the DD subproblem and the full problem. The incremental so
tion of the DD subproblem is then obtained exactly as descri
in the previous section, i.e., as the superposition of an infin
space dislocation problem and a corrective problem. An outco
of the solution of the DD subproblem at any instant is a tract
T* along the boundarySb , which is used in the EL subproblem a
described below.

The EL subproblem models the entire structure and is subjec
all the true boundary conditions onS. The region of the structure
containing dislocations is modeled as an isotropic elastic mate
Information about the plastic deformation in the plastic region
the material is transmitted to the remainder of the struct
through the addition of a body force2T* along Sb in the EL
subproblem, which is the negative of the tractionT* obtained
from the DD subproblem. The EL subproblem can be solved
standard FE methods. In the absence of nonlinear regions, su
a cohesive zone surface, the EL subproblem is fully linear and
FE equations can thus be solved very quickly because inversio
decomposition of the entire elastic stiffness matrix must be
complished only once at the start of the calculation.

Fig. 2 New superposition framework showing decomposition
into two subsidiary problems: discrete dislocation „DD… sub-
problem solved with the standard formulation subject to ge-
neric boundary conditions, and elastic „EL… subproblem, which
contains all specific boundary conditions and loading, solved
with standard elastic FE
Journal of Applied Mechanics
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The solution to the full problem of interest is then obtained
superposition of the DD and EL subproblems as

u5uDD1uEL e5eDD1eEL s5sDD1sEL (9)

Superposition is permitted since, in the region where superp
tion is being used, both problems are linearly elastic at any
stant. All plasticity is completely contained in the motion an
position of the dislocations within the underlying elastic mater
and, therefore, does not preclude the application of superposi
Although termed an ‘‘elastic’’ subproblem, the EL subproble
need only be linear in the region where the discrete disloca
superposition is being applied. That superposition yields the
rect boundary conditions for the desired problem during any
crement is clear from the schematic in Fig. 2: the boundary c
ditions are satisfied exactly, the linear field equations in each
of the problem have been solved via FEM, the tractionsT* and
2T* cancel upon superposition, and the boundary condit
uDD50 has no effect on the displacement of the boundarySb as
calculated in the elastic subproblem.

The EL subproblem influences the dislocation structure and
evolution because the Peach-Koehler force is calculated on
dislocation using the full fields minus the dislocation self-
interaction, which thus includes the contributionsEL . In all ap-
plications, it must be remembered that the dislocations are dr
by the full, true field and not simply the fieldssDD calculated in
the DD subproblem. The expression for the Peach-Koehler fo
in this superposition framework is

f ~ I !5ni
~ I !S ŝ i j 1(

JÞI
s i j

~J!1s i j
ELD bj

~ I ! (10)

which differs from the corresponding expression for the stand
formulation ~8! by the inclusion of thesEL contribution.

Before proceeding to validate and use the new superpos
method, some comments are warranted. Operationally, at eac
crement the new superposition method requires two FE calc
tions: one for the corrective fields in the DD subproblem and o
for the entire EL subproblem. The overall DD subproblem
solved with standard DD machinery~described in Section 2!, and
as the region is elastically homogeneous, there are no polariza
stresses. The new superposition method is thus advantageo
elastically inhomogeneous problems with large numbers of di
cations and/or many inclusion elements. The calculation ofp̂ is
eliminated at the cost of an additional FE calculation for the
subproblem.

The DD subproblem is largely independent of the particu
problem under study. Aside from adding the fieldsEL to drive the
dislocations, the DD subproblem may know nothing, or only litt
about the actual problem~geometry and loading! under study. If
the plastic zone of the problem is constrained to occur withi
finite region of space, then the DD problem can be further c
fined within that box, with no knowledge whatsoever about t
full geometry. In this sense, the DD subproblem serves a
‘‘black-box’’ constitutive material law for the plastic flow of the
plastically deforming material. The DD subproblem is, howev
limited to small strains.

Because the DD subproblem is largely disconnected from
actual problem of interest, the decomposition of the problem a
provides opportunities for parallel coding for a wide variety
problems, as will be discussed further in Section 5.

4 Application to Bimaterial Interface Fracture
Crack growth in plastically deforming materials is an attracti

application of the DD methodology. It is well known that in con
tinuum plasticity the maximum opening stress ahead of the cr
tip is, at most, about five times the yield strength. Such low ne
tip stresses are unable to cause crack growth in many case
volving nonductile fracture modes. Furthermore, for brittleli
fracture occurring by cleavage of atomic planes, the fracture p
cess zone is small~nanoscale!, and the peak stresses required f
NOVEMBER 2004, Vol. 71 Õ 807
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Fig. 3 Decomposition of the bimaterial fracture problem into DD and EL subproblems
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material separation are large. Continuum plasticity is not expe
to handle the high local stresses and stress gradients preva
around the crack tip in such situations. Cleveringa et al.@9# thus
applied the DD methodology to crack growth in a homogene
elastic-plastic material and predicted R-curve behavior for the
set of crack growth. Their results demonstrated that disloca
organization on the scale of microns can generate the high stre
needed to grow the crack. On the other hand, the dislocation s
tures also generated stress fields away from the crack tip that
in generally good agreement with the continuum fields predic
by using a perfectly plastic constitutive law.

The bimaterial interface fracture problem is also suited tow
treatment via the DD methodology for similar reasons. At t
continuum level, the fields around a semi-infinite interface cra
separating two dissimilarelastic half spaces were given by Ric
@17#. More recently Tvergaard and Hutchinson@18–20# and Tver-
gaard@21–23# have explored the effects of plasticity in one
both materials. Tvergaard@23# has shown that for an elastic
plastic/elastic bimaterial, the toughness increases with increa
modulus of the purely elastic material. When the purely ela
material is at least twice as stiff as the elastic-plastic mate
fracture is largely suppressed when the peak cohesive streng
roughly four times the yield stress@23#. This is expected since th
cohesive strength approaches the maximum possible ope
stress of the continuum model. Continuum models have been
mented by additional assumptions about the near-tip beha
Thus Tvergaard@21,22# modeled brittle fracture with the disloca
tion free zone~DFZ! model of Suo et al.@24#. The DFZ model for
cleavage crack growth assumes that the crack tip does not
dislocations, stays nanoscopically sharp, and is surrounded
thin elasticstrip with the far-field region governed by continuu
plasticity. The elastic singular field gives rise to high near
stresses and plastic flow provides dissipation. Fracture in the e
tic strip region is governed by linear elastic fracture mechan
~LEFM!; crack growth is characterized by a critical stress inte
sity at the crack tip. The DD model, in contrast, makes no assu
tions about a dislocation free region, but such a region m
emerge naturally from the solution to the boundary value probl
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providing insight into the size and evolution of the dislocation fr
region. Furthermore, fracture is an outcome of the DD solut
and does not require any a priori modeling changes.

The elastic-plastic/elastic bimaterial interface problem and
decomposition using our superposition framework are sho
schematically in Fig. 3. Two materials, an elastic-plastic up
half-space and an elastic lower half-space are separated b
interface that is described by a cohesive zone model~CZM!. The
overall material is loaded by displacements corresponding to
desired elastic K-field~see below!. Far to the left, the cohesive
zone is fully open and the crack surfaces are traction free. Fa
the right, the cohesive zone is essentially closed and the displ
ments are continuous across the interface. Due to the existen
the cohesive zone, there is no crack-tip singularity in this proble
In decomposing this problem, the DD subproblem is used
model the elastic-plastic upper half plane and the EL subprob
models the entire body as an elastic/CZM problem. The bound
Sb is taken to be the entire lower boundary of the DD subproble
i.e., the entire upper crack surface in the EL subproblem. T
choice gives a smooth tractionT* along the entire boundarySb
that is exported to the EL subproblem. Choosing a more tra
tional crack boundary condition of zero traction along the op
crack and zero displacement along the originally closed cr
would yield a singularity in the tractionT* at the original crack
tip in the DD subproblem. This would be difficult to resolve an
handle properly in the superposition framework. The latter bou
ary conditions would also unnecessarily bias the entire prob
toward the original crack tip.

As the bimaterial specimen is loaded, dislocations generate
the plastic material may pass out of the traction-free and/or p
tially open regions of the cohesive surface. This behavior is
tirely physical, as the surface and cohesive zone in regions w
its stiffness is becoming small, absorb the dislocations. The oc
rence of this phenomenon in the new superposition technique
quires comment. The DD subproblem contains all the dislo
tions, but subject to the boundary conditionuDD50 everywhere.
However, the Peach-Koehler force on a dislocation is alw
evaluated using thetotal fields, and hence, the dislocations mov
Transactions of the ASME
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correctly, as if in the full problem. The zero displacement bou
ary condition imposed in the DD subproblem is not actually se
by the dislocations. Thus, a dislocation can experience a driv
force to move it out of the DD subproblem domain through t
surfaceSb . Physically, this leaves a step having magnitude of
Burger’s vector alongSb . In terms of the DD superposition o
Fig. 1, theũ displacement field has a step where the dislocat
exited the surface~due to the existence of the other half of th
dislocation dipole that remains inside the material!. Recalling Eq.
~1!, to satisfy the imposeduDD50 constraint onSb , the û correc-
tive field must have an equal and opposite step at the same
on Sb . Thus, the DD subproblem of Fig. 3 is no longer smoo
and there is a singularity in the tractionT* at the point alongSb
where the dislocation has passed through. It is not possibl
accurately resolve theT* singularities associated with dislocatio
surface steps onSb , but an exact resolution isnot required. If
identical meshes are employed in the overlapping regions of
EL and DD subproblems, which is also desirable for other r
sons, then theapproximate, nonsingularFE tractionT* in the DD
subproblem is exactly cancelled by the field2T* applied in the
EL subproblem. The field2T* in the EL subproblem creates th
physical surface step in the problem, resolved to the accurac
the FE mesh. In other words, part of the tractionT* in the DD
subproblem serves to generate an elastic field toeliminate the
surface step, and the step is thenrecreatedby the application of
2T* in the EL subproblem. Comparison of the new superposit
technique to the standard DD method below shows that the
face steps are handled precisely via the superposition.

4.1 Model Parameters and Loading. The results presente
here are based on the geometry and dislocation parameters p
ously used by Cleveringa et al. and Deshpande et al.@9,10# to
study mode I and fatigue crack growth, respectively. In fact,
have used the actual code of Deshpande et al.@10#, modified to
includesEL from the EL subproblem to the P-K force, thus trea
ing the entire DD code as a ‘‘black-box.’’ We consider a specim
of 100031000mm, and take the origin of anxy-coordinate sys-
tem to be at the center of the sample. The initial crack tip
located at the origin and assumed to be open~T50! for y50, x
,0 and a cohesive zone describes the interface properties fy
50, x.0. The sample is meshed with 1203220 bilinear quadri-
lateral elements; displacement boundary conditions correspon
an applied remoteK field. The properties of the metal, i.e., th
elastic-plastic upper half plane (y.0), are consistent with Alumi-
num (E1570 GPa,n150.33). The elastic modulusE2 of the ce-
ramic (y,0) will be varied~with n250.33). Dislocation activity
in the upper half plane is restricted to a 15315 mm ‘‘process
window’’ of 80380 elements, graded around the crack tip. T
slip plane geometry is representative of an FCC type single c
tal, with three slip systems oriented at160°, 260°, and 0° rela-
tive to the crack planey50, spaced at 100b and initially
dislocation-free. Only edge dislocations are considered, with B
gers vector of magnitudeb50.25 nm. The dislocation glide ve
locity is linear in the Peach-Koehler force with viscous drag c
efficient B51024 Pa s, and climb is not permitted. Dislocatio
nucleation occurs by the expansion of Frank-Read sources,
domly dispersed in the process window with densityrnuc

566/mm2. Nucleation occurs when the Peach-Koehler force a
source exceeds a critical value oftnucb for a time period oftnuc
510 ns. The value oftnuc is chosen from a Gaussian distributio
with mean strengtht̄nuc550 MPa and standard deviation 0.2t̄nuc .
Dislocations of opposite sign are annihilated when they co
within a critical distance of 6b. The process window also contain
a random distribution of obstacles with densityrobs5170/mm2

that pin dislocations until the Peach-Koehler force reaches
obstacle strengthtobs5150 MPa. To fully resolve the dislocatio
activity a time step ofDt50.5 ns was used, which necessitates
use of a high loading rate ofK̇5100 GPa m1/2/s. Since an itera-
tive numerical scheme is not used, the time step is not cho
Journal of Applied Mechanics
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from stability considerations. Instead the time step must be sm
enough to resolvetnuc , which is the intrinsic time scale of the
problem.

In the EL subproblem, we use the coupled normal-shear co
sive law relating the displacement jumpD across the interface to
the tractionT introduced by Xu and Needleman@25#. The trac-
tions are obtained from a potentialf asT5]f/]D, with

f5fn1fn expS 2
Dn

dn
D H F12r 1

Dn

dn
G 12q

r 21

2Fq1S r 2q

r 21D Dn

dn
GexpS 2

D t
2

d t
2 D J (11)

where dn and d t are the normal and tangential characteris
lengths, respectively, and the work of normal and tangential se
ration are

fn5esmaxdn , f t5tmaxd tAe

2

wheresmax andtmax are the normal and shear cohesive strengt
respectively. The normal-shear coupling is included throu
parameters

q5
f t

fn
, r 5

Dn*

dn

where Dn* is the value ofDn after a complete shear separatio
with Tn50. The characteristic lengths are taken to bedn5d t
50.5 nm, and the interface strengths aresmax50.3 GPa and
tmax50.699 GPa. Thenfn5f t50.408 J m22, giving q51. The
parameterr is taken to be zero.

Assuming small-scale yielding, the remote boundary conditio
are characterized by the bimaterial elastic K-field. The displa
ment field for the upper half plane is@19#

u11 iu25
uKu

2m1 cosh~pe!
A R

2p H ~324n1!eiu/21e~u2p!2 ic̄

122ie

2
e2 iu/22e~u2p!2 ic̄

122ie
2 i sin u eiu/21e~u1p!1 ic̄J (12)

where K5K11 iK2 , and R5Ax21y2. The form for the lower
half plane is similar. The elastic mismatch is included throughe,
given as

e5
1

2p
lnS 12b

11b D
where

b5
1

2

m1~122n2!2m2~122n1!

m1~12n2!1m2~12n1!

The mode mixity is described by a phase anglec such that

tanc5
Im@~K11 iK2!L ie#

Re@~K11 iK2!L ie#
(13)

whereL is a reference length used to characterize the remote
and c̄ varies withr as

c̄5c1e ln~r /L ! (14)

The remote loading is thus characterized byuKu, c, andL. Physi-
cally, c measures the ratio of shear to normal stress on the in
face a distanceL from the tip, as predicted by the elastic solutio
@19#. We takeL510mm, which is on the order of the proces
window size. Tvergaard@23# defines a reference stress intens
factor
NOVEMBER 2004, Vol. 71 Õ 809
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K05F12n1
2

E1
1

12n2
2

E2
G21/2S 2Go

12b2D 1/2

(15)

whereGo is the work of separation of a mode-independent co
sive law. Withq51 ~as is the case here!, the cohesive law~11! is
mode-independent, thus we setGo5fn5f t in ~15! to calculate
the referenceK0 .

4.2 Validation. The superposition technique was validat
by comparing to existing results obtained with the standard
method for the problem of an elastic-plastic half-space on a r
substrate. Use of a rigid substrate permits the DD problem to
solved only in the upper half-space, so that the standard meth
appropriate and efficient. In both cases, exactly the same mat
was modeled, i.e., the exact same random distribution of sou
and obstacles was used for both methods. Figure 4 shows
crack growth resistance curve and the evolution of the crack op
ing displacement with load level as obtained from the stand
method and the superposition method. Excellent agreemen
both quantities is obtained. Due to the chaotic nature of the
crete dislocation simulations, as discussed by Deshpande
@26#, the fields are expected to agree within 10%. The variation
the R-curves are well within the range of chaotic effects. It
worth noting the excellent agreement in the crack surface feat
associated with dislocations exiting through the crack surface
the deformation proceeds. Simpler problems involving single d
location sources are essentially exactly reproduced. These re
fully validate the superposition technique and its numerical imp
mentation. The superposition technique, including the treatmen
dislocations passing through surfaces with fixed displacem
boundaries of the DD subproblem, can thus be extended to
analysis of new problems with confidence.

4.3 Results. Here we present some preliminary results
the fracture toughness versus elastic mismatch for a bimat
interface. The experimental results of Liechti and Chai@27# and
the simulations of Tvergaard@23# both demonstrate a strong de
pendence of the R-curve on the elastic mismatch and phase a
of the applied loading, with significantly less-tough behav
found for modest ratios of elastic mismatchE2 /E1 as compared to
the rigid substrate case. Thus, the standard DD method for
rigid substrate problem is expected to greatly overpredict tou
ness relative to realistic metal/ceramic systems and cannot be
tended to realistic systems without high computational cost.

Figure 5 shows the crack growth resistance curves for bim
rial specimens of Aluminum, as modeled above, on substrate

Fig. 4 Comparison of superposition and standard DD meth-
ods for rigid substrate: „a… crack growth resistance curves and
„b… crack opening displacements
810 Õ Vol. 71, NOVEMBER 2004
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varying elastic modulus. The ratio ofE2 /E156 corresponds
roughly to Aluminum on SiC, while the ratioE2 /E152 corre-
sponds to Aluminum on Si. With increasing stiffness ratio, t
bimaterial interface shows a rapidly increasing toughness. For
E2 /E15` specimen the simulation was stopped before a fail
point was reached. Figure 6 shows the opening stresss22 and
dislocation positions at a load near the failure point forE2 /E1
51, 2, and 6, and at a high load for theE2 /E15` specimen.
When E2 /E151 relatively few dislocations are nucleated, th
crack remains sharp, and fracture occurs in an almost enti
brittle manner, with negligible toughening. That failure occurs
uKu/K0.1 is due to the neglect of the shear toughness of
interface in choosing the referenceK0 @see comments after Eq
~15!#. The other R-curves all exhibit regimes of toughening a
spurts of brittle crack extension. The periods where a large
crease inuKu occurs over a smallDa correspond to the crack tip
field repeatedly activating one~or several! nearby sources. Crack
blunting follows as one dislocation of a dipole pair passes ou
the crack surface, while the other slips away from the crack s
face into the material. Eventually the dislocations in the mate
provide a backstress sufficient to shut down the source~s! or a
near-tip dislocation configuration generates high stresses resu
in a spurt of crack growth. This semi-brittle extension occurs w
a relatively small increase in applieduKu. This brittle extension is
either stopped when the new crack tip field activates other nea
sources, or if sufficiently weak sources are not nearby and/or
crack is growing very rapidly the extension continues and
specimen fails. When comparing the R-curves of Fig. 5 it is wo
noting that since the applied loading was defined byc50 at L
510mm the variation in substrate modulus results in varyi
amounts of shear closer to the crack tip. The variation of ph
along the interface is particular to the inhomogeneous crack p
lem, and such mixed mode effects will be examined in detail i
future publication.

The evolution of the opening stress and dislocation structure
the E2 /E152 specimen are shown in Fig. 7. In Fig. 7~a! at
uKu/K050.966 the crack tip is sharp and very few dislocatio
have been nucleated. WhenuKu/K051.208 the majority of the slip
is occurring on two slip planes with160° orientation. As one
dipole slips into the material, the other glides toward the crack
passes out, and blunts the crack. As loading continues, additi
sources become activated; atuKu/K051.449 one or two260° slip
planes have a cluster of dislocations near the initial crack tip.
uKu/K051.691 the crack has extended roughly 0.85mm and new

Fig. 5 Normalized applied stress intensity factor zK zÕK 0 ver-
sus crack extension Da for various substrate moduli
Transactions of the ASME



Jo
Fig. 6 „Color online … Dislocations and normalized opening stress s22 ÕmÃ103 in a 10Ã13 mm region near the crack tip for
various substrate moduli just prior to failure „see triangles in Fig. 5 …: „a… E2 ÕE1Ä1 with zK zÕK 0Ä1.118, „b… E2 ÕE1Ä2 with
zK zÕK 0Ä1.811, „c… E2 ÕE1Ä6 with zK zÕK 0Ä2.304, and „d… E2 ÕE1Ä` with zK zÕK 0Ä2.286. The crack opening profiles for each
case are plotted below the x axis. All distances are in microns.
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sources are activated. A snapshot just before failure of this sp
men is shown in Fig. 6~b! whereuKu/K051.811.

The model DD parameters used for Aluminum generate a y
stress of about 60 MPa@28#. As discussed above, the normal c
hesive strength is 300 MPa, thussmax/sy55. In the continuum
models of Tvergaard@23#, such a large ratio of cohesive streng
to yield stress essentially precludes crack growth, except when
substrate is very soft (E2 /E151). In the DD model, however
brittle fracture is reached in all cases except that for the ri
substrate, as seen in Fig. 5. This highlights the dual role of di
cations in elastic-plastic fracture: the motion and interaction
dislocations provides dissipation and increased toughness, bu
dislocations also generate local stresses reaching the coh
strength and thus driving crack growth. The latter effect is miss
in standard continuum simulations. Qualitatively, however,
R-curves found here do agree with those found by Tvergaard
lower ratio ofsmax/sy53 ~Fig. 4. in @23#!.

The trend of increasing toughness with increasing subst
modulus can be justified by the following qualitative analysis. T
work of the applied loading is apportioned between the ela
deformations of the substrate and plastic material and the diss
tion due to plastic flow. The plastic flow itself is driven by th
stresses, and hence stored work, in the plastic material. Thus,
increasing rigidity of the substrate, more work is put into t
plastic material and a larger fraction of that work is dissipated
plastic flow. In the rigid limit, all of the deformation and store
urnal of Applied Mechanics
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elastic energy resides in the plastic material, and the deforma
drives a high degree of plastic dissipation and, hence, a high o
all toughness. As the substrate becomes very soft, all of the en
is stored in the deformation of the substrate, preempting pla
flow and dissipation in the plastic material and causing comple
brittle fracture.

The preliminary DD results can provide insight into the re
evance or necessity of the dislocation free zone concept to b
terials. Excluding theE2 /E151 specimen, which has such few
dislocations that it exhibits almost completely brittle fractur
there is no consistent observation of a DFZ throughout the l
history. WhenE2 /E152 a strip approximately 0.1mm from the
free crack surface does not contain dislocations~see Fig. 7!. This
is expected as nearby dislocations~on a 660° plane! will be at-
tracted to the free surface and pass out. However, for theE2 /E1
52, 6, ` ratios, particularly at elevated loading, a DFZ is n
observed down to the resolution of this analysis~see Fig. 7!; the
minimum near-tip element size is 0.05mm and the intrinsic cohe-
sive length scaledc(5smaxdn /E) for the problem is 0.11mm and
so ‘‘crack-tip’’ phenomena are not resolved below this scale.
addition, the crack profiles in Figs. 6 and 7 all exhibit significa
blunting before failure, which is inconsistent with the DFZ a
sumption of a nanoscopically sharp crack. However, the preli
nary DD results suggest that crack growth is due primarily to h
near-tip stresses, resulting from the applied load and near-tip
location structures, and not the blunting of the crack as the co
NOVEMBER 2004, Vol. 71 Õ 811



81
Fig. 7 „Color online … Dislocations and normalized opening stress s22 ÕmÃ103 in a 8Ã6 mm region near the crack tip for
E2 ÕE1Ä2 at four stages of loading „see circles in Fig. 5 …: „a… zK zÕK 0Ä0.966, „b… 1.208, „c… 1.449, and „d… 1.691. The crack
opening profiles at each load are plotted below the x axis. All distances are in microns.
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sive zone absorbs dislocations. The results here also suppo
observation of Wei and Hutchinson@29# that even when a DFZ is
appropriate, it may be so small that a nonlocal plasticity theor
required to match to the large gradients present in the elastic
strip.

This represents a preliminary overview of the elastic-plas
elastic bimaterial problem. A much more detailed analysis will
performed in a future publication, including examination of t
influences of i! cohesive law details~e.g., shear versus norma
strengths and shear/normal coupling!; ii ! the ratio of the cohesive
strength to yield stress; and iii! mode mixity of the remote load
ing, an analysis of the underlying dislocation structures and t
relationships to observed trends, and a study of statistical effe

5 Discussion and Conclusions
We have presented a general new technique for the effic

extension of the DD plasticity method to problems with elas
inhomogeneities. The usefulness of the method lies in its isola
of the DD part of the model from many of the particular featur
of the problem under consideration. The DD calculation only
quires information about the geometry of the region where dis
cations may be present, and is supplied, via the superposi
with driving forces on the dislocations coming from the elas
subproblem. This construction effectively allows for the use D
plasticity as a ‘‘black-box’’ constitutive input in any desire
region.
2 Õ Vol. 71, NOVEMBER 2004
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The existing DD method involves continuum representations
many atomistic phenomena, including nucleation, glide, pinni
and annihilation. Work is currently in progress on incorporati
additional physical features of dislocation behavior~i.e., junc-
tions, source generation, and stage II hardening! into the 2D for-
mulation @30#. The superposition technique can assimilate a
such changes without difficulty because it is unaffected by any
the inner workings of the DD method.

The superposition method can also be used to handle prob
containing multiple plastic domains. In such problems, each p
tic domain requires its own DD calculation and generates tracti
T* on the relevant surfacesSb that are incorporated into the singl
EL subproblem. Upon solution of the full EL subproblem, th
stress fields are exported back to the DD calculations in e
domain. Some physical applications of this approach are to me
ceramic multilayers, polycrystalline structures~each grain treated
separately, see Fig. 8!, and layered metal/metal structures whe
variations in elastic and plastic properties exist from layer to lay
For the polycrystalline structure of Fig. 8 a separate DD subprob
lem is constructed for each grain. The tractionsT* in the EL
subproblem are calculated at the appropriate boundaries in the
subproblem; boundaries common to two grains will haveT* con-
tributions from each grain.

The superposition method also serves as a basis for par
computations. The DD problem~s! can be divided into any numbe
of subregions, either for physical or mathematical convenien
Each subvolume DD calculation requires only the calculation
Transactions of the ASME
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dislocation/dislocation interactions within that volume. All oth
dislocation interactions are fully accounted for through the ext
nal ~EL sub-problem! fields and exported tractions. Since ea
subvolume DD calculation is self-contained, these calculatio
can be performed independently and simultaneously on sepa
processors. For instance, for the polycrystalline model in Fig
each grain can be handled simultaneously on a separate proce
Dislocations passing from one subvolume to another are han
seamlessly just as we have treated dislocations passing throu
cohesive surface in the bimaterial problem.

In conclusion, the DD model allows, in principle, for the stud
of numerous problems where the characteristic dimensions ar
the order of tens of microns, at which scales continuum plastic
is unable to reproduce observed size effects. The new DD su
position technique developed here extends the practical rang
application of the DD method to problems with elastic inhomog
neities, multiple plastic domains, and larger physical sizes. P
liminary application to bimaterial interface cracking shows t
power and generality of the approach. Future work will addre
the detailed analysis of crack growth along bimaterial interfa
as well as other problems to which the general DD approac
well suited.
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Appendix: Static Condensation of FE Equations
This appendix describes the implementation of static conden

tion, which provides for an optimally efficient solution of the E
finite element equations. The incremental FE equations are
rived from an expansion of the principle of virtual work, then th
elastic degrees-of-freedom~dof! are condensed out, leaving a sy
tem of equations for only the cohesive dof. This reduces the s
of the system of equations to be solved by two orders of mag
tude for the present bimaterial model.

In the superposition method, two finite element solutions
required at each increment for i! the corrective fields of the DD

Fig. 8 Schematic of the superposition technique applied to a
2D polycrystalline structure. Each DD problem is independent
and thus the computation is easily parallelized.
Journal of Applied Mechanics
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sub-problem and ii! the fields of the EL subproblem. The syste
of equations for the DD corrective fields is completely linear
the cohesive zone is included only in the EL subproblem. T
entire stiffness matrix is constant, can be decomposed once,
stored. The incremental solution for the corrective fields is th
very efficient.

Standard equation solution techniques are, however, largely
efficient for the EL subproblem, which has two linear elastic
gions joined by a nonlinear cohesive zone. When only a sm
subset of the global stiffness matrix is nonlinear~those associated
with the cohesive dof!, partial decomposition can provide a fa
incremental solution. This allows the stiffness decompositionup
to the first nonlinear dof to be computed once and stored~as it is
invariant!. In all future increments only the remainder of the sti
ness matrix must be decomposed. Clearly for a fixed numbe
dof, the closer to the end of the matrix the first nonlinear d
appears, the greater the benefit of partial decomposition. In the
subproblem, optimum node numbering~left to right, top to bot-
tom! places the nonlinear dof in the middle of the unknown no
dof vector. Even using partial decomposition, over half of t
global stiffness matrix must be decomposed during each in
ment. Due to the large model size~each elastic region has ove
20,000 dof! and number of increments required, this is not pra
tical. Instead we use static condensation@31# to obtain a system of
equations for only the nonlinear cohesive dof. Once this system
solved, the remaining elastic dof are obtained by matrix multip
cation with an appropriate numerical Green’s function. This
duces the size of the system of equations to be solved by
orders of magnitude, greatly increasing the efficiency of the
subproblem incremental solution.

The FE equations are developed from the minimization of
tential energy. At timet an elastic body with a cohesive surfac
Sc , subject to only displacement boundary conditions, has po
tial energy

P~ t !5
1

2 E
V
s i j

~ t !e i j dV2E
Sc

Ti
~ t !uidSc (A1)

The discretizations of the displacement, velocity, and strain fie
are

ui5NiI UI , u̇i5v i5NiI U̇ I5NiI VI , e i j 5ui , j5Ni , j I UI
(A2)

whereUI andVI are nodal displacements and velocities, resp
tively, NiI are the shape functions, and capital indices refer
nodal quantities. Using this discretization in Eq.~A1! gives

P~ t !5
1
2KIJUIUJ2FI

cUI
c (A3)

where the global stiffness matrix isKIJ5*VNi , j I Ci jkl Nk,lJdV, and
the global cohesive nodal force vector isFI

c5*Sc
TiNiI dSc .

The incremental equations are obtained by expanding the
tential energy at timet1Dt about an equilibrium state at timet

P~ t1Dt !5P~ t !1DtṖ5
1
2E

V
s i j e i j dV2E

Sc

TiuidSc

1DtF 1
2E

V
ṡ i j e i j dV1

1
2E

V
s i j ė i j dV2E

Sc

ṪiuidSc

2E
Sc

Ti u̇idScG (A4)

Rewriting the rate of change of cohesive traction asṪi5dTi /dt
5(dTi /duj )(duj /dt)52ki j

c u̇j allows the cohesive stiffness con
tribution to be written asKIJ

cc5*Sc
NiI ki j

c NiJdSc . Using the dis-
cretization~A2!, Eq. ~A4! becomes

P~ t1Dt !5
1
2KIJUIUJ2FI

cUI
c1Dt@KIJVJUI1KIJ

ccVJ
cUI

c2FI
cVI

c#
(A5)
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The standard FE equations could be obtained at this poin
minimizing potential energy with respect to nodal displaceme
i.e., dP (t1Dt)/dUK50. Here, we use static condensation, which
based on a careful labeling of nodal vectors and matrices acc
ing to dof being elastic~i.e., linear, not on the cohesive zone! or
cohesive~nonlinear!. Then the elastic dof will be condensed ou
so that we are left with a system of equations for only the non
ear cohesive dof.

The total number of dofn is composed of elastic and cohesiv
dof ne and nc , respectively. Any dof can also be classified
belonging to material 1~upper! or material 2~lower!. Using this
notation, the global displacement vectorU can be written as a
composition of subvectors

U5F Ue~1!

Uc~1!

Uc~2!

Ue~2!

G , Ue5FUe~1!

Ue~2!G , Uc5FUc~1!

Uc~2!G (A6)

whereU, or any vector, is split into ‘‘local’’ vectorsUe and Uc

formed by the union of subvectors as shown and having respe
dimensions ofne andnc .

The global stiffness matrix can be similarly decomposed i
submatrices as

K5F Kee~1! Kec~1! 0

K ce~1! K cc K ce~2!

0 K ce~2! Kee~2!
G (A7)

The relevant local matrices are defined as

Kee5FKee~1! 0

0 Kee~2!G , Kec5FKec~1!

Kec~2!G ,
K ce5@K ce~1! K ce~2!# (A8)

Note that when indicial notation is used to represent a local ar
the superscripts denote the range of the indices, e.g.,KIJ

ec has
dimensionsne3nc . The cohesive stiffnessǨ IJ

cc necessarily has
contributions from the cohesive zoneand the elastic material.
These contributions can be separated as

Ǩ IJ
cc5KIJ

cc1K̄ IJ
cc (A9)

where K̄ IJ
cc5*V Ni , j I Ci jkl Nk,lJdV is the elastic stiffness contribu

tion to cohesive dof. Local matricesKec and K ce couple elastic
and cohesive dof, by constructionK ce5(Kec)T.

The only stiffness submatrix that changes during the increm
tal procedure isǨ IJ

cc , and all of its variations are contained inKIJ
cc .

All other stiffness submatrices are strictly a function of elas
constants and undeformed geometry~mesh! and are thus invari-
ant. Rewriting Eq.~A5! in local form gives

P~ t1Dt !5
1
2KIJ

eeUI
eUJ

e1KIJ
ecUJ

cUI
e1

1
2K̄ IJ

ccUI
cUJ

c2FI
cUI

c

1Dt@KIJ
eeUI

eVJ
e1KIJ

ceVJ
eUI

c1KJI
ceVJ

cUI
e1Ǩ IJ

ccVJ
cUI

c

2FI
cVI

c# (A10)

The FE equations are derived by applying thetwo equilibrium
conditions, dP/dUK

e 50 and dP/dUK
c 50, giving

KIJ
eeVJ

e52KIJ
ecVJ

c2
1

Dt
@KIJ

eeUJ
e1KIJ

ecUJ
c# (A11)

Ǩ IJ
ccVJ

c52KIJ
ceVJ

e2
1

Dt
@K̄ IJ

ccUJ
c1KIJ

ceUJ
e2FI

c# (A12)

At this point, it is necessary to treat constrained and unc
strained dof separately. Thus all elastic~cohesive! dof ne (nc) are
classified as either constrainednec (ncc) or unconstrained
ne f (nc f). For the remainder of this section all implicit summ
814 Õ Vol. 71, NOVEMBER 2004
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tions span onlyunconstraineddof, while summations over con
strained dof are written explicitly. The implementation of this co
vention is best illustrated with a brief example. Consider the su
KIJ

ecVJ
c and (ncc

KIJ
ecVJ

c , which according to our convention spa
unconstrained and constrained cohesive dof, respectively. The
point is that the matrixKIJ

ec ~vectorVI
c) has sizene3nc (nc) and

contains constrained and unconstrained dof, which are in
spersed irregularly. When performing the sum~over unconstrained
dof! KIJ

ecVJ
c , we must inquire at everyJ as to the existence of a

constraint on that particular dof. Only ifJ is an unconstrained do
is the multiplication performed and the product added to the to
for a givenI; if J is a constrained dof, then it is skipped over a
does not contribute to the sum. It is essential to recall this c
vention in the following formulation.

The equilibrium Eqs.~A11! and ~A12! are rewritten as

KIJ
eeVJ

e52KIJ
ecVJ

c2
1

Dt
TI

e2RI
e (A13)

Ǩ IJ
ccVJ

c52KJI
ecVJ

e2
1

Dt
TI

c2RI
c (A14)

whereRI is a nodal force vector andTI is an equilibrium correc-
tion, specifically,

RI
e5(

nec

KIJ
eeVJ

e1(
ncc

KIJ
ecVJ

c (A15)

TI
e5KIJ

eeUJ
e1KIJ

ecUJ
c1(

nec

KIJ
eeUJ

e1(
ncc

KIJ
ecUJ

c (A16)

RI
c5(

nec

KJI
ecVJ

e1(
ncc

Ǩ IJ
ccVJ

c , (A17)

TI
c5K̄ IJ

ccUJ
c1KJI

ecUJ
e2FI

c1(
nec

KJI
ecUJ

e1(
ncc

K̄ IJ
ccUJ

c (A18)

Now Eq. ~A-13! can be solved forVJ
e in terms ofVJ

c as

VK
e 52~KIK

ee!21KIJ
ecVJ

c2
1

Dt
~KIK

ee!21TI
e2~KIK

ee!21RI
e

(A19)

which is used in Eq.~A14! to provide the system of equations fo
the unconstrained cohesive dofVJ

c

@Ǩ IJ
cc2KKI

ec~KLK
ee !21KLJ

ec#VJ
c5

1

Dt
@KKI

ec~KLK
ee !21TL

e2TI
c#

1KKI
ec~KLK

ee !21RL
e2RI

c (A20)

where the term in brackets on the left-hand side is an effec
stiffness matrix (nc3nc) and the right-hand side is an effectiv
nodal force vector (nc). Both are known at the beginning of eac
increment, so the system of Eqs.~A20! can be solved forVJ

c . The
unknown elastic velocity vectorVJ

e is obtained by matrix multi-
plication from Eq.~A13!

VK
e 52~KIK

ee!21KIJ
ecVJ

c2
1

Dt
~KIK

ee!21TI
e2~KIK

ee!21RI
e

(A21)

The elastic dof have been condensed out of the system of
~A20! to be solved. Equation~A21! involves the numerical
Green’s function, which, given the cohesive velocity vectorVJ

c ,
outputs the elastic velocity vectorVK

e . An obvious drawback is
the fact that the inverse of the elastic stiffness matrix (KLK

ee )21

must be computed before any incremental solution can begin.
is a huge~symmetric! matrix, but not banded. Before the incre
mental scheme begins, the elastic stiffness matrixKIJ

ee must be
inverted, which is significant overhead. Once this has been d
Transactions of the ASME
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much of the matrix multiplication, i.e.,KKI
ec(KLK

ee )21KLJ
ec ,

KKI
ec(KLK

ee )21, and (KIK
ee)21KIJ

ec in Eqs. ~A20! and ~A21! can be
done once and stored. This allows the incremental solution
proceed with optimal efficiency. The static condensation was v
fied independently of the DD machinery and was in exact ag
ment with the standard FE method.
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End Effects in Prestrained Plates
Under Compression
The decay of end perturbations imposed on a rectangular plate subjected to compre
is investigated in the context of plane-strain incremental finite elasticity. A separatio
variables in the eigenfunction formulation is used for the perturbed field within the p
Numerical results for the leading decay exponent are given for four rubbers: three
pressible and one incompressible. It was found that the lowest decay rate is govern
a symmetric field that exhibits different patterns of dependence on the prestrain for
pressible and for nearly incompressible solids. Compressible solids are characteriz
low sensitivity of the decay rate to prestrain level up to moderate compression, be
which an abrupt decrease of decay rate brings it to zero. Nearly incompressible solid
the other hand, expose a different pattern involving interchange of modes with n
crease of decay rate to zero. Both patterns show that the decay rate obtained from
elastic analysis can be considered as a good approximation for a prebuckled, sli
compressed plate, which is long enough in comparison to its width. Along with deca
modes, the eigenfunction expansion generates a nondecaying antisymmetric mode
sponding to buckling of the plate. Asymptotic expansion of that nondecaying mode
the stress free state predicts buckling according to the classical Euler formula. A co
tent interpretation of end effects in the presence of a nondecaying mode is given.
@DOI: 10.1115/1.1794703#
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1 Introduction
Studies of axial decay rates of incremental end disturban

expose considerable sensitivity of the decay rate to the initial
strain level applied to a plate@1–4#. These works are limited to
semi-infinite plates subjected to tensile loads. Sensitivity anal
of finitely stretched plates in compression is reported recently
Durban and Stronge@5# for a compressible solid, suggesting hig
sensitivity near bifurcation points of the plate. That work, thoug
does not reflect explicitly on the question of validity of Sain
Venant’s principle in a prebuckled plate.

The main objective of the present study is to extend previ
analyses of incremental version of Saint-Venant’s principle in t
sion to plates under compression. Here we consider the case
finite compressive load applied to a rectangular finite plate s
jected to plane strain constraint. Some objection to such ana
can rise due to possible buckling of the plate. Nevertheless
importance stems from the existence of many structures susta
compressive loads to which Saint-Venant’s principle might
applied.

The approach and formulation in the present paper follow th
given by Durban and Karp@4#. The governing equations are sum
marized in Section 2 followed by verification of their ellipticit
for the four hyperelastic materials examined. Mathematical
mulation leads to an eigensystem, for the two velocity com
nents, that admits a separation-of-variables solution for the eig
fields. These are concisely recapitulated in Section 3. Axial de
is exponential with the decay rates obtained as eigenvalues o
transcendental equations.

Numerical solutions for the lowest exponential decay rates
detailed in Section 4 for four hyperelastic rubbers examined
Blatz and Ko@6#, Storåkers@7#, and Ogden@8#. Calculations have
been performed over a range of prestrain within the limits

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, April 21, 200
final revision; June 13, 2003. Associate Editor: M.-J. Pindera. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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ellipticity of the governing equations. Due to the existence o
purely real eigenvalue in the solution, the discussion in Sectio
is devoted to consistent interpretation of that eigenvalue follow
by implementation of the solution to the question of validity
Saint-Venant’s principle.

It was found that for a plate, in the prebuckled state, Sa
Venant’s principle is a reasonable assumption when the width
length ratio is lower than 1/10. The pattern of the dependenc
the decay rate on the compression is found to be highly sens
to constitutive parameters. The smallest decay rate belongs to
symmetric field and remains practically the same up to a mode
compression level.

Buckling conditions are naturally unveiled by the analysis a
sole real eigenvalue. At low levels of prestrain, asymptotical
pansion for the real eigenvalue generates the Euler formula
buckling. The constitutive sensitivity of the buckling load at hig
compressive loads is demonstrated.

2 Perturbed Field Equations and Ellipticity
Consider a finite plate of initial width and length 2H0 and 2L0 ,

respectively, uniformly stretched~in tension or in compression!
under plane-strain conditions in the axial directionz, by uniform
stresss applied at the ends (z50,2L) ~see Fig. 1!. The current
width and length of the plate are 2H and 2L, respectively. The
axial stretchl (L5lL0) is considered as a controlled variabl
Assume now an incremental self-equilibrating load is superpo
on the uniform stress at one of the ends~or on both! thus inducing
a quasi-static perturbed velocityV within the plate. We wish to
examine the~plane-strain! instantaneous response of the pr
strained plate to that incremental disturbance. The facesx56H
remain free of tractions in both prestrained and disturbed stat

The perturbed velocity vector is written as~see Fig. 1 for the
unit triad i,j,k !

V5ui1wk (2.1)

where both velocity componentsu, w depend only onx and z
coordinates. The nonzero Eulerian strain rate components fo
in the form

«x5u,x gxz5
1
2~u,z1w,x! «z5w,z (2.2)

3;
the
l of

ing,
l be
E
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The incremental material response is governed by three in p
relations suggested by Hill@9#

s
¹

x5a«x1c«z t
¹

xz52mgxy s
¹

z5~c2s!«x1b«z (2.3)

where (s
¹

x ,t
¹

xz ,s
¹

z) are the objective Jaumann stress rates
(a,b,c,m) denote instantaneous material moduli, derivable fr
the strain energy function for hyperelastic solids and depend
on the uniform prestrain condition~detailed in@4#!.

Equilibrium of stress rates requires, in view of~2.1! and ~2.3!,
that the velocity componentsu, w satisfy the set of two equation
@9#

au,xx1bu,zz1~c1a!w,xz50 (2.4a)

~c1a!u,xz1aw,xx1bw,zz50 (2.4b)

with

a5m2
1
2s b5m1

1
2s (2.5)

The boundary conditions for a plate with long faces free of tr
tion are given by@10#

tx5s
¹

xi1~t
¹

xz2sgxy!k50 at x56H (2.6)

wheretx is the traction rate at the surface normal to thex coordi-
nate. Condition~2.6!, by substitution of~2.2! and ~2.3!, can be
expressed by velocity components as

au,x1cw,z50
u,z1w,x50 at x56H (2.7)

Solution of the equilibrium equations~2.4! along with the bound-
ary conditions~2.7! generates eigenfunctions with associated
genvalues. The eigenfunctions can be regarded as a ‘‘spectral
print’’ of the plate from which the actual response is compos
The actual response is determined by the particular boundary
turbance at the endsz50, 2L, not prescribed here~see recent
paper by Ling et al.,@11# and references cited therein for reco
struction of actual response out of end data!.

Fig. 1 Plate, of current length and width 2 L and 2 H, respec-
tively, subjected to uniform tension „sÌ0,lÌ1… or compres-
sion „sË0,lË1… stress in plane strain condition „lyÄ1… with
boundaries xÄÁH free of traction
Journal of Applied Mechanics
ane
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m
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Four constitutive models for hyperelastic solids are examin
The response of all four solids is represented by the strain en
function @12#

W5(
j

Cj

mj
Fl1

mj1l2
mj1l3

mj231
1

n
~J2nmj21!G (2.8)

wherel1 , l2 , l3 are the principal stretches andJ5l1l2l3 is the
volume ratio. The summation is carried over pairsCj , mj which,
like n, are known material constants. Details of the derivation
stress-stain relations and the instantaneous moduli are give
@4#.

The specific models considered in this study are two hig
compressible solids; the Blatz-Ko~BK! foam rubber due to Blatz
and Ko @6# with the single term representation

BK m1522 C15222 n50.5 ~n050.25! (2.9)

and the compressible vulcanized natural foam rubber due
Storåkers @7# ~St1! with two-term representation

St1 m152m254.5 C151.85 C2529.2 n50.92

~n050.324! (2.10)

The nearly incompressible synthetic foam rubber is due to Sto˚k-
ers @7# ~St2! with two-term representation

St2 m152m253.6 C152.04 C2520.51 n525

~n050.49! (2.11)

and the noncompressible rubber is by Ogden@8# ~OG! with three-
term representation

OG m151.3 m254.0 m3522.0

C1569 C251.0 C3521.22 n→` ~n050.5!
(2.12)

HereCj have dimensions of 1022 N mm22.
Ellipticity of the governing equations~2.4! will fail when @9#

d25abab (2.13)

whered is defined by

d5ab1ab2~c1a!2 (2.14)

For Blatz-Ko solid, that condition can be solved analytically
yield the limit points

l5~714) !23/8'0.3724, l5~724) !23/8'2.685
(2.15)

Additional inquiry into the ellipticity regimes detailed by Hill@9#
reveal that for the BK rubber plate, strong ellipticity is maintain
in the range

0.3724,l,2.685 (2.16)

in accordance with the more general result given by Knowles
Sternberg@13#. For the three rubbers given by~2.10!–~2.12! con-
dition ~2.13! is evaluated numerically leading to the conclusi
that strong ellipticity is maintained for St1 rubber providedl
.0.334, while no limits on a strong ellipticity have been foun
for St2 and OG solids in the region examined.

3 Eigenfunctions and Eigenvalues
Separation of variables solution of~2.4! is sought via the rep-

resentation

u5U~x!expS ipkz

2h D w5W~x!expS ipkz

2h D (3.1)

whereU(x) andW(x) are the transverse profiles representing
eigenfunction andk is the associated eigenvalue~complex in gen-
eral!. While solution~3.1! is written in an exponential form inz,
the possibility to obtain a harmonic, nondecaying response
NOVEMBER 2004, Vol. 71 Õ 817
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included ~via real eigenvalue!. The notation in~3.1! is slightly
different from the one employed in common studies of end
fects due to the factorip/2 in the exponential argument. Th
present formulation, however, is in agreement with the nota
in the literature of wave guides and with some of the stabi
studies. Thus, according to~3.1!, the imaginary part of the eigen
value Im$k% represents the decay rate of the correspond
eigenfunction.

Inserting ~3.1! into the equilibrium equations~2.4! results in
two coupled ordinary differential equations

aU92bS pk

2h D 2

U1 i ~c1a!S pk

2h DW850 (3.2a)

i ~c1a!S pk

2h DU81aW92bS pk

2h D 2

W50 (3.2b)

where the prime denotes differentiation with respect tox. Due to
the symmetry of boundary conditions around thex-y plane, the
solution of ~3.2! is commonly separated into symmetric and an
symmetric fields~indicated respectively by subscriptss and a!
given by

Us5A1 sinhS G1

pkx

2h D1A2 sinhS G2

pkx

2h D (3.3a)

Ws5A1h1 coshS G1

pkx

2h D1A2h2 coshS G2

pkx

2h D (3.3b)

and

Ua5A3 coshS G1

pkx

2h D1A4 coshS G2

pkx

2h D (3.4a)

Wa5A3h1 sinhS G1

pkx

2h D1A4h2 sinhS G2

pkx

2h D (3.4b)

HereA1 , A2 , A3 , A4 are integration constants,G1 andG2 are the
roots of the characteristic equation of the set~3.2!

aaG42dG21bb50 (3.5)

with solutions

G15Ad2Ad224abab

2aa
G25Ad1Ad224abab

2aa
(3.6)

where

hp5
i ~aGp

22b!

Gp~c1a!
p51,2 (3.7)

Compliance with boundary conditions~2.7! generates two tran
scendental equations for the eigenvaluek

tanhS G1

pk

2 D2S Q1

Q2
D 61

tanhS G2

pk

2 D50 (3.8)

where the plus and minus signs correspond to symmetric and
tisymmetric fields, respectively, and

Qp5
aGp

21 ichp

hpGp1 i
p51,2 (3.9)

Trancendental equations equivalent to~3.8! have been derived
previously by Durban and Stronge@2,3#. Similar equations have
been derived by Ogden and Roxburgh@14,15# in the context of
analysis of stability of plates, allowing only purely real eigenv
ues to be considered as a solution.

Each Eq.~3.8! generates an infinite number of eigenvalues w
accompanying eigenfunctions. While in the linearly elastic c
the completeness of the eigenfunction set is proved by Buchw
@16# and Gregory@17#, for the incremental case it is not yet e
818 Õ Vol. 71, NOVEMBER 2004
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tablished. Nevertheless, it is conceivable that an arbitrary ins
taneous surface disturbance at the ends will contain a combina
of these eigenfunctions. In that sense it has been argued by
and Durban@18# that an eigenvalue with smallest Im$k% provides a
lower bound on the axial decay rate of end disturbance at
given prestress. Regardless of the completeness question, i
been shown by Durban and Stronge@3# that the eigenfunctions o
a plate with facesx56H free of traction are self-equilibrated,
property of central importance in the analysis of validity of Sai
Venant’s principle.

4 Numerical and Asymptotical Results
With the known dependence of the instantaneous mo

(a,b,c,m) on the prestretchl, the eigenvaluesk are calculated
numerically by solving the transcendental equations~3.8! for
stretchl as a controlled variable. The standard Muller method
employed to yield a finite set of the smallest complex eigenval
in a prestrain range of 0.5,l,1.5. The eigenvalues are ordere
in increasing order of their~positive! imaginary part, namely,

0<Im$k0%,Im$k1%,Im$k2%,¯ (4.1)

Due to intersection of modes with the increase of prestrain~in
compression and in tension!, this labeling and ordering, adopte
from Linear Elasticity, is consistent only near the stress-free st
In what follows, the labeling of the eigenvalues in the stress-f
state according to~4.1! is retained in all regions, even though th
ordering in some regions is no longer valid. The discussion her
limited to two first eigenvaluesk0 andk1 , for the antisymmetric
and symmetric fields, respectively. Additional eigenvalues are p
sented as an exception, in cases when the intersection of m
makes other eigenvalues to expose a lower imaginary part.

4.1 BK Rubber. Figure 2 shows a variation of the first tw
eigenvalues with prestrainl for the BK solid in the extended
range of prestrain 0.5,l,2.3, including the tension range. Fo
ease of reference, the plot in Fig. 2 is subdivided into the follo
ing three regions:

a. The vicinity of the stress-free state 0.8,l,1.5
b. High compressionl,0.8
c. High tensionl.1.5

Region A. To begin with, we notice the continuity of thek1
eigenvalue on the transition from tension to compression thro
the stress-free statel51. That continuity is observed for all com
plex eigenvalues, not shown in Fig. 2. At the stress-free state
eigenvalues coincide with the linear elasticity values obtain
from the Fadle-Papkovich equation@19#. First symmetric eigen-
value is

p/2k151.12541 i2.1061 (4.2)

First antisymmetric eigenvaluek0 , is purely real in the range o
lp,l,1 wherelp is a stretch at whichk0 reaches peak valuekp
and coincides with the trivial solution of the Fadle-Papkovi
equation atl51. That eigenvalue admits asymptotical expans
in the vicinity of the origin—near the stress-free state for a sm
eigenvalueuku!1. Asymptotic expansion, according to the line
given by Durban and Karp@4# for tension, can be generalized t
include compression to yield

p

2
k0'u iA3Du (4.3)

where,D[l21 with uDu!1. Extending that relation to compres
sion supports the numerical result according to which the eig
valuek0 is purely real in compression (D,0) and purely imagi-
nary in tension (D.0). In that sense, this eigenvalue has
continuous nature in transition from tension to compression
pressed by~4.3!, similarly to all other eigenvalues. The numeric
results in Fig. 2 nearl51 are found to be in a good agreeme
with the asymptotical relation given by~4.3!.
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Fig. 2 Two lowest eigenvalues „multiplied by factor pÕ2… in tension „lÌ1… and in
compression „lË1… for the BK rubber „2.9…. k 0 and k 1 are the antisymmetric and
the symmetric eigenvalues, respectively.
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Region B. At high compression, the imaginary part ofk1
reaches zero at a prestrainlp , while the real part reaches a pea
kp . The values of these parameters,lp and kp , are derivable
along the following lines.

We begin with the observation that the imaginary part ofk1 is
perpendicular to thel axis at the peak pointlp . That perpendicu-
larity (dk/dl5`) is exposed by all higher eigenvalues, as well
by the imaginary part of the antisymmetrick0 and can be ex-
pressed alternatively by

dl

dk
50 (4.4)

The relation between the eigenvaluek and the prestretchl is
given implicitly by the transcendental equation~3.8!. For the
present purpose, it is convenient to rewrite the transcende
equation~3.8! in an equivalent form

F~l,k![~Q12Q2!sinhF ~G11G2!
pk

2 G
6~Q11Q2!sinhF ~G12G2!

pk

2 G50 (4.5)

Using this implicit functionF, condition ~4.4! is equivalent to
condition

]F~l,k!

]k
50 (4.6)

That condition applied to~4.5! reads

~G11G2!~Q12Q2!sinhF ~G11G2!
pk

2 G
6~G12G2!(Q11Q2)sinhF ~G12G2!

pk

2 G50 (4.7)

which should hold for anyk. For Blatz-Ko rubber, that condition
can be simplified noticing the complex nature of the roots of
characteristic equation~3.5! in the entire range of prestrain unde
consideration. These roots are designated as@5#
echanics
k

as

ntal

he
r

G15X2 iY G25X1 iY (4.8)

where the real and the imaginary parts have an elegant exp
sions

X25
1

2 SAbb

aa
1

d

2aa D Y25
1

2 SAbb

aa
2

d

2aa D (4.9)

For BK solid, these expressions have a simple form

X25
1

2 S 11
8R212R2

6R D Y25
1

2 S 12
8R212R2

6R D
(4.10)

whereR[l28/3.
Using expressions~4.8! in ~4.7! lead to

X~Q12Q2!sinhS 2X
pk

2 D6 iY~Q11Q2!sinhS i2Y
pk

2 D50

(4.11)

The real part of that expression, representing the slope of
curve, will be zero for anyk provided

Q12Q250 (4.12)

Substituting expression~4.9! and the instantaneous modulia, b, c,
m in expression~3.9!, condition~4.12! takes the form

3R2212R11

R~11R!
50 (4.13)

Solution of that quadratic equation leads to the prestrain for
rubber

R522A11
3 ⇒lp'0.5994 (4.14)

at which the real part of the symmetric eigenvalue has a p
value and the imaginary part reaches zero. That value is in a g
agreement with the numerical result in Fig. 2.

The peak value of the eigenvalue at this prestretchlp can be
obtained directly from the transcendental equation~4.5!. Under
the requirement expressed by~4.12!, Eq. ~4.5! is reduced to
NOVEMBER 2004, Vol. 71 Õ 819
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Fig. 3 Two lowest eigenvalues „multiplied by factor pÕ2… in tension „lÌ1… and in
compression „lË1… for the St1 rubber „2.10…. k 0 and k 1 are the antisymmetric and
the symmetric eigenvalues, respectively.
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sinhF ~G12G2!
pk

2 G50 (4.15)

Using the complex notation of~4.8! in Eq. ~4.15! gives a simple
condition

sinhS i2Y
pk

2 D50 (4.16)

Observing that at the critical prestrain given by~4.14! the eigen-
value is realk5kp , condition~4.16! reduces to

sinS 2Y
pkp

2 D50 (4.17)

which yields1

p

2
kp5

np

2Y
n51,2,3 . . . (4.18)

For the appropriate value ofY at the prestrain given by~4.14!
calculated from~4.9b!, we find that the peak value for BK solid i

p

2
kp53.694 (4.19)

It is conceivable from Eq.~4.5!, as well as from Fig. 2, that the
critical prestrainlp and the peak valuekp are both common to
symmetric and antisymmetric modes. The observable deviatio
the peak value in Fig. 2 from the correct one given by~4.19! is
due to numerical sensitivity to conversion criteria in the vicin
of that singular point. Identical peak values~4.14! and ~4.19! for
BK model are obtained by Durban and Stronge@5# based on an
assumption that the symmetric and the antisymmetric modes
tersect at that point. Beyond the peak value, the symmetric ei
value k1 is purely real while the antisymmetric eigenvaluek0
becomes complex.

1The integern used here and in the sequel should impose no confusion with
material constant used in Eqs.~2.8!–~2.12!.
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Region C. At high tension, the symmetric eigenvaluek1

reaches zero~both real and imaginary parts! at a prestrainlu

533/4'2.28 corresponding to necking under uniaxial plane-str
tension reported previously by Durban and Karp@4#. That necking
phenomenon is absent in St1, St2, and OG rubbers~see@4# for St1
and St2 results! and given here for BK rubber for the sake o
completeness.

4.2 St1 Rubber. The first two eigenvalues for St1 rubbe
for the prestrain range 0.5,l,1.5 ~regions A and B! are plotted
in Fig. 3. It can be observed that the St1 rubber shares with
BK rubber the pattern of the eigenvalue dependence on the
strain in both regions A and B. The eigenvalues at the stress-
state are, again, identical to those obtained in Linear Elasticity
agree with the asymptotical relation~4.3!.

Detailed analysis reveals that for St1 rubber, the rootsG1 , G2

are complex forl,0.734, making the peak analysis given abo
for the BK rubber applicable here as well. Numerical evaluat
of Eqs.~4.12! and~4.18! yields the critical prestrain and the pea
values for the St1 solid to be

lp'0.6045
p

2
kp'5.16 (4.20)

4.3 St2 and OG Rubbers. The first two eigenvalues for the
nearly and completely incompressible solids, St2 and OG, for
prestrain range 0.5,l,1.5, are given in Figs. 4 and 5, respe
tively. The incompressibility of the OG solid in~2.8! is approxi-
mated by takingn5200. As expected, the eigenvalues at t
stress-free state,l51, are identical to those obtained for com
pressible solids discussed above. That constitutive insensit
coincides with asymptotic relations~4.3! and with the numerical
results obtained in Linear Elasticity~the Fadle-Papkovich equa
tion does not comprise any material parameters!.

the
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Fig. 4 Two lowest eigenvalues „multiplied by factor pÕ2… in tension „lÌ1… and in
compression „lË1… for the St2 rubber „2.11…. k 0 and k 1 are the antisymmetric and
the symmetric eigenvalues, respectively.
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The pattern of the branches of the eigenvalues for both St2
OG solids are similar, though differs from the pattern obtained
the compressible solids~Figs. 2 and 3!. Both solids do not exhibit
a peak at high compression in the range examined. Ind
the rootsG1 , G2 for these nearly and completely incompre
sible solids are real, making the analysis of the peak va
not valid. Both materials lack a purely real symmetric eige
value at high compressive prestrain levels, exhibited by the s
metric eigenvalue for BK and St1 solids beyond the peak prest
echanics
and
for

ed,
s-
lue
n-
m-
ain

lp . Moreover, the lowest symmetric eigenvalue in region B
purely imaginary and intersects the imaginary part ofk1 at l
'0.75. That means that beyond the stretchl'0.75, the decay
rate for St2 rubber is governed by an eigenvalue that does
appear to be the first in the stress-free state. For OG rubber
intersection occurs at lower stretch, not shown in Fig. 5. It sho
be noted that the higher eigenvalues, not shown in figures h
behave qualitatively in the same manner as thek1 eigenvalue for
each solid.
Fig. 5 Two lowest eigenvalues „multiplied by factor pÕ2… in tension „lÌ1… and in
compression „lË1… for the OG rubber „2.12…. k 0 and k 1 are the antisymmetric and
the symmetric eigenvalues, respectively.
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Fig. 6 Purely real eigenvalue in compression for the four rubbers BK, St1, St2, OG,
and the classical Euler formula for buckling of a pinned-pinned column
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5 Discussion
The characteristic decay rate of end effects is governed by

eigenvalue with the lowest imaginary part2 ~e.g., Refs.@20# and
@19#! and associated with the lower bound for validity of Sain
Venant’s principle. However, the eigenvalue with the lowe
imaginary part isk0 , which is purely real in the compressio
range of region A. Therefore, before the question of validity
Saint-Venant’s principle in compression can be addressed, a
terpretation of that purely real eigenvalue in the present stud
suggested in the sequel.

5.1 Buckling. Incremental analysis of a prestrained sta
posed in Sec. 2, is commonly employed as a bifurcation analy
The objective of such analysis is to obtain the loci of a critic
prestrain levellb , at which an adjacent equilibrium first becom
possible, as a function of the aspect ratio of a columnH/L. It
turns out that the real eigenvaluek0 in the analysis given here i
equivalent to the aspect ratio of the columnH/L in the bifurcation
analysis. Indeed, some versions of the real branch ofk0 , and the
purely realk1 beyondlp , depicted in Figs. 2–5, have been e
posed in several previous papers, in the context of bifurca
analysis~e.g., Refs.@15#, @21–23# and recently Ref.@5#!.

The equivalence between the real eigenvaluek0 and the aspec
ratio of a plateH/L can be unveiled by simple consideration. T
purely real eigenvalue in solution~3.1! represents displacemen
harmonic in the axial direction, with no axial decay. Bounda
conditions for sliding ends~no tangential traction and no axia
displacement! lead to a solution of the equilibrium equation in th
form

sinS p
L

H
k0D50 (5.1)

which is reduced to

k05n
H

L
n51,2,3 . . . (5.2)

2Recall the exchange of the imaginary and the real parts here due to diffe
notation in~3.1!.
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On the other hand, for small prestrain levels,k0 is given by~4.3!
and can be written in the form

k0' i
2

p
A3

s

E
(5.3)

which by substitution in~5.2! leads to

scr'n2
p2

~2L !2 EI n51,2,3 . . . (5.4)

whereE is Young’s modulus andI is the inertia of the plate for
bending. Expression~5.4! is the Euler formula for the buckling o
columns of length 2L with pinned ends. The possibility to recove
the Euler formula from the eigenfunction analysis with the sa
boundary conditions at the ends has been demonstrated
Levinson@21# ~as well as by many following works! along some-
what different arguments.

An illuminating observation in the present context is an equi
lent derivation of the beam theory out of the eigenfunction ana
sis for a plate in tension@4#. It was demonstrated there that th
relation ~4.3! is derivable from beam theory for a cantilever
which a self equilibrated system of loads and moments is app
at the free end.

According to these lines, the real eigenvalue can be interpre
as a criterion for the onset of antisymmetric instability~buckling!
for a given geometry@represented here byk0 through~5.2!# with
appropriate boundary conditions at the ends. The purely reak0
for the four solids is replotted jointly in Fig. 6 along with th
classical Euler buckling condition. If one wishes to find the stre
lb , at which instability first occurs, the aspect ratio of th
column—H/L first should be fixed. Assuming sliding ends, th
appropriatek0 is calculated from expression~5.2!. Entering Fig. 6
with that value returns the prestrain at which the first mode bu
ling will occur. It is interesting to note that the more compressib
solids sustain higher levels of compression before buckling
occur.

Following the reasoning given above, it can be argued that
some material properties and geometryH/L, only complex eigen-
values are possible in the rangelb,l,1, wherelb is the buck-

rent
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Fig. 7 Leading decay exponent in compression for the four rubbers BK, St1, St2 OG,
and for a variation of Bk rubber „BK-Var … with compressibility constant nÄ25
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ling stretch corresponding to that geometry and material pro
ties. In other words, the eigenfunction expansion shows that, f
plate of infinite length, a real eigenvalue is possible for any co
pressive load. In a finite plate, on the other hand, that real eig
value is excluded in the rangelb,l,1 by virtue of the boundary
conditions at the perturbed ends and becomes possible only
l,lb . Thus, the regionlb,l,1 is considered as a prebucklin
region to which the question of validity of Saint-Venant’s pri
ciple might be relevant.

5.2 Saint-Venant’s Principle. By excluding the sole rea
antisymmetric eigenvalue from the set of eigenfunctions in
prebuckled state, an infinite number of complex eigenfuncti
are left, representing axial decay of end disturbance. There
the lower bounds on the decay rate are estimated by the
symmetric Im$k1% and the antisymmetric Im$k2% eigenvalues in
region A and B, respectively. These two eigenvalues are reca
lated in Fig. 7 for the four solids defined by~2.9!–~2.12!. It can be
concluded from Fig. 7 that for BK and St1 rubbers, the low
imaginary part in the rangelp,l,1 belongs to the symmetric
eigenvaluek1 . These solids are characterized by an approxima
constant decay rate up to moderate compression levels (l'0.8)
with an abrupt drop of the decay rate, reaching zero at a crit
prestrainlp .

The nearly incompressible solids, St2 and OG, on the o
hand, exhibit an increase of decay rate in compression. For the
solid, the rate of decay drops with further compressionl
,0.75) to the decay rate of the order of the decay at the str
free state (k'2) due to interchange of modes. Similar interchan
of modes is exhibited by OG solid at higher compression,
shown in the figures.

The difference between the patterns of compressible solids
nearly incompressible solids is interesting on two grounds. Firs
the very exposure of different behavior. Second is the absenc
such substantial difference in tension. As a further examinatio
the constitutive sensitivity of that pattern, a calculation has b
made for a modified BK solid with a compressibility constantn
525 ~identical to the compressibility of the St2 solid! with other
constants in~2.9! unaltered. The decay constant for that hypothe
cal solid is plotted on Fig. 7, designated by BK-var. The pattern
that solid resembles the pattern characterizing the nearly inc
echanics
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pressible solids~St2, OG! suggesting that compressibility is a ma
jor property in pattern determination. Nevertheless, it is conce
able that additional material properties might have a nonneglig
effect as well.

For Saint-Venant’s principle to be applicable to a finite plate
is necessary to verify the smallness of the decay length in c
parison to the length of the plate. One possible way to assess
applicability of Saint-Venant’s principle is by evaluating the di
tancel 0.01 at which the end disturbance decreases by 99%. F
~3.1! that condition is given by

expS i
p

2

l 0.01

H
k1D50.01 (5.5)

wherek1 has been chosen as a lower bound for the decay len
Substituting a typical value Im$p/2k1%'2.106 fork1 in the region
0.8,l,1 @from ~4.2! or Fig. 7!#, we find that

l 0.015
4.6

2.1061
H'2.2H (5.6)

By limiting the affected region to be not larger than 1/10 of t
plate length from each end, the minimal length of the plate will

2L.22H (5.7)

According to~5.2!, in order to avoid buckling of such plate, th
prestrain should be smaller than the critical value correspond
to

k05
H

L
5

1

11
(5.8)

Inserting~5.8! into ~4.3! results in

D'
1

3 S 1

11D
2S p

2 D 2

(5.9)

which corresponds to stretchl'0.993.
Any attempt to avoid buckling by increasing the aspect ra

H/L will be followed by decreasing the region in the plate, that
not affected by end disturbances, loosening the validity of Sa
Venant’s principle to that geometry. It can be noticed from~5.6!,
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that the increase of the decay rate in the nearly incompress
solids~St2, OG! observed in Fig. 7, has only a small effect on t
prestrain level obtained in~5.9! for which Saint-Venant’s principle
is valid.

6 Summary
The above discussion can be summarized as follows: Sa

Venant’s principle can be applied to plates in compression w
the limitation on the plate being ‘‘long enough’’ (H/L,1/10), a
requirement essentially identical to the one imposed in case
tension, bending, or torsion. This requirement puts relatively
vere limits on compressive loads in order to pertain the releva
of the semi-inverse method solutions~the outer solutions!. It turns
out that the limits of Euler buckling of column with pinned en
and the limits of applicability of Saint-Venant’s principle are
the same order of magnitude. Thus, as long as slender p
do not buckle, Saint-Venant’s principle can be applied saf
For shorter plates, which sustain higher compressive loads w
out buckling, Saint-Venant’s principle might be too rough
assumption.

Finally, it should be emphasized that the relations~5.2!, ~5.8!,
and ~5.9! were derived for plates with ideal boundary conditio
of smooth ends. It is conceivable that different conditions will e
up with modified relations for~5.2!, ~5.8!, and~5.9!. Nevertheless,
the estimation of decay distance in~5.6! as an upper bound is
valid for any boundary data.

Acknowledgments
Part of this study has been performed while on sabbatical le

to the University of British Columbia, Vancouver, Canada. T
author wishes to thank Professor Gary Schajer of the Universit
British Columbia, Vancouver, for helpful discussions on t
subject of the present paper. The hospitality of the Mechan
Engineering Department of UBC, Vancouver, is gratefu
acknowledged.

References
@1# Abeyaratne, R., Horgan, C. O., and Chung, D.-T., 1985, ‘‘Saint-Venant E
824 Õ Vol. 71, NOVEMBER 2004
ible
e

int-
ith

s of
se-
nce

s
f

ates
ly.
ith-
n

s
nd

ave
e
of
e
cal
ly

nd

Effects for Incremental Plane Deformations of Incompressible Nonlinea
Elastic Materials,’’ ASME J. Appl. Mech.,52, pp. 847–852.

@2# Durban, D., and Stronge, W. J., 1988, ‘‘On the Validity of Saint Venan
Principle in Finite Strain Plasticity,’’ ASME J. Appl. Mech.,55, pp. 11–16.

@3# Durban, D., and Stronge, W. J., 1988, ‘‘Diffusion of Self-Equilibrating En
Loads in Plane Strain Plasticity,’’ J. Mech. Phys. Solids,36, pp. 459–476.

@4# Durban, D., and Karp, B., 1992, ‘‘Axial Decay of Self-Equilibrating En
Loads in Compressible Solids,’’ ASME J. Appl. Mech.,59, pp. 738–743.

@5# Durban, D., and Stronge, W. J., 1995, ‘‘Plane-Strain Incremental Response
Sensitivity of Stretched Plates,’’ Eur. J. Mech. A/Solids,14, pp. 553–575.

@6# Blatz, P. J., and Ko, W. L., 1962, ‘‘Application of Finite Elastic Theory to th
Deformation of Rubbery Materials,’’ Trans. Soc. Rheol.,6, pp. 223–251.
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Numerical Prediction of
Cavitating MHD Flow of
Electrically Conducting Magnetic
Fluid in a Converging-Diverging
Nozzle
The fundamental characteristics of the two-dimensional cavitating MHD flow of an e
trically conducting magnetic fluid in a vertical converging-diverging nozzle unde
strong nonuniform magnetic field are numerically predicted to realize the further de
opment and high performance of a two-phase liquid-metal MHD power generation sy
using electrically conducting magnetic fluids. First, the governing equations of the c
tating flow of a mercury-based magnetic fluid based on the unsteady thermal noneq
rium multifluid model are presented, and several flow characteristics are numeric
calculated taking into account the effect of the strong nonuniform magnetic field. B
on the numerical results, the two-dimensional structure of the cavitating flow and ca
tion inception phenomena of the mercury-based magnetic fluid through a conver
diverging nozzle are shown in detail. The numerical results demonstrate that effe
two-phase magnetic driving force, fluid acceleration, and high power density are obta
by the practical use of the magnetization of the working fluid. Also clarified is the pre
control of the cavitating flow of magnetic fluid that is possible by effective use o
magnetic body force that acts on cavitation bubbles.@DOI: 10.1115/1.1794164#
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1 Introduction
The fundamental investigation of cavitating flow or two-pha

flow phenomena of magnetic fluid with electrical conductivity
very interesting and important, not only for the basic study
hydrodynamics of magnetic fluids, but also for finding solutions
problems related to the development of practical engineering
plications of two-phase electromagnetic fluids, such as the t
phase liquid metal MHD~LMMHD ! power generation system
@1–6#. In this regard, a fluid-driving system using two-phase flo
or cavitating flows of magnetic fluid has been proposed by on
the authors@7–9#.

The idea of using a two-phase flow system originated from
two-phase LMMHD power generation system, which was p
posed and developed by Petrick and Branover@1#. After their
proposal, the present authors reported the results of a theore
study that demonstrated the possibility of using an electric
conducting magnetic fluid~ECMF! @10–13# as a working fluid in
a boiling two-phase LMMHD power generation system@14#,
where it was shown that a better driving force or pressure rise
that of the conventional LMMHD system was obtained by us
ECMF as the working fluid due to the practical application of t
magnetization of the fluid.

Furthermore, theoretical and experimental studies on the b
characteristics of two-phase flow of magnetic fluid were co
ducted, and the possibility of flow control or effective driving
force generation by magnetic force in the new energy conver
system using boiling two-phase flow was confirmed@7,8#. It was
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also concluded that stabilization of two-phase flow is possible
effective application of the magnetic force of the fluid@8,15#.
According to these previous studies, it is likely that high perf
mance of power generation systems is possible by applying
ECMF to a working fluid in the two-phase LMMHD@14# power
generation system.

In the application of the two-phase flow of the magnetic fluid
an actual fluid transport apparatus, it is important to determin
simple and effective method to generate the two-phase flow s
for the improvement of the total performance of a fluid drivin
system using multiphase flow. However, conventional two-ph
flow systems essentially require a powerful heat source or g
injection equipment to produce the boiling two-phase flow or g
liquid two-phase flow state. Additionally, research on methods
the production of the two-phase magnetic fluid-flow state have
been precisely focused, and only a few studies have so far b
made on the basic mechanism of the cavitating flow due to
difficulty of confirming for experimental and theoretical results
high-speed two-phase magnetic fluid flow with phase change

In order to overcome these difficulties, we contrived a new ty
of LMMHD power generation system with a two-phase fluid dri
ing and acceleration system by using cavitating flow of ECMF
a working fluid. This system is characterized by its utilization o
two-phase magnetic driving force and no-heat sources or
additional gas-injection devices are required, except for
converging-diverging nozzle. Based on an advanced mathema
model, which takes the effect of two-phase electromagnetic b
force acting on cavitating magnetic fluid flow state into consid
ation, we herein develop a new method for analyzing cavitat
flow. Such an electrically conducing magnetic fluid is usually p
pared by dispersing fine iron~Fe! particles in a liquid metal, such
as mercury@10,11#. To prevent solidification of particles and t
maintain homogeneous dispersion, the particles’ surfaces
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coated with a thin film of tin. Thus, the ECMF behaves as flu
having magnetization.

The principle of such a two-phase LMMHD fluid-driving sys
tem proposed by one of the authors is schematically depicte
Fig. 1. In this system, the flow is accelerated in the region of
converging nozzle, although the Lorentz force acts in the oppo
direction of the mainstream. Cavitation inception is induced in
downstream throat of a diverging nozzle due to a pressure
crease. Furthermore, the flow is additionally accelerated not o
by the pumping effect of the cavitation bubbles, but also by
rise of magnetic pressure induced by the unbalance of magn
body forces that act in the single- and two-phase flow regio
under a nonuniform magnetic field.

Cavitation is usually found in high-speed liquid flows aroun
obstacles, such as the impellers of fluid machinery. It is w
known that cavitating flow causes many adverse effects includ
material erosion, noise, and performance degradation in turbo
chinery. In the magnetohydrodynamic field, the experimen
study on cavitation of mercury flow in a horizontal venturi cha
nel under magnetic field has been conducted@16#. In this research,
the effect of the magnetic field on mercury cavitation or tw
phase pressure loss has been precisely investigated. The
finding of the experiment is that the cavitation inception can
easily generated by applying the magnetic field especially in c
of the abrupt diverging channel flow. Nevertheless, the effect
method for magnetic control in regard to the cavitation incept
or the improvement of pressure loss has not been sufficie
clarified.

In the usual fluids engineering field, the cavitation is someth
that people like to avoid in the fluid machinery implementatio
However, the unique feature in the present research is that
cavitation phenomenon is positively utilized to improve the flui
driving effect of conventional two-phase LMMHD power gener

Fig. 1 Principle of cavitating MHD power generation system
using electrically conducting magnetic fluid „ECMF… flow. Mag-
netic body force FuÄm0M"¹HÄFd in the case without cavita-
tion, and FdÄ„1Àag…m0M"¹HËFu with cavitation „H is the vec-
tor of magnetic field and M is the vector of magnetization ….
826 Õ Vol. 71, NOVEMBER 2004
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tion system. It seems reasonable to suppose that the pres
proposed cavitating MHD-ECMF driving system is most app
cable to utilize in a pre- or post-power generation system for
conventional LMMHD systems. Accordingly, to combine th
present ECMF system with the conventional system, the total t
phase MHD performance of the hybrid power generation sys
will be drastically improved.

In the present study, numerical analysis is extended to the
of mercury-based electrically conducting magnetic fluid as a ba
study to demonstrate the possibility of application of ECMF
working fluid in a two-phase LMMHD power generation system
Specifically, the two-dimensional high-speed cavitating flow ch
acteristics of ECMF in a vertical converging-diverging nozzle u
der a strong nonuniform traverse magnetic field are numeric
predicted to realize the further development and high performa
of the two-phase fluid-driving system and to realize high pow
density in the application of ECMF to two-phase LMMHD pow
generation systems. The governing equations for cavitating fl
of ECMF based on the unsteady multifluid model in the gene
ized curvilinear coordinate system are presented, and then se
cavitating flow characteristics are numerically calculated, tak
into account the effect of the strong nonuniform magnetic fie
The numerical results of the cavitating flow characteristics of
ECMF are compared to those of mercury~electrically conducting
nonmagnetic fluid! and to those of the boiling two-phase flow o
ECMF.

2 Numerical Method
The numerical model used in the analysis is schematically

picted in Fig. 2, and the total system of the computational dom
and numerical grids used in the present analysis is depicted in
3. The ECMF flows between parallel insulated plates under
applied nonuniform magnetic fieldH and homogeneous electri
field E. The mainstream is in a vertically upward direction. T
magnetic field, the electric field, and the mainstream of the wo

Fig. 2 Schematic of model for numerical analysis
Transactions of the ASME
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ing fluid are orthogonal to one another. A minutely segmen
electrode is installed on the duct side. In the initial station
state, the flow duct is filled with pressurized mercury-based m
netic fluid, and flow immediately occurs when the outlet D-C
opened. Magnetic fluid is continuously introduced at high sp
via the inlet section A-B, the flow is accelerated at the point of
converging-diverging nozzle, and the inception of cavitation
induced by a pressure decrease. The model for analysis simu
the high-speed cavitating flow of magnetic fluid passing throu
the converging-diverging nozzle in a vertical duct.

2.1 Governing Equations. In the present numerical formu
lation of the cavitating flow characteristics of magnetic fluid, w
extend the general two-fluid model to the new vapor-liquid m
tiphase fluid model taking into account the effect of the stro
nonuniform magnetic field for analysis, which is based on
unsteady thermal nonequilibrium multifluid model by Katao
@17#, and Harlow and Amsden@18#. In the numerical model, the
condition of the working fluid with the cavitating magnetic flu
flow structure can be approximated to form a homogeneously
persed bubbly flow. In the process of modeling, to consider
effects of the rapid evaporation and condensation of magn
fluid, we apply the rapid phase-change model of Yamamoto e
@19# and Young@20# to the cavitating flow of magnetic fluid.

The calculation is carried out using the two-dimensional gen
alized curvilinear coordinate system~j, h! as shown in Fig. 3;j
and h denote the longitudinal and transverse coordinate, res
tively. z denotes the orthogonal coordinate in relation to thej and
h. It is assumed that the flow field is homogeneous in thez direc-
tion and is symmetric to the central axis D-A as shown in Fig.

Fig. 3 Schematic of computational system used in numerical
analysis
Journal of Applied Mechanics
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2.

The nonuniform magnetic field is applied in thez direction, which
is transverse to the mainstream of working fluid flow. In nume
cal modeling under this condition, the following assumptions
employed to formulate the governing equations:

1. The cavitating flow is a two-dimensional unsteady intern
flow.

2. The magnetic field and electric field are not influenced
the existence of the gas phase.

3. The applied electric field is homogeneous and steady.
4. The polarization of the liquid and gas phase is neglected
5. The induced magnetic field in the flow is much smaller th

the applied magnetic field (Rm!1).
6. The energy exchange between the liquid and gas phas

taken into account.
7. The liquid phase is incompressible fluid.

Here, we mention additional explanations concerning the ab
assumptions. The magnetic Reynolds number@Rm5sm lul (in)

j D#
in the present analysis is Rm'0.075. Accordingly, the induced
magnetic field in the flow can be neglected because the typ
MHD approximation of Rm!1 is satisfied in the numerical con
dition. The liquid-phase compressibility does not so strongly
fluence the two-phase MHD flow characteristics compared to
gas-phase compressibility. It seems reasonable to suppose th
compressibility of the cavitating flow is mainly dominated by th
gas-phase compressibility. Also, the total cavitating flow is
garded as weak compressible flow because of the dispersed
phase, which has strong compressibility. Consequently, we
sumed that the liquid phase is an incompressible fluid of cons
density. Furthermore, we assumed that the aspect ratio~height/
width! of the flow duct is small, the electrical conductivity of th
segmented electrode is sufficiently large, and the boundary la
of insulator side wall is sufficiently thin, which does not influen
the mainstream. These assumptions introduce the validity of
merical condition for the two-dimensional flow@21,22#. If the
aspect ratio is large or the applied magnetic field is an unste
traveling induction field, then three-dimensionality in the MH
flow should be considered.

In general, it is known that the electric current in the conduct
fluid has to go around the nonconducting particles, such as va
bubbles@23–25#. The deformation of the electric field by the non
conducting particle generates inhomogeneity of the electrom
netic force. According to this effect, the additional flow fields a
created surrounding the particles. As a result, it has been pr
ously studied and determined that electromagnetic expulsive f
is generated and that this force contributes to the migration
nonconducting particles@23–25#. The hydrodynamic velocity
dealt with in the electromagnetic separation of the metallurgy p
cess represented in the previous research@23# is on the order of
several~mm/s!, and the handling particle diameter is less than
mm. Thus, it may be possible to suppose that the nonconduc
particle migration by the electromagnetic expulsive force is do
nant in the limited condition of the extremely slow velocity fie
and small particle diameter. However, the gas- and liquid-ph
mean velocity, which deal with the present analysis, is on
order of 1.0–7.0~m/s!, and the velocity magnitude is quite larg
compared to the condition for research on electromagnetic s
ration, which requires the consideration of electromagnetic exp
sive force. Also, the cavitation bubble expands to the diamete
about 0.30 mm in the present two-phase flow analysis. Acco
ingly, the electromagnetic expulsive force and the induced mig
tion of bubbles by the force are neglected in the present analy

Under the above conditions, the governing equations of
cavitating MHD flow of ECMF, taking into account the effect of
nonuniform magnetic field based on the unsteady tw
dimensional multifluid model, are derived as follows.

The mass conservation equation for a gas phase is
NOVEMBER 2004, Vol. 71 Õ 827
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]t
~agrg!1¹j~agrgug

j !5Gg (1)

The mass conservation equation for a liquid phase is

]

]t
~a lr l !1¹j~a lr lul

j !5G l (2)

whereag and a l are the gas- and liquid-phase volume fractio
respectively. The relationshipag1a l51 is assumed.ug

j and ul
j

are the gas-and liquid-phase contravariant velocity, respective
Equations for the electromagnetic field are

1

2
ei jk~¹jHk2¹kH j !5JT

i (3)

MT
i 5a lM

i (4)

BT
i 5m0~Hi1MT

i ! (5)

JT
i 5sT~Ei1ei jkul j BTk! (6)

where the subscriptT denotes the two-phase flow.sT denotes the
electrical conductivity in the two-phase region and is defined
the following equation@26#:

sT5s l

2~12ag!

21ag
(7)

where s l is the electrical conductivity of the base liquid. Th
high-void fraction region is especially found in the limited regio
of wall vicinity where the cavitation actively generates. The
gion is constructed of closely aggregated small-bubble clouds
not by large single bubbles. Also the two-phase magnetic b
force effectively performs compared to the Lorentz force in
region. Therefore, the Eq.~7! is generally applicable to approxi
mate the electrical conductivity in the whole two-phase flow fie
except for the limited region of highag .

The strength of the electric fieldEh is determined from a load
factorK of the outside electric circuit.K is defined by the follow-
ing equation:

K5
Eh

ul
j
•BT

z
(8)

where ul
j is the cross-sectional mean value of the longitudi

liquid-phase velocity componentul
j . In the present analysis, it i

assumed that the load factorK of the electrode is always in th
condition of K520.5. It is also assumed that the direction
currentJi is a negative transverse coordinate ofh. Therefore, the
Lorentz force always acts as a flow resistance. In this numer
model, the case of21,K,0 corresponds to the MHD powe
generation system, and the case ofK<21 corresponds to the
electromagnetic pump.

The momentum equation for single-phase ECMF flow
Shizawa and Tanahashi@27,28# is extended to the two-phase flo
case, and the combined equation of motion for a total gas
liquid phase is derived by the following equation:

]

]t
~agrgug

i 1a lr lul
i !1¹j~agrgug

i ug
j 1a lr lul

iul
j !

52gi j ¹j pl1m0MT
j ¹jH

i1m0ei jkJT jHk1bTgjk¹j¹kul
i

1
1
3~bT¹j¹kul

k!gi j 1a lr lgr
i (9)

where the second and third terms on the right-hand side of Eq~9!
represent the magnetic body force term and the Lorentz force
in the two-phase flow, respectively. Especially in the case of
ECMF flow, the Lorentz force is given by the cross product ofJi

andHi @27,28#.
828 Õ Vol. 71, NOVEMBER 2004
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Additionally, bT in Eq. ~9! denotes the viscosity of the two
phase mixture flow that includes small dispersed bubbles.bT was
evaluated using the following formula for the viscosity of
suspension@29,30#:

bT5F12S ag

0.680D G
22

•b l , ag,0.5 (10)

To consider the effects of additional forces that act on the bub
and the effects of radial expansion of the bubbles, the equatio
motion for the gas phase is replaced with the translational mo
of a single bubble@31#. Therefore, the Eulerian-Lagrangian two
way coupling model@32,33# is applied to predict the two-
dimensional cavitating flow characteristics.

The equation of motion for the gas phase is

4

3
prgRg

3
dug

i

dt
52Fp

i 1Fg
i 2FD

i 2FVM
i 2FB

i 1FLM
i 1FLS

i

(11)

where each additional force term is derived as follows:

Fp
i 5

4

3
pRg

3gi j ¹j pl (12)

Fg
i 5

4

3
pRg

3rggr
i (13)

FD
i 5

1

2
r lCDuug

i 2ul
i u~ug

i 2ul
i !pRg

2 (14)

FVM
i 5CVM•r l

4

3
pRg

3F d

dt
~ug

i 2ul
i !1

3

Rg
~ug

i 2ul
i !

dRg

dt G (15)

FB
i 56Rg

2Apr lb lE
0

t

d

dt
~ug

i 2ul
i !

At2t
dt (16)

FLM
i 5pRg

3r le
i jk~Vg j2V l j !~ugk2ulk! (17)

FLS
i 56.46

b lRg
2

Au~Vg
i 2V l

i !un l

ei jk~Vg j2V l j !~ugk2ulk! (18)

V l
i5

1

2
v l

i5
1

4
ei jk~¹julk2¹kul j ! (19)

whereFP
i is the force due to the liquid-phase pressure gradient,Fg

i

is the gravitational acceleration force,FD
i is the drag force,FVM

i is
the virtual mass force considering the expansion of a bubble,
FB

i is the Basset history term, which takes into account the ef
of the deviation in flow pattern from steady state.FLM

i is the
Magnus lift force caused by the rotation of the bubble as repo
by Auton et al.@34#. FLS

i is Saffman’s lift force@35# caused by the
velocity gradient of the liquid phase. CD is the drag coefficient,
CVM is the virtual mass coefficient,Rg is the equivalent bubble
diameter,V i is the contravariant angular velocity, andv i is the
contravariant vorticity. d/dt denotes the substantial derivative.

The equation for the angular velocity of a bubble is derived
follows @35#:

dVg
i

dt
5

15b l

Rg
2
•rg

~V l
i2Vg

i ! (20)

The energy equation for the gas and liquid phases is
Transactions of the ASME
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]t
~amrmem!1¹j~amrmemum

j !

52pm

]am

]t
2¹j~ampmum

j !1Gmhm
~ i !1qm

~ i !a~ i !

2¹j~amqm
j !1amFm (21)

In the above equation, the subscriptm denotes the gas phase (m
5g) or liquid phase (m5 l ). hg

( i ) andhl
( i ) are the enthalpy of the

gas phase and the liquid phase at the interface, respectively.a( i ) is
the gas-liquid interfacial area concentration per unit volum
Gghg

( i ) and G lhl
( i ) are the interfacial energy transfer terms due

the liquid-vapor phase change.qg
( i ) and ql

( i ) are the heat transfe
terms of mutual interaction between the vapor and liquid int
face.qj is the contravariant heat flow vector, andF is the energy
dissipation function, as described below:

5
qm

i 52lmgi j ¹jTm

Fm52
2

3
bm~¹ium

i !212bmsjm
i sim

j

sjm
i 5

1

2
~¹jum

i 1¹ium
j !

(22)

where the present sufficient conditions of two-dimensional fl
with small magnetic Reynolds number (Rm!1) contribute to de-
crease the effect of energy loss due to Joule heating. The ind
current is not so large as to increase the Joule heating becau
the condition for load factor ofK520.5. Also, since the initial
fluid temperature~573.15 K! given is sufficiently higher than
room temperature, the effect of temperature increase cause
the Joule heating is small compare to the total unsteady temp
ture profiles influenced by the convection, conduction, dissipat
and energy exchange between gas and liquid phases. There
the effect of Joule heating in the energy equation~21! is neglected.

Assuming that the mass of each vapor bubble and of the c
densed liquid droplet in each computational location is cons
results in the following mass conservation equation for num
densityNk :

]

]t S 4

3
pRk

3NkrkD1¹j S 4

3
pRk

3Nkrkuk
j D5Gk

H k5e: Rk5Rg , Nk5Ng , rk5rg , uk
i 5ug

i , Gk5Gg

k5c: Rk5Rl , Nk5Nl , rk5r l , uk
i 5ul

i , Gk5G l
(23)

where subscriptk denotes evaporation (k5e) or condensation
(k5c).

The governing equations of cavitating flow mentioned abo
are constructed by Eulerian-type equations for the liquid ph
and by Lagrangian-type equations for the gas phase.

2.2 Constitutive Equations. The drag coefficient CD , and
the virtual mass coefficient CVM , are defined as follows@35#:

5
CD5

24

ReB
~110.15 ReB

0.687!1
0.42

1142500 ReB
21.16

CVM50.5

ReB5
r l uug

i 2ul
i uD

b l

. (24)

The energy balance condition through the interface of the gas
liquid phases is expressed by the following equation:

H Gghg
~ i !1G lhl

~ i !50

qg
~ i !1ql

~ i !50
(25)
Journal of Applied Mechanics
e.
to

er-

w

ced
se of

d by
era-
on,
fore,

on-
ant
er

ve
ase

and

wherehk5cpkTk ; k5g,l . The detailed constitutive equations fo
interfacial energy transfer terms in Eq.~25! are given by following
extended empirical formulas@36,37#:

qg
~ i !5k~ i !~Tg2Ts! (26)

where k( i ) is the interfacial heat transfer rate between gas a
liquid phases and is given by following equations@36#:

¦

k~ i !5akg
~ i !1a lkl

~ i !

kg
~ i !5

8.067•lg

Rg

kl
~ i !5

1.010.37 ReV
0.50

•PrV
0.35

Rg

ReV5
2.0Rguug

i 2ul
i u

n l

PrV5
cpl•b l

l l

(27)

It is assumed that the energy transfer is caused by the heat tra
between the isothermal spherical bubble and the surrounding
uid. Assuming a spherical bubble with equivalent radiusRg , the
expression of the interfacial area concentration per unit volu
a( i ) is obtained by the following equation@17#:

a~ i !5
3ag

Rg
(28)

In general, the interfacial transfer terms are proportional to
interfacial area concentration,a( i ). Therefore,a( i ) is one of the
most important parameters in the two-fluid model. Assuming t
the vapor gas phase follows an ideal gas law and that the rela
ship between gas-phase pressurepg and densityrg obeys poly-
tropic change, the following equation by Hirt and Romero@38#
results:

rg~kg21!eg5@pg2cl0
2 r l~ag* 2ag!#ag*

H ag>agc : ag* 5ag

ag,agc : ag* 5agc
(29)

wherecl0 is the sound velocity in the mercury at the initial sta
(cl051321.0 m/s), andagc denotes the threshold of the void frac
tion (agc50.005) @38#.

The constitutive equation for gas-phase generation densityGg is
defined by the following equation:

Gg5Gge2Ggc (30)

whereGge andGgc denote the gas-phase evaporation density
gas-phase condensation density, respectively. By introducing
stitutive equations forGge andGgc , also to consider the effect o
the surface tensiong l in the cavitation inception process, we e
tend the classical nucleation theory for water droplets from s
cooled vapor to the mercury-based magnetic fluid. Namely,Gge
andGgc are assumed to be proportional to the degree of subc
ing and superheat. Furthermore, ifGgk , (k5e,c) is expressed by
the sum of the nucleation rate of the evaporated bubble or
condensed liquid droplet and also by the increase in mass du
the growth of vapor bubbles and condensed droplets, the foll
ing equations forGgk are derived@19,20#:

Ggk5
4

3
prkI kRk~cr!

3 14prk(
i 51

i max

NkiRki
2

dRki

dt

5
I k5

Ac

11Q S 2g l

pma
3D 1/2 rg

2

r l
expS 2

4pRk~cr!
2 g l

3kBTk
D

Q5
2~kg21!

kg11

Dh

RTg
S Dh

RTg
20.5D

Rk~cr!'
2g lTs

r DhDT

(31)
k
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In Eq. ~31!, subscriptk has the same definition as that used in E
~23!, Rk is the radius of a bubble or droplet,Rk(cr) is the Kelvin-
Helmholtz critical nucleate radius,kB is Boltzmann’s constant,I k
is the nuclei generation rate of vapor bubbles or liquid drople
Ac is the condensation coefficient,U is the nonisothermal correc
tion factor,ma is the mass of a single molecule of mercury,g is
the surface tension,R is the gas constant,Ts is the saturation
temperature, and subscripti is the value at each calculation ce
Dh denotes the latent heat, which is described by the differenc
specific enthalpy between the liquid and gas phases, and is de
as Dh5hl2hg . The temperature difference between saturat
temperature and gas-phase temperatureDT is defined asDT
5uTs2Tku. Nki denotes the number density of the generated
por bubbles or condensed liquid droplets at each calculation ci.

By introducing the formulation of the growth process f
bubbles and condensed droplets, we assume that the growth
of a bubble or droplet is controlled by the rate at which the
thalpy of vaporization or condensation can be conducted a
from the bubble and droplets to the bulk liquid@39#. Under that
assumption, the equation of the growth process for a single-va
bubble and a condensed droplet is derived as

Dhrk

dRki

dt
5

pk

A2pRTg

kk11

2kk
cpkDT~ i ! (32)

whereDT( i ) denotes the interfacial temperature between the va
phase and the condensed droplet and is derived by the follow
equation:

DT~ i !5S 12
Rk~cr!

Rki
D uTs2Tku (33)

3 Numerical Conditions and Procedure

3.1 Numerical Conditions. As a practical example, we us
the fluid properties of a mercury-based magnetic fluid with d
persed iron~Fe! particles@10#. The relation between temperatu
T and the normalized saturation magnetization@(Ms /Ms0)
5g(T)# is approximated by Brillouin function based on the me
sured value of the magnetization of Fe particles@40# and is de-
fined by the following equation:

5
Ms

Ms0
5g(T)5A0H S 2A111

2A1
D cothS 2A111

2A1
D F626S T

Tc
D G

2
1

2A1
cothF626(T/Tc)

2A1
G J

A051, A151, Tc51040.2
(34)

whereMs is the saturation magnetization,Ms0 is the spontaneous
magnetization, andTc is the Curie temperature of the ferroma
netic particles. The strength of magnetizationM is expressed as a
combined function of temperatureg(T) in Eq. ~34! and the
strength of magnetic fieldf (H) as

5
M5 f ~H !•g~T!

f ~H !5MsFcoth~Ch!2
1

Ch
G

Ch5
m0mH

kBTl ~ in!

(35)

where f (H) has a type of Langevin function,Tl (in) is the liquid-
phase inlet temperature, andm is the magnetic moment of a fer
romagnetic particle. Next, in order to consider the effect of n
uniform magnetic field as depicted in Fig. 2, the longitudin
distributions of magnetic field componentHz and the transverse
distributions of magnetic field componentHh are derived by the
following equations. In introducingHh andHz, we referred to the
830 Õ Vol. 71, NOVEMBER 2004
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analytical solution of the nonuniform magnetic field distributio
of the Helmholtz coil@41# and the measurement results of th
magnetic field of the electromagnet, which were used in the p
vious experimental study@7,8#,

5
Hz5Hmax•exp~2jh*

2!

Hh5Hmax•h* •ujh* u•exp~2jh*
2!

jh* 5j* 2
1

2
jmax*

(36)

whereHmax is the maximum magnetic field strength;j* denotes
the normalized longitudinal coordinate, which is defined asj*
5j/jmax; and h* denotes the normalized transverse coordina
which is defined ash* 5h/hmax. TheHmax on the electromagne
is installed in the position of the nozzle throat.

Furthermore, in order to consider the special characteristic
power generation of the MHD system, the power densityG is
defined by the following equation:

G52sTK~K11!m l
j 2

BT
z2

(37)

whereul
j is the cross-sectional mean value oful

j .

3.2 Numerical Procedure. The finite difference method is
used to solve the set of governing equations mentioned abov
the present calculation, the discrete forms of these equations
semi-implicitly obtained using a staggered grid. The grid is co
centrated at the nozzle wall to capture the cavitation incep
precisely.

The convective terms are discretized with a third-order QUIC
scheme@42#. Also, the implicit fractional-step method@43# is used
for time integration. Then the modified SOLA~numerical SOLu-
tion Algorithm for transient fluid flow! method of Tomiyama et al.
@44#, which is superior for the formulation and solution of a g
liquid two-phase flow problem, is applied for the numerical c
culation. The numerical method can take into account
Neumann-type boundary condition in the iteration process of
pressure-correction equation. Also the effect of void fraction
implicitly taken into account in each iteration process@33#. The
solution procedure for the pressure correction termdpl is derived
as follows.dpl includes the effect of electromagnetic body forc

dpl
~ l 11!5

Ar~a l
~n!2Dt•DT

~ l !21!

F 1

r lcl0
2 ~a l

~n!2Dt•DT
~ l !!2

Dt2

r l
S cl j

TP

Dj2 1
clh

TP

Dh2D G
(38)

whereAr is the relaxation factor and the optimized value of (Ar
51.965) is employed@44#. cl0 is the sound velocity in liquid
phase. The superscript~l! is the iteration number,~n! is the nth
time level,Dt is the time increment,Dj, Dh are the cell size in the
j andh directions, respectively.DT

( l ) andclm
TP , (m5j,h) are de-

rived as following equations:

DT
~ l !5¹j~a l

~ l !ul
j ~ l !!1

ag
~ l !

Ng
¹j~Ng

~ l !ug
j ~ l !!1

ag
~ l !

pl
~ l !

]pl
~ l !

]t
(39)

clm
TP5clm1a lm1

~n! 1clm2a lm2
~n! ~m5j,h! (40)

clm655
0 for mdirectional6side-cell boundary prescribes

in the mdirectional velocity component

1 for the other cell boundaries (same order

of double sign)

where the subscripts1 means the cell boundary at the positiv
directional side of the cell,2 means the cell boundary at th
negative directional side of the cell.

The liquid phase velocityul
i at the location of bubbles is calcu

lated using an area-weighting interpolation method, which w
used in the SMAC algorithm by Amsden and Harlow@45#. To
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determine the boundary conditions, the free-slip condition for p
scribed liquid phase-velocity is applied to the central axis D
and the nonslip condition for prescribed liquid-phase velocity
applied to the sidewall C-B in Fig. 3. Also, a fully develope
velocity profile is applied for liquid-phase velocities to the inl
cross-sectional area of the flow duct A-B. A convective outflo
condition is applied for liquid-phase velocities to the exit sect
of the duct D-C. Adiabatic conditions are applied for therm
boundary conditions at the duct wall surface. The initial station
condition of the liquid phase is assumed to be the pressurized
state.

The conditions for numerical analysis are listed in Table 1. F
other physical properties used in constitutive equations,b l , s l ,
l l , andg l are given as functions of temperature. The saturat
temperatureTs is given as a function of pressure. The requir
physical properties of the liquid phase are given by the table
the thermophysical properties of mercury@46#.

The interval of each time step is automatically adjusted dur
the computation to satisfy the CFL condition@44#. We actually
calculated solutions on three different grid densities: 503120,
603150, and 1003220 nodes.

Figure 4 shows the convergence histories for three sets of c
putational grids. For all cases, the magnitude of the residuals
crease by at least two orders of magnitude within 5000 iteratio
For a finer grid, convergences slow down, as expected. Fo
three grids, the iteration errors and uncertainties are assumed
negligible in comparison with the grid errors. Since iterative
rors are negligible, correction of solutions for iterative error is n
required. As a result, we found that each numerical result sh
almost the same profile; the grid independence of the nume
results was confirmed. Thus, as a compromise between com
memory and accuracy, we chose to use the 603150 structured
grid in thej andh directions for the calculations. The simulation

Table 1 Numerical Conditions

Liquid phase density r l 1.2873104 kg/m3

Inlet pressure pl (in) 0.350 MPa
Outlet pressure pl (ex) 0.101 MPa
Inlet temperature Tl (in) 573.15 K
Inlet width of duct D 10.0 mm
Gas constant R 41.45 J/(kg•K)
Maximum magnetic field strength Hmax 600 kA/m
Magnetic moment of particle m 7.96310219 A•m2

Permeability in vacuum m0 4p31027 H/m
Load factor K 20.5

Fig. 4 Convergence histories for three sets of grids
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have been performed on a single Pentium IV 2.7 GHz proces
of an IBM-compatible computer, and the required memory s
for each time step is about 1.0 GB with a grid density of
3150. The required total CPU time has been about 120 min
one operating condition. During the execution of the unstea
calculation, no significant differences in the mean-flow profi
are found in the 1200–1500 time steps. We determined that
cavitating flow almost reaches steady state when such flow
files are obtained.

The present calculation procedure is specifically employed
follows:

1. The translational velocity of bubbles is calculated by E
~11! and ~24!.

2. The liquid-phase velocity is calculated by Eq.~9!.
3. The phase generation density and bubble radius are ca

lated by Eqs.~31! and ~32!.
4. The void fraction is calculated by Eqs.~23! and ~1!.
5. The pressure correction termdpl is calculated by Eq.~38! in

application with modified SOLA method. When the residu
becomes sufficiently small value, the calculation for obta
ing the new time-level solution is executed by returni
to step 1 of the procedure until a steady-state flow field
obtained.

4 Results and Discussion
Figure 5 shows the numerical results of the transient evolu

of the void fractionag contour, and Fig. 6 shows the instant
neous liquid-phase pressurepl contour. According to Fig. 5, the
cavitation inception effectively occurs at the position of the div
gent nozzle throat. The cavitation inception or formation of clo
cavity in ECMF flow at the diverging nozzle throat is suppress
compared with that of mercury flow due to the magnetic bo
force under a sharp magnetic field gradient, compare to tha
mercury flow. It was found that the growth rate of the volum
fraction of the cavitation bubble is lower than that of mercu
flow. Focusing on ECMF flow, immediately after the flow is in
tially induced, taking note of the primary feature of the void fra
tion profile under a strong magnetic field, the void fraction profi
elongated in the longitudinal direction of negative magnetic fi
gradient because the bubbles are accelerated and migrate d
the two-phase magnetic body force in the direction of the nega
magnetic field gradient. The effect of two-phase magnetic bo
force is characterized by the second right-hand term in the
mentum equation, Eq.~9!.

With time elapses, because the magnetic body force base
the transverse magnetic field gradient acts so that the bub
migrate from the wall into the center of the duct, it becomes cl
that the void fraction is locally increasing near the central ax
Downstream of the nozzle throat, although both magnetic b
force and the Lorentz force act as a flow resistance, the forces
decreased due to the gas-phase inclusion. In the two-phase
region, not only the decreasing effect of flow resistance due to
Lorentz force, but also the pressure rise effect caused by the
balance of the magnetic body force between the single- and t
phase flow region is obtained.

Furthermore, additional lift force operates in the directio
which causes the bubbles to migrate in the duct-wall directi
However, as the two-phase magnetic body force begins to do
nate the bubbles, it is found that the large volume fraction reg
of gas phase moves to the central axis of the duct. Accordin
this result, the gas-phase motion is controlled not only by
buoyancy force, but also due to the liquid-phase pressure grad
additional lift forces, and especially due to the two-phase m
netic body force that acts on the cavitation bubbles.

If the phenomenon applicable to the conditions of both ECM
flow and mercury flow is as explained here, then the gas-ph
NOVEMBER 2004, Vol. 71 Õ 831
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volume fraction increases at the throat position and is conc
trated to form a small cavity cloud downstream of the diverg
nozzle due to the small vortex induced by the wake pass
through the nozzle throat, which is based on the effect of

Fig. 5 Time evolution of void fraction distributions
832 Õ Vol. 71, NOVEMBER 2004
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negative pressure gradient. When the magnitude of the cloud
ity is above a certain size, due to the reentrant jet resulting fr
the boundary layer separation, the cavity becomes detached
the cloud and then remains in the high-volume fraction region

Fig. 6 Instantaneous liquid-phase pressure contours
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the gas phase moves downstream. Especially in the case of E
flow, because the two-phase magnetic ejection effect acts on
cloud cavity in the negative magnetic field gradient region,
separation of the cloud cavity is enhanced by the two-phase m
netic body force acting on the cavitation bubbles. Due to the s

Fig. 7 Pressure rise effect of ECMF flow and mercury flow in
the longitudinal direction
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pression effect and magnetic ejection effect on the cavita
bubbles, the magnitude of the cloud cavity in ECMF flow b
comes smaller than that of mercury flow.

The pressure around the inlet section shows a little nonuni
mity with time due to the propagation of the pressure fluctuat
from the nozzle throat section to the inlet section of the duct. T
pressure fluctuation at the nozzle throat is caused by the effec
sudden cavitation generation and rapid bubble growth with tim
also by the high-speed inflow of liquid phase into the thro
section.

Figure 7 shows the present numerical results of the liquid-ph
pressure rise effect of ECMF flow and mercury flow in the lon
tudinal direction, in comparison with the previous on
dimensional numerical result of its effect for the steady boili
two-phase pipe flow of ECMF@14#. In this figure, the axis of the
ordinate denotes the normalized pressure-rise parameterDpl* and
is derived by the following equation:

Dpl* 5
pl ~eff!2pl ~ in!

pl ~ in!
(41)

wherepl (eff) is the cross-sectional mean-effective driving press
from which the influence on the prudence of the liquid-phase fl
can be deducted.pl (in) is the inlet pressure. The axis of the a
scissa in Fig. 7 denotes the normalized longitudinal coordin
j* (5j/jmax). Focusing on the present numerical result of ECM
cavitating flow, the pressure rise effect based on the two-ph
magnetic body force under an applied magnetic field region a
effectively with the progress of time. However, as time elap
and the flow approaches steady state, it is found that the pres
rise effect, which is based on cavitating two-phase magnetic b
force, decreases around the exit section of the duct. The ma
tude of the pressure rise effect in ECMF flow is indicated to ha
a larger value than that in mercury flow. Especially in the case
mercury flow, as for the limited portion of the cross-sectional a
in a duct, there is a possibility of the pressure rise effect be
obtained, however, when cross-sectional mean value ofDpl* is
taken into account, theDpl* in mercury flow exhibits negative
value because of the strong effect of the Lorentz force as the
resistance. Also, it may be possible to suppose that under
optimized condition possible to obtain the effective pressure
of cavitating ECMF flow, it is difficult to realize the sufficien
pressure rise effect making use of the cavitating mercury flow

Comparing our previous results regarding the pressure distr
tion of the boiling two-phase ECMF flow@14# with the present

Fig. 8 Fluctuations of bubble radius as a function of time
NOVEMBER 2004, Vol. 71 Õ 833
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numerical results, it is found that the present ECMF accelera
system, which uses cavitation, can achieve a greater pressur
effect. Therefore, when the LMMHD power generation syste
which uses two-phase magnetic fluid, is employed, rather h
pressure rise effect resulting from the use of cavitation for tw
phase flow production can be obtained.

Figure 8 shows the fluctuation of bubble radius (Rg) as a func-
tion of the time at position E~as depicted in Fig. 3,j50.5jmax),
which is just a quarter of the nozzle throat width, where the ca
tation actively occurs. It is found that the magnitude of transi
displacement ofRg in ECMF flow shows a smaller value and th
the size ofRg becomes homogeneous compared with that of m
cury flow because the magnetic body force acts to suppress
expanding cavitation bubbles. From Figs. 5–8, it is clarified t
the decrease ofpl induces an increase ofag and that the expan
sion or contraction of bubble radiusRg corresponds to the chang
of pl . Since the displacement magnitude ofRg has a small value,
it is also clarified that the generated cavitation bubbles mainta
small size in the vaporization process and in the initial cavitat
flow state.

Fig. 9 Effect of magnetic acceleration on the longitudinal
liquid-phase cross-sectional mean velocity as a function of
time
834 Õ Vol. 71, NOVEMBER 2004
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Figure 9 shows the effect of magnetic acceleration on the l
gitudinal liquid phase cross-sectional mean velocity,ul

j, as a func-
tion of time t. In the case of ECMF flow, the fluid acceleratio
effect, which is based on the two-phase magnetic body fo
increases with the lapse of time. It is especially found thatul

j

sharply increases in the flow field and becomes two-phase
state, and thatul

j tends to express the maximum value at the e

section of the duct. In the case of mercury, it is found thatul
j

increases with increase int. However, the magnitude oful
j exhib-

its a lower value than that oful
j in ECMF flow. Furthermore, it is

found that the rate of increase onul
j in the j direction of ECMF

flow shows a greater value than that of mercury flow.
It is found that the fluctuation oful

j in mercury flow in the
vicinity of the inlet section sharply increases with maximum tim
step because of the propagation of the velocity and pressure

Fig. 10 Instantaneous liquid-phase velocity vector „enlarged
view of nozzle throat section …
Transactions of the ASME
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tuations from the nozzle throat section to the inlet section of
duct for a similar reason as the generation of inhomogeneit
inlet pressure. Contrarily, in the case of ECMF flow, the sh
increase in the fluctuation oful

j cannot be found at the inlet sec
tion with time progress because of the two-phase magnetic s
lizing effect due to the magnetization of the fluid@15#.

Fig. 11 Instantaneous liquid-phase stream lines „enlarged
view of nozzle throat section …
Journal of Applied Mechanics
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Figure 10 shows the profiles of the liquid-phase velocityul
i ,

and Fig. 11 shows instantaneous liquid-phase stream lines ar
the throat section in ECMF and mercury flow. The flow separat
and backward flow oful

i locally occur in the vicinity of the wall of
the throat section upstream of the point of cavitation inception
the case of ECMF flow, the liquid phase is locally accelera
around the throat wall section, and the magnitude oful

i has a
larger value compared with the case of mercury flow becaus
the two-phase magnetic acceleration effect, which acts on the
uid phase due to the strong magnetic field gradient. Furtherm
because of the increase in momentum exchange between th
and liquid phases, the magnitude oful

i locally increases in the
region where the cavitation is actively generated. According
these numerical results on velocity profile, it is found that rath
than utilizing only the pumping effect of the bubbles when e
ploying the two-phase LMMHD fluid-driving system, the metho

Fig. 12 Instantaneous gas-phase velocity vector „enlarged
view of nozzle throat section …
NOVEMBER 2004, Vol. 71 Õ 835
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that utilizes the two-phase magnetic body force generated by c
tating magnetic fluid flow can obtain the enhanced fluid accele
tion effect.

Taking focus around the central axis region at the nozzle thr
the liquid-phase longitudinal velocity component is decelera
because of the Lorentz force extensively acting as a flow re
tance due to the strong magnetic field strength and small v
fraction at the throat section. The backward liquid-phase flow
the central axis induced by the cavity separation from the th
wall is the another reason for longitudinal velocity decelerati
Especially in the case of ECMF, the magnetic body force a
locally acts as a flow resistance in the central axis region at
nozzle throat due to the strong magnetic field gradient and s
void fraction. Therefore, the liquid-phase longitudinal veloc
component at the region is decelerated, and the two-phase
netic driving force cannot effectively act on the fluid due to sm
void fraction. However, in the throat wall vicinity where cavita
tion actively generates, the liquid-phase velocity is strongly ac

Fig. 13 Power density profile in the longitudinal direction as a
function of time
836 Õ Vol. 71, NOVEMBER 2004
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erated because of the two-phase magnetic driving force
bubbles’ pumping effect acting on the liquid phase. The slip ra
ug

i /ul
i in the vicinity of the throat wall section tends to have a lar

value.
Figure 12 shows the instantaneous gas-phase velocityug

i

around the throat section in ECMF flow and mercury flow. In t
initial flow state, it is found that the backward flow ofug

i is gen-
erated upstream of the throat due to the effect of the separa
wake of liquid phase in the vicinity of the throat wall and that t
gas phase is dispersed throughout the downstream region o
throat section. In the case of ECMF flow, the gas phase is loc
accelerated in the direction of the negative magnetic field gra
ent, and the magnitude ofug

i is indicated to have a larger valu
compared to the case of mercury flow because of the magn
ejection effect, which acts on the bubbles. Considering Figs.
and 5 together, in the strong magnetic field gradient region,
void fractionag locally decreases due to application of the no
uniform magnetic field because the gas phase is locally acce
ated and the slip ratio increases due to the magnetic ejection e
on bubbles in the two-phase region.

In addition to the formation of the cavity vortex and its grow
in ECMF, the advection of the cavity cloud is enhanced by
magnetic ejection effect in the downstream region of the thro
With time, the gas-phase motion exhibits diffusing behavior, a
the ug

i profile takes on a different aspect from the liquid-pha
velocity profilesul

i . The characteristic gas-phase behavior in t
magnetic fluid is not only due to the several additional forces t
appear in Eq.~11!, but also to the two-phase magnetic body for
and other forces that act on the bubbles due to the two-ph
Lorentz force that are included in the momentum terms in Eq.~9!.
According to the numerical results on gas phase behavior,
clarified that the precise control of bubble motion and control
the two-phase MHD flow is possible by practical use of the ch
acteristic magnetization of fluid inherent ECMF.

Figure 13 shows the profiles of power densityG in thej direc-
tion as a function of time in ECMF flow and mercury flow. Th
magnitude of the power densityG of ECMF flow has a larger
value than that of mercury flow. Especially if the flow field b
comes two-phase flow state, the rate of increase ofG in ECMF
flow with time is greater than that in the mercury flow. The hig
erpower density in ECMF flow is due to the fluid accelerati
resulting from the two-phase magnetic body force under the
plied magnetic field region. According to these results, it is fou
that the present ECMF system, which uses cavitation, can ob
higher power density than the mercury system in the two-ph
LMMHD power generation systems because of the practical
of magnetization in the working fluid.

5 Conclusions
The two-dimensional cavitating flow characteristics of elec

cally conducting magnetic fluid~ECMF! in a converging-
diverging nozzle under a strong nonuniform traverse magn
field were numerically predicted to realize the further develo
ment and high performance of the two-phase LMMHD pow
generation systems. The main results obtained can be summa
as follows:

1. Inception of cavitation or formation of a cloud cavity i
ECMF flow in the diverging nozzle throat is more greatly su
pressed than in the case of mercury flow due to the magnetic b
force with a sharp magnetic field gradient. Especially in the c
of ECMF flow, because the two-phase magnetic ejection ef
acts on the cloud cavity in the negative magnetic field gradi
region, separation of the cloud cavity is enhanced by the tw
phase magnetic body force acting on the cavitation bubbles.

2. The pressure rise effect due to the two-phase magnetic b
force under an applied magnetic field region effectively acts w
the progress of time in the two-phase region. The magnitude
Transactions of the ASME
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the pressure rise effect in cavitating ECMF flow has a larger va
than that in cavitating mercury flow or boiling two-phase ma
netic fluid flow.

3. It is found that rather than utilizing only the pumping effe
of bubbles when employing the LMMHD two-phase fluid drivin
system, the method that utilizes the two-phase magnetic b
force generated by cavitating magnetic fluid flow can obtain
enhanced fluid acceleration effect.

4. The present ECMF system, which uses cavitation, can
tain a power density greater than that with the mercury system
the two-phase LMMHD power generation systems because o
practical use of the magnetization in the working fluid.
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Nomenclature

a( i ) 5 interfacial area concentration per unit volume
B 5 magnetic flux density

Bi 5 contravariant vector of magnetic flux density
CD 5 drag coefficient
CV 5 virtual mass coefficient
cp 5 specific heat at constant pressure
c0 5 sound velocity
D 5 inlet width of duct
E 5 strength of electric field

Ei 5 contravariant vector of electric field
e 5 specific internal energy

ei jk 5 permutation symbol
gr

i 5 contravariant vector of gravitational acceleration
gi j 5 fundamental metric tensor
H 5 strength of magnetic field

Hi 5 contravariant vector of magnetic field
Hmax 5 maximum strength of magnetic field

h 5 specific enthalpy
J 5 current density

Ji 5 contravariant vector of current density
K 5 load factor
k 5 heat transfer rate

kB 5 Boltzmann’s constant
M 5 strength of magnetization

Mi 5 contravariant vector of magnetization
Ms 5 saturation magnetization

Ms0 5 spontaneous magnetization
m 5 magnetic moment

ma 5 mass of a single molecule
N 5 number density
p 5 absolute pressure
q 5 heat flux

qi 5 contravariant heat flux vector
R 5 radius

Rm 5 magnetic Reynolds number
R 5 gas constant
T 5 absolute temperature

Tc 5 Curie point temperature
Ts 5 saturation temperature

t 5 time
Dt 5 time increment

ui , uj , uk 5 contravariant velocity
ui , uj , uk 5 covariant velocity
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Greek Symbols

a 5 volume fraction
b 5 dynamic viscosity
G 5 phase generation density
g 5 surface tension
h 5 transverse coordinate
k 5 ratio of specific heat
l 5 thermal conductivity

m l 5 magnetic permeability in a fluid
m0 5 magnetic permeability in vacuum

n 5 kinematic viscosity
j 5 longitudinal coordinate
r 5 density
s 5 electrical conductivity

V i 5 contravariant angular velocity vector
v i 5 contravariant vorticity vector
¹j 5 covariant differential

Subscripts

c 5 condensation
e 5 evaporation

~ex! 5 exit section of the duct
g 5 gas phase

i, j, k 5 covariant component
~in! 5 inlet section of the duct

l 5 liquid phase
s 5 saturation
T 5 two-phase

Superscripts

i, j, k 5 contravariant component
~i! 5 interface
~l! 5 iteration number
~n! 5 nth time level

j 5 contravariant component in thej-direction
h 5 contravariant component in theh-direction
z 5 contravariant component in thez-direction

( ) 5 mean value
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Thermal Post-Buckling of
Laminated Plates Comprising
Functionally Graded Materials
With Temperature-Dependent
Properties
This paper presents thermal buckling and post-buckling analyses for moderately
laminated rectangular plates that contain functionally graded materials (FGMs)
subjected to a uniform temperature change. The theoretical formulation employs the
order shear deformation theory and accounts for the effect of temperature-depe
thermoelastic properties of the constituent materials and initial geometric imperfec
The principle of minimum total potential energy, the differential quadrature method,
iterative algorithms are used to obtain critical buckling temperatures and the p
buckling temperature-deflection curves. The results are presented for both symmet
and unsymmetrically laminated plates with ceramic/metal functionally graded lay
showing the effects of temperature-dependent properties, layup scheme, material c
sition, initial imperfection, geometric parameters, and boundary conditions on buck
temperature and thermal post-buckling behavior.@DOI: 10.1115/1.1795220#
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1 Introduction
Laminated composite plate structures, including those mad

inhomogeneous functionally graded materials~FGMs! and char-
acterized by a smooth and continuous change in both compos
profile and material properties in certain spatial coordinates,
widely used in many industries. Quite often they are required
operate in varying temperature environments where, due to
in-plane displacement constraints on plate edges, signifi
strains and in-plane stresses are induced even when there
mechanical load, therefore, initiating buckling and post-buckl
phenomena involving geometric nonlinearity at high thermal lo
levels. In addition, significant variations in both the thermal a
elastic properties of plate materials are to be expected with t
perature fluctuations; for example, Young’s modulus and the sh
modulus usually decrease, while Poisson’s ratio and the the
expansion coefficient usually increase at elevated temperat
Hence, knowledge of the thermal buckling and post-buckl
characteristics of laminated plates that accounts for the effec
temperature-dependent material properties is of utmost im
tance for reliable and economic engineering design.

Many investigations of the buckling and post-buckling r
sponses of composite laminated plates in thermal environm
are available in the literature. Tauchert@1#, Noor and Burton@2#,
and Argyris and Tenek@3# presented comprehensive reviews
state-of-the-art development in this field. However, studies of
thermal buckling and post-buckling behavior of laminated pla
with temperature-dependent material properties are few. Chen
Chen@4,5# and Singha et al.@6# obtained finite element solution
for the thermal buckling and post-buckling of composite lam
nated thin plates. Significant influence of temperature-depen

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, August 18, 20
final revision, April 9, 2004. Associate Editor: S. Mukherjee. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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properties on the critical buckling temperature and post-buck
load-deflection curves was reported in@4,5#. By using the natural
mode method, Argyris and Tenek@7# assumed the material prop
erties to be in cubic variation with temperature and examined
post-buckling response of composite laminates under compres
load and a temperature gradient. In the framework of the fi
order shear deformation theory, Srikanth and Kumar@8# discussed
the effect of temperature-dependent properties on the p
buckling behavior and failure modes of symmetric lamina
through a direct application of the principle of minimum tot
potential energy. Shen@9# employed Reddy’s higher-order she
deformation theory and an iterative perturbation technique to
tain asymptotic post-buckling solutions for both perfect and i
perfect antisymmetric angle-ply and symmetric cross-ply lam
nated plates that were resting on an elastic foundation. All of
foregoing studies dealt with homogeneous materials and a the
load due to a uniform temperature change, except@6,7#, which
considered nonuniform temperature distribution.

In the past few years, the buckling and post-buckling of FG
structures has drawn the attention of the scientific commun
Shahsiah and Eslami gave the thermal buckling results for sim
supported FGM cylindrical shells@10,11#. Shen@12–14# and Shen
and Leung@15# examined the post-buckling behavior of pressu
loaded and axially loaded cylindrical shells and panels in ther
environments. Javaheri, Najafizadeh, and Eslami conducted a
ries of investigations into the compressive and thermal buck
of FGM plates with simply supported and clamped edges. T
presented successively closed solutions for the buckling load
compressed rectangular plates@16# and circular plates@17#, and
the critical buckling temperatures of rectangular plates@18,19#
and circular plates@20# under different temperature distribution
Their work @16–20#, however, did not include post-bucklin
analysis and neglected the existence conditions of bifurcation-
buckling in composite plates with the stretching-bending coupl
effect, which were clearly brought out by Qatu and Leissa@21#.
Hence, the results they provided for pure FGM plates that w
not fully clamped do not exist in actual situations. To address
buckling and post-buckling problems of FGM plate structures
a sound physical basis, Yang and Shen@22# developed a semi-
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analytical approach to determine the post-buckling paths for F
rectangular thin plates that are subjected to transverse and
plane loads. Thermal loads due to temperature change were
considered. Most recently, the present authors@23# discussed the
existence of bifurcational instability and carried out a po
buckling analysis for shear deformable FGM rectangular pla
with surface-mounted piezoelectric actuators under ther
electro-mechanical loads. Buckling load parameters for clam
plates were calculated and load-deflection curves were trace
using Reddy’s higher-order shear deformation theory. All of
above analyses concerning FGM plates, except@22#, did not ac-
count for the variation in material properties with temperatu
change and the effect of unavoidable initial geometric imperf
tions. There is obviously a need to gain a comprehensive ins
into the thermal post-buckling behavior of plate structures that
comprised of FGMs with actual temperature-dependent th
moelastic properties, possible geometric imperfections, and u
general edge boundary conditions.

This paper investigates the post-buckling of moderately th
FGM laminated rectangular plates with temperature-varying pr
erties and undergoing a uniform temperature change. The m
ematical formulation is based on the first-order shear deforma
theory and geometric nonlinearity due to moderately large de
mation of the von Ka´rmán type. The initial imperfection of the
plate is taken into consideration but, for simplicity, is assumed
be of the same form as the buckling mode. A system of nonlin
ordinary differential equations is obtained by the principle
minimum total potential energy and is then solved by the diff
ential quadrature method and iterative approaches to deter
the critical buckling temperature and the nonlinear temperat
deflection curves of plates with different boundary conditions. N
merical results are presented for laminated plates with var
symmetric and unsymmetric layup schemes.

2 Theoretical Formulations

2.1 Preliminaries. We consider an imperfectNL-layer lami-
nated rectangular plate (a3b3h) that consists of an isotropic
homogeneous metal layer and inhomogeneous ceramic/m
FGM layers. The plate is defined in a Cartesian coordinate sys
(x,y,z), wherez is the coordinate along the normal direction
the midplane of the plate and (x,y) are the coordinates of a ge
neric point along the in-plane directions. In accordance with
first-order shear deformation theory, the displacement fi
(U,V,W) of the plate takes the following form:

H U~x,y,z!

V~x,y,z!

W~x,y,z!
J 5H u~x,y!

v~x,y!

w~x,y!
J 1zH wx~x,y!

wy~x,y!

0
J 1H 0

0
w* ~x,y!

J
(1)

where (u,v,w) denotes the midplane (z50) displacements of a
point, (wx ,wy) are the midplane rotations of normal about they-
andx-axes, respectively, andw* is the initial geometric imperfec-
tion, which is assumed to be relatively small and have the sa
shape asw. Let h be the imperfection parameter

h5112
w*

w
(2)

Based on von Ka´rmán’s assumptions, geometric nonline
strains are obtained in the sense of moderately large deflec
and small rotations by strain-displacement relations as

«5«01z«1 (3)

where

«05L0U, «15L1U, U5@u v w wx wy#
T

«5@«x «y gxy gyz gzx#
T
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and the nonlinear differential operatorL0 and linear differential
operatorL1 take the forms of

L053
]

]x
0

1

2
hS ]

]xD 2

0 0

0
]

]y

1

2
hS ]

]yD 2

0 0

]

]y

]

]x
h

]

]x

]

]y
0 0

0 0
11h

2

]

]y
0 1

0 0
11h

2

]

]x
1 0

4 ,

L153
0 0 0

]

]x
0

0 0 0 0
]

]y

0 0 0
]

]y

]

]x

0 0 0 0 0

0 0 0 0 0

4 (4)

Neglecting the transverse normal stresssz , the Duhamel-
Neumann form of the linear elastic stress-strain relation is writ
as

5
sx

sy

txy

tyz

tzx

6 5F Q11 Q12 Q13 0 0

Q12 Q22 Q23 0 0

Q13 Q23 Q33 0 0

0 0 0 k4
2Q44 0

0 0 0 0 k5
2Q55

G S 5 «x

«y

gxy

gyz

gzx

6
25

a1

a2

a3

0
0
6 DTD (5)

or in a short form

s5Q~«2aDT! (6)

wheresx , sy , txy are in-plane normal and shear stresses,tyz ,
tzx are the transverse shear stresses,k4

2 andk5
2 are shear correction

factors and taken ask4
25k5

255/6,Qi j are the stiffness coefficients
anda i are the linear thermal expansion coefficients. Note that,
the materials considered herein,Q135Q2350, a15a25a, a3
50. As both the elastic and thermal properties of the materials
dependent on the environment temperature, we have

Q5Q~T!, a5a~T! (7)

where the temperatureT5T01DT, T0 is the reference tempera
ture at which the plate is stress free, andDT is the uniform tem-
perature increment.

The stress resultants are

F Nx Mx

Ny M y

Nxy Mxy

G5(
k51

NL E
zk

zk11H sx

sy

txy

J ~k!

~1,z!dz,
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HQy

Qx
J 5(

k51

NL E
zk

zk11H tyz

tzx
J ~k!

dz (8)

Thermal stress resultantsNx* , Ny* , Nxy* and moment resultant
Mx* , M y* , Mxy* are

F Nx* Mx*

Ny* M y*

Nxy* Mxy*
G5(

k51

NL E
zk

zk11H ~Q111Q12!a
~Q121Q22!a

0
J ~k!

DT~1,z!dz

(9)

The general boundary conditions at plate edges, i.e., sim
supported~S!, clamped~C!, free ~F!, or a combination of these
three, are considered and take the form of

S: un5Nns5w5Mn5ws50 (10a)

C: un5us5w5wn5ws50 (10b)

F: Nn5Nns5Qn5Mn5Mns50 (10c)

where the subscriptsn and s refer to the normal and tangentia
directions of the plate edge.

2.2 Variational Formulation. In the absence of body forc
and applied mechanical load, the total potential energy of
laminated plate due to thermal deformation is

P5
1
2E

V
~«2aDT!TsdV (11)

We assume that the displacement vectorU can be represente
in a series form as

U5 (
m51

M

Ũm~y!Ûm~x!

5 (
m51

M F ũm~y! 0 0 0 0

0 ṽm~y! 0 0 0

0 0 w̃m~y! 0 0

0 0 0 w̃xm~y! 0

0 0 0 0 w̃ym~y!

G
35

ûm~x!

v̂m~x!

ŵm~x!

ŵxm~x!

ŵym~x!
6 (12)

where the components inÛm(x) are unknown functions to be
determined, and those inŨm(y) are chosen to be the analytic
functions which satisfy at least the geometric boundary conditi
at edgesy50, b, as given in Appendix A.

Substituting Eqs.~3!, ~6!, and ~12! into Eq. ~11!, integrating
over z52h/2 to z5h/2 andx50 to x5a, introducing dimen-
sionless parameters

j5x/a, §5y/b, b5a/b, g5h/a,

~ ûm ,v̂m ,ŵm!5~uCm ,vCm ,wC m!/h (13)

and then applying the principle of minimum total potential ener
results in an ordinary differential equation system in terms ofÛm

LmÛm50 (14)

or
Journal of Applied Mechanics
ply

l

the

l
ns

gy

F L11 L12 ghL13 L14 L15

L21 L22 ghL23 L24 L25

L31 L32 g~L3311hL332! L34 L35

L41 L42 g~L4311hL432! L44 L45

L51 L52 g~L5311hL532! L54 L55

G 5 ûm

v̂m

ŵm

ŵxm

ŵym

6 55
0
0
0
0
0
6
(15)

in which the details of the ordinary differential operators are d
fined in Appendix B.

3 Solution Procedures
Equation~15! is a nonlinear ordinary differential system that

also a nonlinear function of temperature. To solve the proble
the differential quadrature method~DQM! is used to convert the
equations and the associated boundary conditions atj50, 1 into a
set of nonlinear algebraic equations, the solutions of which
then sought by an iterative algorithm. According to DQM, t
unknown function vectorÛm and itskth partial derivatives with
respect toj at a discrete point are approximated as the lin
weighted sums of its values at all of discrete points along
j-axis

Ûm5(
j 51

N

Pj~j!Ûm j ,
]kÛm

]jk U
j5j i

5(
j 51

N

Ci j
~k!Ûm j (16)

whereÛm j5Ûmuj5j j
is the value ofÛm at the jth point andN is

the number of discrete points whosej-coordinates are given by
either of the two spacing patterns generally used in DQM:

1. Equal spacing pattern

j j5
j 21

N21
~ j 51,2, . . . ,N! (17)

2. Cosine spacing pattern

j j5
1

2
2

1

2
cosFp~ j 21!

N21 G ~ j 51,2, . . . ,N! (18)

The cosine spacing pattern is employed in this paper becau
provides better convergence for the present problem. The inte
lation functionsPj are Lagrange polynomials, and the weightin
coefficientsCi j

(k) are determined through recursive formulas giv
in @24,25#.

By applying approximation relation~16! to the ordinary differ-
ential equation~14! at each of the interior grid points, we have

L̄miDm50 ~ i 52, . . . ,N21! (19)

where L̄mi is the discretized form of differential operator matr
Lm at j i , andDm is the unknown vector composed of displac
ment components at all grid points, which takes the form

Dm5@Ûm1
T , . . . ,Ûmi

T , . . . ,ÛmN
T #T (20)

Treating the boundary conditions~9! at j150, jN51 by rela-
tion ~16! in a similar way and then combining the resulted equ
tions with Eq.~19! yields 53N nonlinear algebraic equations fo
eachm,

GmDm5Rm (21)

whereGm is the nonlinear matrix that is dependent on both te
perature and unknown displacement vectorDm .

It should be noted that the right-hand-side termRm comes from
thermally induced stress resultants and bending moments in
ply supported or free boundary conditions at edgesj50, 1, and
will automatically vanish when the plate is clamped where o
displacement boundary conditions are involved or when the p
is symmetrically laminated where the stretching-bending stiffn
elementsBi j are absent. It is obvious that the bifurcation-typ
NOVEMBER 2004, Vol. 71 Õ 841
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Fig. 1 FGM laminated plates with different layup schemes: „a… FGMÕNickel ÕFGM, „b… FGMÕFGM,
and „c… FGMÕNickel
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thermal buckling will occur only whenRm50, otherwise trans-
verse deflection will take place whenRmÞ0, irrespective of the
magnitude of the temperature change.

The thermal buckling temperature, when it exists, is determi
from the nonlinear homogeneous equation

GmDm50 (22)

by an iterative numerical procedure with the following steps:

1.1. Assume thatDT50, the buckling temperatureDTcr is
solved by using the thermoelastic properties at refere
temperatureT0 .

1.2. Calculate the thermoelastic properties atT5T01DTcr and
updateGm , and a new buckling temperature is obtaine

1.3. Repeat step 1.2 until the thermal buckling temperat
converges.

The nonlinear temperature-deflection curve, also known as
post-buckling equilibrium path, is traced by two different iterati
schemes, depending on the presence ofRm . When Rm50, the
following iteration process is applicable

2.1. Begin with the dimensionless central deflectionwc /h50.
2.2. Use the iterative procedures 1.1–1.3.
2.3. Specify a new value ofwc /h.
2.4. Calculate the thermo-elastic properties atT5T01DTcr ,

and scale up the buckling mode that is obtained in step
to form a newGm to determine the post-buckling temper
ture.

2.5. Repeat step 2.4 until the post-buckling temperature c
verges.

2.6. Repeat steps 2.3–2.5 to obtain the post-buckling equ
rium path.

The modified Newton-Raphson technique is used ifRmÞ0, but
the process is omitted here for brevity.

The convergence criterion adopted in this study is of the fo
NOVEMBER 2004
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.
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UDTcr
~ i 11!2DTcr

~ i !

DTcr
~ i ! U<d (23)

That is, the iteration process is to be continued until the rela
difference between the solutions obtained from two consecu
iterations~i! and (i 11) reduces to a prescribed error toleranced.

4 Results and Discussion
In this section, thermal buckling and post-buckling analyses

carried out for laminated plates that are comprised of FGM lay
which are a mixture of nickel and silicon nitride (Si3N4). Four
different layup schemes are considered, including a! a symmetric
three-layer laminate that consists of a pure nickel middle layer
two FGM thin layers~FGM/Nickel/FGM!; b! a laminate with two
FGM layers that are symmetrically bonded together~FGM/FGM!;
c! an unsymmetrically laminated plate with an FGM thin lay
perfectly attached to the top of a thick, isotropic nickel lay
~FGM/Nickel!; and d! a pure FGM plate. Schematic configura
tions of the first three types of laminated plates are given in Fig
The volume fractionVceramic for Si3N4 in the FGM layer follows
a simple power law:

FGM/Nickel/FGM: Vceramic~z!5S 2z2hc

2hF
D n S hc

2
<z<

h

2D
(24a)

Vceramic~z!5S 2
2z1hc

2hF
D n S 2

h

2
<z<2

hc

2 D (24b)

FGM/FGM: Vceramic~z!5S 2z

h D n S 0<z<
h

2D (25a)

Vceramic~z!5S 2
2z

h D n S 2
h

2
<z<0D (25b)
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Table 1 Temperature-dependent coefficients for silicon nitride and nickel
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FGM/Nickel: Vceramic~z!5S 2z2h12hF

2hF
D n S h

2
2hF<z<

h

2D
(26)

Pure FGM: Vceramic~z!5S 2z1h

2h D n S 2
h

2
<z<

h

2D
(27)

wheren is the volume fraction index (0<n<`). The effective
propertiesPeff at an arbitrary point within the FGM layer can b
estimated by the rule of mixture as

Peff5Pmetal1~Pceramic2Pmetal!Vceramic (28)

in which Pceramic andPmetal stand for the property parameters
ceramic and metal, respectively. These properties, as discu
earlier, are also the functions of environment temperatureT (K),
as described by@26#

P5P0~P21T21111P1T1P2T21P3T3! (29)

The coefficientsP0 , P21 , P1 , P2 , andP3 for Young’s modulus
E, the Poisson ration, and the thermal expansion coefficienta of
nickel and Si3N4 are given in Table 1.

To evaluate the effect of temperature-dependence of constit
materials, the results are compared with those obtained by u
the following temperature-independent material constants@27#

Nickel: E5204 GPa, n50.31, a513.231026 l/K

Si3N4 : E5310 GPa, n50.24, a53.431026 l/K

4.1 Validation and Convergence Studies. Due to the lack
of appropriate results of functionally graded plates for direct co
parison, validation of the present formulation is conducted in t
ways. We first study the accuracy and convergence of the
posed method in linear buckling problems where no iteration p
cess is involved. For this purpose, the buckling temperatureslcr

5aDTcr3103 of simply supported isotropic square plates~n
50.21! are compared in Table 2 with the analytical solutions
Noor and Burton@28# using the three-dimensional thermoelast
ity theory and Shen@29# based on the first-order shear deform
tion plate theory. Material properties are assumed to be temp
ture independent. Our results are given in the form of converge
Table 2 Comparison of critical buckling temperature
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studies with respect toN, the number of discrete points distribute
along thej-axis, and toM, the number of truncated series expa
sions in Eq.~12!. The present method converges to solutions t
are in excellent agreement with both analytical solutions wh
N>15, M>5. In the following computation,N>15, M>5 will
be used, otherwise, they will be stated.

To validate the present formulation in thermal post-buckling
plates with temperature-dependent material properties, the p
buckling of a (0°/90°)s symmetric cross-ply square plate (a/h
530) under uniform temperature rise is considered, which w
also analyzed by Shen@9# using the perturbation asymptoti
method and Reddy’s higher-order shear deformation theory.
plate is simply supported with all edges restrained against in-p
normal displacements, but free to move in the tangential dir
tions. Except the Poisson’ ratio, which is considered to be in
pendent of temperature, the thermoelastic constants of each
are assumed to be linear functions of temperature as@9#

E115E110~11E111T!, E225E220~11E221T!

G125G120~11G121T!, G135G130~11G131T!,

G235G230~11G231T!

a115a110~11a111T!, a225a220~11a221T! (30)

where E110/E220540, G120/E2205G130/E22050.5, G230/E220

50.2, a110/a051, a220/a0510, n1250.25, E11152531024,
E2215G1215G1315G23152231024, a1115a2215531023, a0

51026/°C. The post-buckling temperature-deflection curves
the plate with and without temperature-dependent material p
erties are compared in Fig. 2 with Shen’s results. In temperat
independent cases, the constantsE111, E221, G121, G131, G231,
a111, anda221 are set equal to zero. It is evident that good agr
ment is achieved in this comparison study.

Convergence study of the iterative process is also conduc
Error toleranced51023 is used throughout the paper. The co
vergence of the iteration scheme is demonstrated in Table
where the total numbers of iteration~TNI! required to obtain con-
vergent results for thermal post-buckling curves of plates (a/h
530, n52.0) with temperature-dependent material properties
recorded for FGM/Nickel/FGM, FGM/FGM, and FGM/Nicke
square plates with SSSS, SCSC, and CCCC boundary condit
lcrÄaDTcrÃ103 for SSSS isotropic square plates
NOVEMBER 2004, Vol. 71 Õ 843
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Note that for FGM/Nickel/FGM, FGM/FGM, and CCCC FGM
Nickel plates, the numbers atwc /h50 are in fact the TNIs to
achieve the convergent critical buckling temperatures. The c
vergence rate varies mainly with boundary conditions and p
buckling deformations. As it can be expected, the process tak
longer time at greater deflectionswc /h, i.e., as the nonlinearity
increases. Rapid convergence is observed for both SSSS
SCSC plates while the CCCC plate needs more iterative com
tation whenwc /h>0.6– 0.8.

Fig. 2 Comparisons of post-buckling paths for a simply sup-
ported, symmetric cross-ply square plate
Table 3 Total numbers of iteration „TNI… in thermal pos
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4.2 Parametric Studies. We now present critical buckling
temperature parameterslcr5a0DTcr3103 for various FGM
laminated rectangular plates under uniform temperature cha
wherea0 is the thermal expansion coefficient of nickel at refe
ence temperatureT05300 K. All of the four plate edges are im
movable in the midplane in the SSSS, SCSC, and CCCC pla
but are free to move along thex-axis in the SFSF and CFCF
plates. Out-of-plane boundary conditions are denoted by symb
notations; for example, SFSF refers to a plate free atx50, a and
simply supported aty50, b. Thickness ratiohc /hF between the
nickel layer and the FGM layer is 8, 9, and 0 for the FGM/Nick
FGM, FGM/Nickel, and FGM/FGM laminated plates.

Table 4 giveslcr for SSSS, SCSC, CCCC, SFSF, and CFC
symmetrically laminated FGM square plates with side-
thickness ratioa/h530 and different volume fraction indices (n
50.5,2.0,10). Table 5 shows the results for CCCC FGM rect
gular plates witha/h530, 50,a/b51.0, 1.5, and various materia
compositions, among which Si3N4 and Nickel represent isotropic
silicon nitride plate and pure nickel plate, respectively. The va
of a/b varies witha remaining constant.

It can be seen that a plate with highera/b and lower values of
n and a/h has the greater thermal buckling temperature, an
plate with symmetric FGM/Nickel/FGM lamination has the low
est thermal loading capacity among all of the layup schemes u
consideration.

Note that the critical buckling temperature is greatly overe
mated when the temperature-dependence of material properti
not taken into account. The discrepancy between temperat
t-buckling analysis for laminated FGM square plates
Table 4 Thermal buckling temperature lcrÄa0DTcrÃ103 for symmetric laminated square plates
Transactions of the ASME



Table 5 Thermal buckling temperature l Äa DT Ã103 for clamped FGM rectangular plates
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aths
dependent solutions and temperature-independent solution
creases dramatically as side-to-thickness ratioa/h and volume
fraction indexn decrease. In terms of out-of-plane boundary co
ditions and lamination scheme, the discrepancy is maximum f
CCCC FGM plate and minimum for an SFSF plate with FG
Nickel/FGM symmetric configuration. The difference reaches
high as approximately 316% for a clamped, isotropic Si3N4 rect-
angular plate witha/h530 anda/b51.5, but is less than 0.2%
for an SFSF FGM/Nickel/FGM square plate with volume fracti
index n510 anda/h530.

It should also be mentioned that the presence of stretch
bending coupling effect in pure FGM plates and FGM lamina
plates with unsymmetric layup, irrespective of the magnitude
the temperature, gives rise to lateral deflection, and hence
bifurcation-type thermal buckling exists in actual situations
FGM/Nickel and FGM plates if they are not fully clamped at a
edges.

Typical thermal post-buckling results for FGM laminated pla
under uniform temperature change are plotted in Figs. 3–8
terms of the dimensionless temperature loadl5a0DT3103 ver-
sus dimensionless central deflectionwc /h. Solid curves and
dashed curves represent post-buckling equilibrium paths
temperature-dependent and temperature-independent plate
spectively.

Figure 3 gives the post-buckling equilibrium paths for simp
supported, symmetrically laminated FGM/Nickel/FGM squa
plates withn50.5, 2.0, and 10.0. The thermal post-buckling cur
becomes lower as the value ofn increases and when the therm
dependent properties are considered. The difference betwee
lutions by using thermal-dependent properties and therm
independent properties increases steadily with a decrease in
volume fraction index.

Thermal post-buckling behavior for plates with various lamin
tion schemes is compared in Fig. 4, where curves 1, 2, 3, and 4
the post-buckling paths for FGM/Nickel/FGM, FGM/FGM, FGM
Nickel and pure FGM plates, respectively. The plate edges
simply supported and the volume fraction index in FGM layer
n52.0. In such a case, the post-buckling behavior of unsymme
cally laminated plates is different from those of symmetric pla
in the early post-buckling region. Curves 3 and 4 originate fr
coordinate origin because no bifurcation buckling point exists
the FGM/Nickel and FGM plates. The results show that the FG
FGM plate has the highest post-buckling thermal-loading cap
ity, while the FGM/Nickel plate possesses the weakest heat re
tance. This is due to the fact that the FGM/FGM plate, among
f Applied Mechanics
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four types of plates considered, contains the greatest amoun
silicon nitride with a higher Young’s modulus. Note that th
temperature-independent results are significantly overpredic
especially for FGM/FGM and FGM plates.

Figure 5 presents a comparison between the equilibrium p

Fig. 3 Thermal post-buckling paths for simply supported
FGMÕNickel ÕFGM square plates with different volume fraction
indices

Fig. 4 Thermal post-buckling paths for SSSS square plates
with different lamination schemes
NOVEMBER 2004, Vol. 71 Õ 845



d

l

e

F

o
a

n
e

g

ost-

m-
ing

s 1,
mi-

ure-
en-
for

lly
om-
re-
era-
hear
ted
ing
for
per-
afe
not
of
of SSSS FGM/Nickel/FGM square plates with and without ge
metric imperfection.h51.0 andh51.2 correspond to perfect an
imperfect plates, respectively. The effect of initial imperfection
seen to weaken the thermal post-buckling strength of the p
Quite similar to the case that is shown in Fig. 4, the curves
imperfect plates differ greatly from those for perfect plates
small deflections (wc /h,0.3), but all curves tend to be quit
similar at large deflections (wc /h.0.3).

Figure 6 depicts the thermal post-buckling paths for symme
FGM/Nickel/FGM laminated square plates with SCSC, CFC
and SFSF boundary conditions. Note that both CFCF and S
plates under temperature change are free to expand or contra
thex-axis and only the in-plane displacement in they-axis is con-
strained. Numerical illustration shows that quite different from t
results for the SSSS and SCSC plates, only a small gain in
post-buckling temperature load of the SFSF and CFCF plate
observed as the deflection increases. Because of its weak
support and movability of in-plane displacement in thex-axis, the
thermal effect is relatively small in the SFSF plate, and therefo
the difference between temperature-dependent and tempera
independent solutions of the buckling temperature and ther
post-buckling path of the SFSF plate is insignificant.

Figure 7 deals with the effect of the side-to-thickness ratio
the thermal post-buckling response. To this end, thermal p
buckling paths are displayed for SSSS FGM/Nickel/FGM squ
plates withn510.0 anda/h530, 40, and 50. As expected, th
dimensionless post-buckling temperature load becomes m
larger as the plate becomes thicker. The discrepancy betw
temperature-dependent solutions and temperature-independe
lutions decreases with an increase ina/h and even seems to b

Fig. 5 Effect of geometric imperfection on the thermal post-
buckling paths of SSSS FGM ÕNickel ÕFGM square plates

Fig. 6 Thermal post-buckling paths for SCSC, SFSF, and CFCF
FGMÕNickel ÕFGM square plates
846 Õ Vol. 71, NOVEMBER 2004
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negligible whena/h550. It is noteworthy that the post-bucklin
curves cannot be extended beyondwc /h'1.875 due to the con-
vergence problem, and a sudden drop is observed in the p
buckling paths for the plate witha/h550 and atwc /h.1.875,
thus indicating the possibility of a secondary instability pheno
enon for thinner FGM laminated plates at larger post-buckl
deflections.

Figure 8 shows the effect of plate aspect ratio, where curve
2, and 3 are the results for simply supported, symmetrically la
nated FGM/Nickel/FGM plates witha/b50.75, 1.0, and 1.5~a is
kept constant!. A lower value ofa/b reduces the critical buckling
temperature and, in turn, lowers the post-buckling temperat
load-carrying capacity. The influence of the temperature dep
dence of the material properties is much more pronounced
plates with higher values ofa/b.

5 Conclusions
Thermal buckling and post-buckling analyses of symmetrica

and unsymmetrically laminated rectangular plates that are c
prised of functionally graded materials with temperatu
dependent material properties and subjected to uniform temp
ture change have been conducted by using the first-order s
deformation plate theory. Numerical illustration has demonstra
that the critical bucking temperature and thermal post-buckl
equilibrium path are remarkably overestimated, especially
thicker plates, when temperature-dependence of material pro
ties is not taken into account, thus leading to possible uns
engineering design. Unsymmetric FGM laminated plates do
have bifurcation-type thermal buckling due to the presence

Fig. 7 Effect of side-to-thickness ratio on the thermal post-
buckling paths of SSSS FGM ÕNickel ÕFGM square plates

Fig. 8 Effect of plate aspect ratio on the thermal post-buckling
paths of SSSS FGM ÕNickel ÕFGM rectangular plates
Transactions of the ASME
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stretching-bending coupling, and they exhibit post-buckling ch
acteristics that are different from those of their symmetric co
terparts. Certain factors, such as the layup scheme, volume
tion index in FGM layer, the out-of-boundary condition, initi
geometric imperfection, side-to-thickness ratio, and plate as
ratio, also significantly influence the buckling temperature a
post-buckling behavior of the FGM laminated plates.
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Appendix A
The functionsũm , ṽm , w̃m , w̃xm , andw̃ym , for different out-

of-boundary conditions at§50, 1, take the following forms:
Journal of Applied Mechanics
ar-
n-
rac-
l
ect
nd

lian
il

l

1. simply supported at§50, 1

ṽm~§!5w̃m~§!5w̃xm~§!5sin~mp§!;

ũm~§!5w̃ym~§!5cos~mp§! (A1)

2. clamped at§50, 1

ṽm~§!5w̃m~§!5w̃xm~§!5Ym ; ũm~§!5w̃ym~§!5
]Ym

]§
(A2)

where

Ym5sinmm§2sinhmm§2um~cosmm§2coshmm§!

um5~sinmm2sinhmm!/~cosmm2coshmm!

mm5~m10.5!p
Appendix B
Details of the ordinary differential operators are given below:

L11~ !5J0
~uu!

d2~ !

dj2
1

b2A66J2
~uu!

A11
~ !

L12~ !5
b~A121A66!J1

~uv !

A11

d~ !

dj

L13~ !5S J00
~uww!

d2~ !

dj2
1

b2A66J02
~uww!

A11
~ !D d~ !

dj
1

b2~A121A66!J11
~uww!

A11

d~ !

dj
~ !

L14~ !5
B11J0

~ux!

A11h

d2~ !

dj2
1

B66b
2J2

~ux!

A11h
~ !

L15~ !5
b~B121B66!J1

~uy!

A11h

d~ !

dj

L21~ !5
b~A121A66!J1

~vu!

A11

d~ !

dj

L22~ !5
A66J0

~vv !

A11

d2~ !

dj2
1

b2A22J0
~vv !

A11
~ !

L23~ !5bS A66J01
~vww!

A11

d2~ !

dj2
1b2

A22J12
~vww!

A11
~ !D ~ !1

b~A121A66!J01
~vww!

A11

d~ !

dj

d~ !

dj

L24~ !5
b~B121B66!J1

~vx!

A11h

d~ !

dj

L25~ !5
B66J0

~vy!

A11h

d2~ !

dj2
1

b2B22J2
~vy!

A11h
~ !

L31~ !5S b2A66J20
~wuw!

A11
1

2b2A66J11
~wuw!

A11
D dŵm

dj
~ !1S J00

~wuw!
d2ŵm

dj2
1

b2A12J02
~wuw!

A11
ŵm1

b2~A121A66!J11
~wuw!
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ŵmD d~ !

dj

1J00
~wuw!

dŵm

dj

d2~ !

dj2

L32~ !5bS A12J10
~wvw!

A11

d2ŵm

dj2
1

b2A22~J12
~wvw!1J21

~wvw!!

A11
ŵmD ~ !1bS 2A66J01

~wvw!

A11
1

~A121A66!J10
~wvw!

A11
D dŵm

dj

d~ !

dj

1
bA66J01

~wvw!

A11
ŵm

d2~ !

dj2
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in which the laminate stiffness components are calculated by
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k51

NL E
zk

zk11

~Qi j !
~k!~1,z,z2!dz ~ i , j 51,2,6! (B2)
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Adhesion at the Wavy Contact
Interface Between Two Elastic
Bodies
The plane strain elastic contact of two bodies with a wavy contact interface is inv
gated. The effect of adhesion is accounted for by using the Maugis model. This pe
mixed boundary value problem is solved using integral transform techniques. Resul
obtained for the extent of the contact region as a function of the dimensionless ap
pressure and for various values of the dimensionless adhesive stress and peak-to
height. These contact length versus applied pressure curves are characterized by d
tinuities and hysteresis. A finite contact region exists at zero load, with further loa
causing one or more jumps into a complete contact configuration. Unloading is
characterized by one or more jumps before pull-off occurs suddenly with a finite co
length and tensile pressure loading.@DOI: 10.1115/1.1794702#
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Introduction
The frictionless two-dimensional elastic contact problem for

elastic half-plane loaded by a periodic system of rigid flat punc
was solved by Sadowski@1#. Westergaard@2#, using a complex
stress function, found a closed-form solution for the tw
dimensional contact problem of an elastic half-space with a w
surface. He obtained an expression for contact stresses as w
for the dependence of the contact area on the applied pres
Independently, Shtaerman@3# obtained the same result, using th
Green’s function method in order to formulate the contact pr
lem as an integral equation for the normal contact stress. He fo
a general form of the mathematical solution for an arbitrary p
odic contact profile and a particular solution for a sinusoidal p
file. He also obtained an integral equation formulation for t
frictional contact problem and a general form of the solutio
Dundurs, Tsai, and Keer@4#, using Fourier analysis in a stres
function approach, produced a series solution to the friction
problem with a wavy surface, which reduces to the form obtain
by Westergaard. Kuznetsov@5# obtained a solution of the sam
problem, with one rigid body, by using the complex potent
method of Muskhelishvili. He also solved the frictional~low-
velocity! problem @6#. Nosonovsky and Adams@7# investigated
high-speed steady-state frictional sliding of the wavy cont
interface.

Johnson, Greenwood, and Higginson@8# obtained a numerica
solution, as well as asymptotic solutions for small and large zo
of contact, for the frictionless case of two-dimensional wavin
~three-dimensional elasticity!. Their method was based on Fouri
analysis. Manners@9# extended Westergaard’s problem to conta
surfaces with more complicated periodic profiles.

For sufficiently small size contacts, the adhesion forces
tween the surfaces affect the contact conditions. Various adhe
models, between an elastic sphere and a flat, have been i
duced. The model by Johnson, Kendall, and Roberts~JKR! @10#
assumes that the attractive intermolecular surface forces c
elastic deformation beyond that predicted by the Hertz the
producing a subsequent increase of the contact area. This m

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, August 8, 20
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Applied Mechanics, Department of Mechanical and Environmental Engineer
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accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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also assumes that the attractive forces are confined to the co
area and vanish outside the contact area. The model by Derja
Muller, and Toporov~DMT! @11# assumes that the contact di
placement and stress profiles remain the same as in the H
theory. However, these quantities are calculated for a higher
fective load which includes the applied normal force as well as
attractive adhesive stresses acting outside of the contact area
to the assumptions involved, the JKR/DMT models are most s
able when the range of surface forces is small/large compare
the elastic deformations, as pointed out by Tabor@12#. Another
model, introduced by Maugis@13#, describes a continuous trans
tion between the JKR and DMT models. In order to represent
surface forces, Maugis used a Dugdale approximation in wh
the attractive stress is constant for surface separations up
prescribed valueh0 . Intimate contact is maintained over the ce
tral region; an adhesive stress of constant magnitude acts i
annular ring outside of the contact zone for which the local se
ration is less thanh0 ; and the remainder of the separation regi
is stress free.

Contact problems with a wavy interface, such as@1–9#, are
relevant to applications such as seals~in which it is desirable to
reduce the separation between the surfaces! and in understanding
friction ~which is related to the real area of contact!. As length
scales decrease and surfaces become smoother in modern ap
tions such as microelectromechanical~MEMS! and nanoelectro-
mechanical~NEMS!, it becomes important to account for the e
fect of adhesion on the contact area in these problems. In
investigation, the effect of adhesion on the contact problem
tween two elastic bodies with a wavy contact interface is inve
gated. Plane strain linear elasticity is used along with the Mau
model of adhesion. Due to the nonlinear nature of adhesion,
contact area during unloading differs from that encountered d
ing loading.

Formulation of the Problem
Consider the plane strain frictionless contact of two sem

infinite elastic bodies, one of which is flat and the other of whi
has a slightly wavy surface. The bodies are pressed together
uniform normal tractionp applied at infinity~Fig. 1!. The lower
body is assumed to have a sinusoidal upper surface with a pe
of 2l and peak-to-valley amplitudeg, such that the gap prior to
loadingy0(x) is given by

y0~x!5
g

2 S 12cos
px

, D (1)

3;
he
l of

ing,
l be
E

004 by ASME NOVEMBER 2004, Vol. 71 Õ 851
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It is assumed that the amplitude of the waviness is small c
pared to its wavelength, i.e.,g!,, so that the lower body may b
treated as an elastic half-space with its boundary aty50. From
this point forward, the wavelength will be taken as,5p without
loss of generality.

The Navier equations of plane strain elasticity for the displa
ment componentsu(x,y), v(x,y) in the x and y directions, re-
spectively, are given by

~lk12mk!
]2u~k!

]x2 1mk

]2u~k!

]y2 1~lk1mk!
]2v ~k!

]x]y
50

~lk12mk!
]2v ~k!

]y2 1mk

]2v ~k!

]x2 1~lk1mk!
]2u~k!

]x]y
50 (2)

in which k51 for the upper body andk52 for the lower body.
Due to periodicity, only the strip2p,x,p need be considered

The boundary conditions at infinity (uyu5`) state that stresse
approach the uniform state of compression, i.e.,

syy
~1!5syy

~2!52p, sxy
~1!5sxy

~2!50, for 2p,x,p (3)

The following boundary conditions pertain to the contact interfa
(y50):

sxy
~1!5sxy

~2!50, 2p,x,p (4)

syy
~1!5syy

~2! , 2p,x,p (5)

]v ~1!

]x
2

]v ~2!

]x
5

g

2
sinx, 2a,x,a (6)

syy
~1!5s0 , a,uxu,c (7)

syy
~1!50, c,uxu,p (8)

The condition of vanishing shear stress~4! is exactly valid only
for frictionless contact or for material combinations such th
normal/shear stresses do not produce relative tangential/no
displacements. The latter case holds for identical materials;
one material rigid and the other incompressible; for two inco
pressible materials; or more generally, if the Dundurs bimate
parameterb, defined in@14#, vanishes. However, even if none o
these conditions hold, the coupling is generally a small effect@15#
and Eq.~4! can be used as an approximation. Condition~6! comes
from taking the derivative ofv (1)(x,0)2v (2)(x,0)5y0(x), i.e.,
the gap vanishes in the contact region.

Condition ~7! arises from the effect of adhesion using t
Maugis model@13# in which the adhesive tensile stress is a co
stant (s0) in regions in which the local separation is positive b
less thanh0 . The adhesive stress is taken to be equal to the

Fig. 1 Two elastic half-spaces with a wavy contact interface
subjected to a remotely applied pressure „p …
852 Õ Vol. 71, NOVEMBER 2004
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oretical strength and by equating the work of adhesionw to the
quantity s0h ~the work of adhesion in the Maugis model!. The
value of h0 is approximately equal to the lattice spacing@13#.
Thus, the additional condition needed to determine the extra
known c is obtained from

y0~a!2@v ~1!~a,0!2v ~2!~a,0!#50

and

y0~c!2@v ~1!~c,0!2v ~2!~c,0!#5h0 (9)

which states that the interface gap vanishes atx5a and is equal to
h0 at x5c. The second of these equations is subtracted from
first, which leads to

E
a

cS ]v ~1!

]x
2

]v ~2!

]x Ddx5y0~c!2y0~a!2h0 (10)

in which the normal displacements have been written as the i
gral of their derivatives.

In addition, the stress and displacement fields are subjec
certain inequality constraints on the interface, namely,

syy
~1!<s0 , 2a,x,a (11)

in the contact region, and

v ~1!2v ~2!<y0 , a,uxu,p (12)

in the separation zones.
The solution of the Navier equations~2! can be obtained by

using, for example, the Papkovich-Neuber potentials@16#. The
solution has been presented by Dundurs et al.@4# and is given as

f152
py

2~12n1!
1(

n51

`

ann21eny cosnx (13)

c15(
n51

`

bnn22eny cosnx (14)

f252
py

2~12n2!
1(

n51

`

cnn21e2ny cosnx (15)

c25(
n51

`

dnn22e2ny cosnx (16)

where fk is the y component of the vector potential~the other
components are zero!, ck is the scalar potential,nk are the Poisson
ratios, andk51,2 for the upper and lower bodies, respective
The displacements are related to these potentials by

2mku
~k!52y

]fk

]x
2

]c

]x

2mkv
~k!5~324nk!fk2y

]fk

]y
2

]c

]y
(17)

As discussed in@4#, the potentials~13!–~16! give the uniform
compression field at infinity and satisfy the periodicity conditio

u~1!5u~2!50, sxy
~1!5sxy

~2!50 (18)

on x56pn automatically. Furthermore@4#, the boundary condi-
tions ~4!–~5! require that

bn~122n1!an , cn52an , dn5~122n2!an (19)

The boundary conditions~6!–~8! lead to

(
n51

`

an sinnx52Mg sinx, 2a,x,a (20)
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n51

`

an cosnx5s01p, a,uxu,c (21)

(
n51

`

an cosnx5p, c,uxu,p (22)

where

M5
~11a!m1

4~12n1!
, a5

m2~12n1!2m1~12n2!

m2~12n1!1m1~12n2!
(23)

In order to satisfy~22!, we introduce the unknown functionf~j!
such that

an5
1

p E
2c

c

f~j!cosnjdj (24)

Then by substituting~24! into ~22!, reversing the order of sum
mation and integration, and using the identity@17#

(
n51

`

cosnx52
1

2
1p(

n50

`

d~x62pn! (25)

along with symmetry„f(x)5f(2x)…, condition ~22! is auto-
matically satisfied provided

E
2c

c

f~j!dj522pp (26)

The interfacial normal stress becomes

syy~x,0!5f~x!H~c2uxu! (27)

whereH(x) is the unit step function. Note that, in view of~27!,
Eq. ~26! may be viewed as an equilibrium condition in they
direction pertaining to a semi-infinite vertical strip of width 2p
centered atx50.

Now define another auxiliary functionc(x) by

c~x!5f~x!2s0 , 2c,x,c, c~x!50, a,uxu,c
(28)

and from~27!–~28!, the boundary condition~21! is automatically
satisfied.

In order to satisfy the remaining boundary condition~20!, we
substitute~24! and~28! into ~20!, reverse the order of summatio
and integration, and use the identity@17#

(
n51

`

sinnx5
1

2
cot

x

2
(29)

which leads to the singular integral equation

1

2p E
2a

a

@c~j!1s0#cot
x2j

2
dj52Mg sinx, 2a,x,a

(30)

It is now convenient to introduce the coordinate transformati
used by Comninou and Dundurs@18#

tan
j

2
5bu, tan

x

2
5bs, b5tan

a

2
, d5tan

b

2
(31)

C~u!5
c~j!

11b2u2

which, after considerable algebra, reduces the integral Eq.~30! to

1

p E
21

1 C~u!

u2s
du5 f ~s! (32)

where
Journal of Applied Mechanics
ns

f ~s!5FbsS cs01pp1s0 ln
d1bs

d2bsD GY p~11b2s2!

1
2bMgs

~11b2s2!2 (33)

Furthermore, the resultant condition~26! becomes

bE
21

1

C~u!du52~pp1s0c! (34)

Finally, the ‘‘adhesion displacement’’ condition~10! yields, af-
ter lengthy algebra

2
1

2M
~ I 11I 2!5

1

2
g~cosa2cosc!2h0 (35)

where

I 15
2b

p E
21

1

C~u!lnS d/b2u

12u Ddu1
~pp1s0c!

p
lnS 11d2

11b2D

I 25
s0

p E
a

c

lnF S d1tan
x

2D ~c2x!

S d2tan
x

2D2 cos2
c

2

G dx

1
s0~c2a!

p
F lnS 2 cos2

c

2

c2a
D 11G (36)

In order to solve the singular integral Eq.~32!, which is subject
to ~34–35!, the procedure developed by Erdogan and Gupta@19#
is used. The unknownC(u) is taken as

C~u!5~12u2!1/2g~u! (37)

in which g(u) and its derivative are bounded continuous functio
in the closed interval21<u<1. Then~32–35! are approximated
by linear algebraic equations. For example,~32! becomes

(
i 51

n
12ui

2

n11

g~ui !

ui2sj
5 f ~sj !, j 51,2, . . .n11

ui5cosS ip

n11D , i 51,2, . . .n (38)

sj5cosS p

2

2 j 21

n11 D , j 51,2, . . .n11

in which the middle equation is neglected due to symmetry@19#.
The analysis thus far has implicitly assumed thatc,p, which

need not always be the case. Solutions can also be obtaine
c5p, in which case the adhesion displacement condition~10! is
replaced with the inequality constraint given in terms of the ma
mum gap openinghM by

hM[y0~p!2y0~a!2E
a

pS ]v ~1!

]x
2

]v ~2!

]x Ddx<h0 (39)

Using ~35!, this condition becomes

hM5
1

2
g~11cosa!1

I 181I 28

2M
(40)

where
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p E
21

1

C~u!ln@b~12u!#du2
~pp1s0c!

p
ln~11b2!,

(41)
I 2850

It is noted that by symmetry, the maximum gap opening define
~40! occurs atx5p and this quantity is useful to know regardle
of the value ofc. Forc,p, the maximum gap openinghM is also
given by ~40! with I 18 given by ~41! but with

I 285
s0

p E
a

c

lnF S d1tan
x

2D ~c2x!

S d2tan
x

2D2 cos2
c

2

G dx

1
s0

p H ~p2a!F lnS 2 cos2
c

2 D11G
2~p2c!ln~p2c!2~c2a!ln~c2a!J (42)

Another possibility is that the surfaces are in a state of comp
contact, in which casea5c5p. Complete contact requires tha
the contact pressure cause the inequality~7! to be satisfied on the
entire interface. Thus, this state occurs provided that

p

Mg
>12

s0

Mg
(43)

In summary, three different types of solutions are possible
the first case,c,p and there exists a region (c,uxu,p) for
which the gap opening exceedsh0 . In the second case, (c5p)
the gap opening is everywhere less thanh0 . Finally, the third case
corresponds to complete contact of the wavy and flat surface

Numerical Results and Discussion
In Figs. 2–7 are graphs of the dimensionless contact half-len

~a! and adhesion half-length~c! as functions of the nondimen
sional remotely applied pressurep/Mg for various values of di-
mensionless adhesive stresss0 /Mg and peak-to-valley heigh
g/h0 . Discontinuities and hysteresis in the loading and unload
curves are observed in all of these graphs.

Figures 2–4 all pertain tog/h05100 and to various values o
the adhesive stresss0 /Mg. Consider, for example, Fig. 3 fo
which s0 /Mg50.5. At zero pressure, adhesion causes the
faces to meet with a finite value of the contact half-lengtha
'0.35) found by the intersection of a vertical line atp50 with
the solid curve. The corresponding values ofc versus pressure ar
shown by the dotted line. Note thatc is only slightly greater than

Fig. 2 Contact half-length „a… and adhesion half-length „c… ver-
sus applied pressure „p ÕMg … for s0 ÕMgÄ0.1 and g Õh 0Ä100
854 Õ Vol. 71, NOVEMBER 2004
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a. For increasing pressure,a increases until the tangent to it
curve becomes vertical. A further increase in pressure caus
jump to complete contact given by the dashed horizontal li
Complete contact persists for increasing contact pressure. Du
unloading, complete contact continues until reaching the left
of the horizontal line, beyond which point the complete cont
solution ~43! is no longer valid. A further decrease in pressu
causes a jump to the next stable equilibrium position, which is

Fig. 3 Contact half-length „a… and adhesion half-length „c… ver-
sus applied pressure „p ÕMg … for s0 ÕMgÄ0.5 and g Õh 0Ä100

Fig. 4 Contact half-length „a… and adhesion half-length „c… ver-
sus applied pressure „p ÕMg … for s0 ÕMgÄ1.0 and g Õh 0Ä100

Fig. 5 Contact half-length „a… and adhesion half-length „c… ver-
sus applied pressure „p ÕMg … for s0 ÕMgÄ0.1 and g Õh 0Ä10
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lower portion of the dot-dashed curve.1 The entire dot-dashed
curve corresponds toc5p, which requires that the opening ga
be everywhere less than the range of the adhesive stressh0 . A
further decrease in pressure causes another jump down to the
line until separation finally occurs at a tensile value of the pr
sure corresponding to a snap out-of-contact, i.e. a pull-off p
sure.

The behavior exhibited in Figs. 2 and 4 are similar to Fig.
except for the following differences. For the lower adhesive str
case ~i.e., Fig. 2 which corresponds tos0 /Mg50.1), loading
jumps from the solid line~a for which c,p) to the dot-dashed
curve ~a for which c5p) before jumping into complete contac
Unloading is qualitatively similar to Fig. 3 but with less hyste
esis, as may be expected for this lower adhesion case. Fo
higher adhesive stress case~i.e., Fig. 4 which corresponds t
s0 /Mg51.0), it is the unloading which differs from Fig. 3. Afte
unloading to the left-most point on the lower portion of the d
dashed line, the bodies jump completely out of contact.

Figures 5–7 all pertain tog/h0510 ~i.e., smoother surface
than in Figs. 2–4! and to the same values of the adhesive str
s0 /Mg corresponding to Figs. 2–4, respectively. In all casesc
2a is greater than its corresponding value for the rougher surf

1Calculations show that in the lower/upper portions of that curve, the opening
decreases/increases as the pressure increases. Thus, it is only the lower por
each of these curves that is expected to be stable and therefore physically rele

Fig. 6 Contact half-length „a… and adhesion half-length „c… ver-
sus applied pressure „p ÕMg … for s0 ÕMgÄ0.5 and g Õh 0Ä10

Fig. 7 Contact half-length „a… and adhesion half-length „c… ver-
sus applied pressure „p ÕMg … for s0 ÕMgÄ1.0 and g Õh 0Ä10
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Also the jump into contact occurs with a greater value ofa and the
stable portion of the dot-dashed curves tend to be more
nounced than in Figs. 2–4.

Finally, the dimensionless maximum gap opening displacem
hM /g as a function of dimensionless pressure is shown in Fig
for each of the six cases presented. Note that for the three c
corresponding to larger initial gaps~i.e., g/h05100), the maxi-
mum separation is only weakly affected by the adhesive str
However, for smaller gaps~i.e.,g/h0510), the adhesive stress ha
a more important effect on the maximum separation. The low
three curves, each of which correspond tog/h0510 andc5p,
begin athM5h0 , i.e., hM /g50.1. The corresponding curves fo
g/h05100 are not visible due to the vertical scale of the grap

Conclusions
The plane strain elastic contact of two bodies with a wa

contact interface has been investigated. The effect of adhesio
accounted for using the Maugis model. Results are obtained
the contact region as a function of the dimensionless applied p
sure and for various values of the dimensionless adhesive s
and peak-to-value roughness. The pressure versus contact le
curves are characterized by discontinuities and hysteresis. A fi
contact region exists at zero load with further loading causing
or more jumps into a complete contact configuration. Unloadin
also characterized by one or more jumps before pull-off occ
suddenly with a finite contact length and tensile pressure load
Adhesion has a greater effect on the maximum surface separ
for smoother surfaces.
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Implicit Multigrid Computations
of Buoyant Drops Through
Sinusoidal Constrictions
Two-dimensional computations of dispersed multiphase flows involving complex g
etries are presented. The numerical algorithm is based on the front-tracking meth
which one set of governing equations is written for the whole computational domain
different phases are treated as a single fluid with variable material properties. The f
tracking methodology is combined with a newly developed finite volume solver bas
dual time-stepping, diagonalized alternating direction implicit multigrid method. T
method is first validated for a freely rising drop in a straight channel, and it is then u
to compute a freely rising drop in various constricted channels. Interaction of
buoyancy-driven drops in a continuously constricted channel is also presented.
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1 Introduction
Dynamics of dispersed bubbles or drops in capillary flows

volving complex geometries has attracted considerable inte
due to its applications in enhanced oil recovery, hazardous w
management, microfluidic devices, and biological systems@1–3#.

The presence of deforming phases makes the multiphase
computations a challenging task, and strong interactions betw
the phases and complex geometries add further complexity to
problem. Therefore, the progress was rather slow and the com
tations of multiphase flows have been usually restricted to sim
geometries@4# or to moderately complex geometries in the lim
ing case of creeping flow regime@5,6#. Since nearly all-
multiphase flows of practical importance involve complex geo
etries, it is of obvious interest to extend the modeling a
computational techniques to treat multiphase flows in arbitra
complex geometries.

The motion of a drop in a constricted capillary tube has be
studied experimentally by Olbricht and Leal@1#, Olbricht and
Kung @7#, and Hemmat and Borhan@2#, and computationally in
the creeping flow regime by Tsai and Miksis@5# and Magna@6#.
Udaykumar et al.@3# performed computations of the motion o
droplets in a constricted channel at finite Reynolds numbers
using a mixed Eulerian-Lagrangian method.

In the present work, a finite-volume/front-tracking~FV/FT!
method is used to simulate dynamics of two-dimensional dr
rising due to buoyancy in various constricted channels. The fro
tracking ~FT! method developed by Unverdi and Tryggvason@8#
is incorporated into a newly developed finite-volume~FV! algo-
rithm in order to facilitate efficient and accurate simulations
dispersed multiphase flows in arbitrarily complex geometries. T
front-tracking method is based on writing one set of govern
equations for the whole computational domain and treating dif
ent phases as a single fluid with variable material properties
this method, the fronts are explicitly tracked in a Lagrang
frame and the effects of surface tension are accounted fo

1To whom correspondence should be addressed.
2Present address: Department of Mechanical Engineering, Florida Internat

University, EAS 2417, 10855 W. Flagler Street, Miami, FL 33174.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
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Applied Mechanics, Department of Mechanical and Environmental Engineer
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accepted until four months after final publication of the paper itself in the AS
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treating them as body forces. The front tracking method has b
successfully applied to a variety of dispersed multiphase fl
problems, but all in relatively simple geometries. A detailed d
scription of the front-tracking method can be found in the revi
paper by Tryggvason et al.@4#. The FV method used in the prese
work is based on the concept of the dual~or pseudo! time-
stepping method and is developed for unsteady computation
incompressible laminar flows. The dual time-stepping meth
uses subiterations in pseudotime and has a number of advant
such as direct coupling of the continuity and momentum equati
in incompressible flow equations, the elimination of factorizati
error in factored implicit schemes, the elimination of errors due
approximations made in the implicit operator to improve nume
cal efficiency, the elimination of errors due to lagged bound
conditions at both solid and internal fluid boundaries, and
ability to use nonphysical, preconditioned iterative methods
more efficient convergence of the subiterations as discusse
Caughey@9#. In order to combine the front-tracking methodolog
with the FV method, an algorithm is developed for tracking t
front in curvilinear grids and is found to be very efficient an
robust. The details of the present FV/FT method can be foun
Muradoglu and Kayaalp@10#.

The paper begins with a brief description of the governi
equations and the numerical solution algorithm. The results
then presented and discussed in Section 4. The present F
method is first validated for a freely rising drop in a straight cha
nel, and the results are compared with the results of the fin
difference/front-tracking~FD/FT! method implemented in the
FTC2D code of Unverdi and Tryggvason@8#. It is then applied to
a single drop rising in various constricted channels. Interaction
two identical drops are also studied in the continuously c
stricted channel. Finally, some conclusions are drawn in Sectio

2 Mathematical Formulation

Following Unverdi and Tryggvason@8#, the Navier-Stokes
equations are written for the whole flow field, and different pha
are treated with variable material properties. The effects of surf
tension are modeled as body forces and are included in the
mentum equations asd functions at the phase boundaries. In t

onal
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Cartesian coordinates, two-dimensional time-dependent Na
Stokes equations for incompressible flow can be written in c
servative form as

]q

]t
1

]f

]x
1

]g

]y
5

]fv

]x
1

]gv

]y
2DrG1E d~x2xf!sknds (1)

where

q5S 0
ru
rv

D , f5S u
p1ru2

ruv
D , g5S v

ruv
p1rv2

D ,

fv5S 0
txx

txy

D , gv5S 0
txy

tyy

D (2)

and the viscous stresses are given for a Newtonian fluid as

txx52m
]u

]x
, txy5mS ]u

]y
1

]v
]xD , tyy52m

]v
]y

(3)

In Eqs.~1!–~3!, u, v, p, r, andm denote the velocity component
in x and y directions, the pressure, the density, and the dyna
viscosity, respectively. The third term on the right-hand side
Eq. ~1! represents the body force due to buoyancy withG being
the gravitational acceleration andDr5ro2r, where ro is the
density of the ambient fluid. The last term represents the effec
the surface tension andd, xf , s, k, n and ds denote the Dirac
delta function, the location of the front, the surface tension co
ficient, the curvature, the outward unit normal vector on the in
face, and the arc length along the interface, respectively.

The fluids in and out of the drop are assumed to be incompr
ible, and the effects of heat transfer are neglected. Therefore
viscosity and the density remain constant in each fluid parti
i.e.,

Dr

Dt
50,

Dm

Dt
50 (4)

The flow regime of bubbly flows is characterized by four non
mensional parameters as discussed by Clift et al.@11#. These are
the Morton numberM5mo

4(ro2rb)G/ro
2s3, the Eötvös number

Eo5(ro2rb)de
2G/s, the density ratiog5rb /ro , and the vis-

cosity ratioz5mb /mo , wherede is the equivalent drop diamete
and the subscriptso andb refer to the ambient and the drop fluid
respectively. The Reynolds number is defined as Re5roVde /mo ,
whereV is the rise velocity.

3 Numerical Procedure
As can be seen in Eq.~1!, the continuity equation is decouple

from the momentum equations because it does not have any
derivative term in incompressible flows. To circumvent this dif
culty and to be able to use time-marching algorithms, pseudot
derivative terms augmented with a preconditioning matrix
added to Eq.~1! yielding

G21
]w

]t
1

]q

]t
1

]f

]x
1

]g

]y
5

]fv

]x
1

]gv

]y
2~ro2r!G

1E d~x2xf!sknds (5)

with
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whereb is a preconditioning parameter with dimensions of velo
ity and a is a dimensionless parameter to be determined. In
~5!, t denotes the pseudotime and the dual time-stepping me
is based on marching in pseudotime until a convergence
reached for each physical time step. Since the transient solutio
pseudotime is not of interest, we are free to use any nonphys
convergence acceleration technique, such as preconditioning
cal time-stepping, and multigrid methods. To facilitate treatm
of complex geometries, Eq.~5! is transformed into a curvilinea
coordinates defined by

j5j~x,y!, h5h~x,y! (7)

Using the relationq5I 1rw where the incomplete identity matrix
I1 is defined as

I15F 0 0 0

0 1 0

0 0 1
G (8)

and the transformation given by Eq.~7!, the transformed equa
tions in the curvilinear coordinates can be written as

G21
]hw

]t
1I 1

]hrw

]t
1

]hF

]j
1

]hG

]h
5

]hFv

]j
1

]hGv

]h
1hfb

(9)

whereh5xjyh2xhyj is the determinant of the Jacobian of th
transformation andhF, hG, hFv , and hGv are the transformed
convective and viscous fluxes given by

hF5yhf2xhg, hFv5yhfv2xhgv ,
(10)

hG52yjf1xjg, hGv52yjfv1xjgv

The vectorfb represents the last two terms on the right-hand s
of Eq. ~1!, namely, the sum of the buoyancy forces and the surf
tension. Following Caughey@9#, subiterated implicit scheme to
solve Eq.~9! can be written as

G21h
wp112wp

Dt
1I1

3~rhw!p1124~rhw!n1~rhw!n21

2Dt

5uF]hFv

]j
1

]hGv

]h
1hfbG p

2uF]hF

]j
1

]hG

]h G p11

2~12u!

3F]h~F2Fv!

]j
1

]h~G2Gv!

]h
2hfbGn

(11)

where ( )p denotes thepth level of the subiteration and ( )n de-
notes thenth level of the physical time step. The iterations in th
physical and pseudotimes are called the outer and inner iterat
respectively. The parameteru is the implicitness factor withu51,
corresponding to a fully implicit method in pseudotime. As can
seen in Eq.~11!, the viscous and source terms are treated imp
itly in the physical time and explicitly in the pseudotime. Th
correctionDw5wp112wp is computed in each subiteration a
cording to
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]h
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(12)

As can be seen in Eq.~12!, when a steady state is reached in t
pseudotime, i.e.,Dwp50, we have ( )p→( )n11. Therefore the
method is equivalent to the second-order implicit backward Eu
method in the physical time. To solve Eq.~12!, the convective
fluxes are linearized in pseudotime according to

S ]hF

]j D p11

5S ]hF

]j D p

1A
]Dwp

]j
1O~Dt2!

(13)

S ]hG

]h D p11

5S ]hG

]h D p

1B
]Dwp

]h
1O~Dt2!

where the Jacobian matrices are defined as

A5S ]F

]wD p

, B5S ]G

]wD p

(14)

From Eqs.~12!–~14!, the linearized equations can be written a

F I1
uDt

h S Ã
]

]j
1B̃

]

h D GDwp5R (15)

where the residual vector is defined as

R52DÀ1I 1
Dt

rh F3~rhw!p24~rhw!n1~rhw!n21

2Dt G
2

DtDÀ1G

h H uF]h~F2Fv!

]j
1

]h~G2Gv!

]h
2hfbG p

1~12u!

3F]h~F2Fv!

]j
1

]h~G2Gv!

]h
2hfbGnJ (16)

and

Ã5DÀ1GA; B̃5DÀ1GB; D5I1
3Dt

2Dt
I 1 (17)

Following Caughey@9#, Eq. ~15! is factorized as

F I 1
uDt

h
Ã

]

]jGF I 1
uDt

h
B̃

]

hGDwp5R (18)

which can be solved efficiently in two steps by using a blo
tridiagonal solver. However, Eq.~18! can be solved more effi
ciently using the diagonalization procedure. The diagonalizatio
possible because the inviscid part of the preconditioned equa
are hyperbolic, so there exist modal matricesQÃ andQB̃ such that

LÃ5Q
Ã
21

ÃQÃ; LB̃5Q
B̃
21

B̃QB̃ (19)

and the diagonal matrices having real eigenvalues. The diogo
ized algorithm is then given by

F I 1
uDt

h
LÃ

]

]jGQÃ
21

QB̃F I 1
uDt

h
LB̃

]

h GDVp5Q
Ã
21

R (20)

whereDVp5Q
B̃
21

Dwp. Equation~20! is solved in two steps using
a scalar tridiagonal solver in each step. Note that the spatial
rivatives are approximated by a cell-centered finite volu
method, which is equivalent to second-order central difference
a regular Cartesian grid and fourth-order numerical dissipa
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terms similar to that of Caughey@9# are added explicitly to the
right-hand side of Eq.~18! to prevent the odd-even decoupling.

A front-tracking method similar to that of Unverdi and Tryg
gvason@8# is developed for treatment of the different phases a
the surface tension. In this method, the interface is divided i
small line segments called front elements, and the end point
each element are tracked explicitly in a Lagrangian frame. T
details of the numerical method can be found in Muradoglu a
Kayaalp @10#. The complete solution procedure can be summ
rized as follows:

In advancing solutions from physical time leveln (tn5n•Dt)
to level n11, the locations of front points at the new time lev
n11 are first predicted using an explicit Euler method, i.e.,

Xf
n115Xf

n1DtVf
n (21)

whereXf andVf denote the position of front points and the flo
velocity interpolated from the neighboring fixed grid points on
front pointXf , respectively. Then the material properties and s
face tension are evaluated using the predicted front positionXf ,
i.e.,

rn115r~Xf
n11!; mn115m~Xf

n11!; fb
n115fb~Xf

n11!
(22)

The velocity and pressure fields at new physical time leveln
11) are then computed by solving the flow equations by the
method for a single physical time step, and finally the positions
the front points are corrected as

Xf
n115Xf

n1
Dt

2
~Vf

n1Vf
n11! (23)

After this step, the material properties and the body forces are
reevaluated using the corrected front position. Cubic B-splines
used for all the interpolations from the fixed curvilinear grid on
front points and from the front points onto fixed curvilinear gri
and for distributing surface tension onto fixed curvilinear gr
The overall method is second-order accurate both in time
space. It is emphasized that the method is implicit in physical ti
and the physical time stepDt is solely determined by accurac
considerations.

An auxiliary regular Cartesian grid is utilized for tracking th
positions of the front points in the curvilinear grid and is found
be very robust and efficient. Details of the tracking algorithm c
also be found in Muradoglu and Kayaalp@10#. The auxiliary regu-
lar Cartesian grid is also used to determine the material prope
using the procedure developed by Unverdi and Tryggvason@8#,
which involves solution of a Poisson equation. Bilinear interpo
tions are used to interpolate the material properties from the re
lar grid onto the curvilinear grid. The front marker points a
reflected back into the computational domain in the case that
points cross the solid boundary due to numerical errors. The
face tension is distributed only onto the neighboring grid poi
when the front is close to the solid boundary and care is take
make sure that the distributed forces are equivalent to the sur
tension. However, no special treatment is done when two fro
come close to each other in the computational domain.

We note that, in addition to the preconditioning method, a m
tigrid method similar to that of Caughey@9# and a local time-
stepping method are used to further accelerate convergence ra
pseudotime stepping. The details of the FV method can be fo
in Muradoglu and Kayaalp@10#.

4 Results and Discussion
The method is first validated for the test case of a buoyan

driven drop rising in a straight channel, and the results obtai
with the present method and with the well-tested FD/FT meth
of Unverdi and Tryggvason@8# implemented in the FTC2D code
are compared. Then the method is applied to more challenging
cases of the buoyancy-driven drops in various constricted ch
nels. Although the method is general and can handle many d
NOVEMBER 2004, Vol. 71 Õ 859
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Fig. 1 Velocity vectors around a light drop rising in a straight channel for Eo ¨ tvö s and Morton numbers EoÄ1, M
Ä10À4

„top plots …, EoÄ4, MÄ4Ã10À4
„middle plots … and EoÄ16, MÄ16Ã10À4

„bottom plots … at t *Ä9.487. Present
results „left plots … are compared with the FTC2D results „right plot …. Grid: 96 Ã384, dt *Ä0.0316.
c
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interactions, here only a single drop and two drop cases are
sidered. The computational results are expressed in terms of
dimensional quantities. For this purpose, the length, time,
velocity scales are defined asL5de , T5Ade /G and Vr
5mo /rode , respectively, and the nondimensional quantities
denoted by* . For example, thex andy coordinates are nondimen
sionalized asx* 5x/L and y* 5y/L, respectively. Although a
three orders-of-magnitude reduction in therms residuals of the
Õ Vol. 71, NOVEMBER 2004
on-
on-
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subiterations is found to produce essentially the same results
rms residuals are reduced by four orders of magnitude in e
inner iteration in pseudotime for all the simulations presented
this paper.

4.1 Freely Rising Drop in a Straight Channel. The
method is first applied to a two-dimensional freely rising drop in
straight channel. The purpose of this test case is to validate
Transactions of the ASME



Jour
Fig. 2 The vertical positions „left plot … and the rise velocities „right plot … of the drop centroid taken from the simula-
tions of the light drop rising in a straight channel. Computations are performed for Eo ¨ tvö s numbers 1, 4, and 16. The
solid lines denote the FTC2D results and the symbols are the present calculations. Grid: 96 Ã384, dt *Ä0.0316.
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method against the FD/FT method implemented in FTC2D c
of Unverdi and Tryggvason@8# that can only use regular Cartesia
grids. The computational domain is 2de38de , wherede is the
initial drop diameter and is resolved by a 963384 uniform regular
Cartesian grid. No-slip boundary conditions are applied on
side walls~i.e., x50 andx52de), while periodic boundary con-
ditions are used in the vertical direction. The drop is initially
infinitely long circular cylinder centered at (xc* ,yc* )5(1.0,2.0)
and starts rising from the rest due to buoyancy forces at timet*
50. Freely rising drops take various shapes depending essen
on the Eo¨tvös number.

To show this effect, computations are performed for three
ferent Eötvös and Morton numbers~i.e., Eo51, M51024; Eo
54, M5431024; and Eo516, M51631024), while the vis-
cosity ratio is kept constant atz51. The corresponding densit
ratios areg50.975, 0.9, and 0.6, respectively. The physical tim
step is fixed atdt* 50.0316, and the residuals are reduced by fo
orders of magnitude in each inner iteration in pseudotime. T
drop shapes and the velocity vector field in the vicinity of the dr
are plotted in Fig. 1 at timet* 59.487 for the cases ofEo51 ~top
plots!, Eo54 ~middle plots!, and Eo516 ~bottom plots!. The
results obtained with the FTC2D code are also shown in the r
plots of Fig. 1. It can be seen in this figure that the present res
are in good agreement with the FTC2D results demonstrating
accuracy of the present method. It is also observed that drop
formation increases as the Eo¨tvös number increases as expecte
To better quantify the accuracy of the present method the ver
position of the drop centroid and the drop rise velocity compu
with the present method as well as with the FTC2D code
plotted as a function of time in Fig. 2. As can be seen in t
figure, the present results are overall in very good agreement
the results of the FTC2D code except for the small discrepan
observed between the two results forEo516, which is partly
attributed to the time-stepping error in the present results. N
that the time step used in the present method is about 20 t
larger than that used in the FTC2D code for the case ofEo
516. Although the flow is incompressible, drop volume~area!
changes due to numerical errors and the percentage change
drop volume is a good indicator for the accuracy of the meth
Figure 3 shows the percentage change of the drop area obta
with the present method and the FTC2D code for all three set
dimensionless numbers. It can be observed in this figure tha
contrast with the FTC2D results, the drop volume reduces in t
as the drop rises in the present method for this test case, bu
overall percentage change in the drop volume is comparabl
nal of Applied Mechanics
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magnitude in both methods. In summary the present results c
pare well with the results of the well-tested FD/FT method
Unverdi and Tryggvason@8# demonstrating the accuracy of th
present algorithm.

4.2 Freely Rising Drops in Various Constricted Channels.
After validating the method for the case of a freely rising drop
a straight channel, we now consider buoyancy-driven drops ris
in various constricted channels to show the ability of the meth
for treating dispersed multiphase flows in complex geomet
where the phases strongly interact with the solid boundaries.
first test case concerns a single initially cylindrical drop rising d
to buoyancy in a constricted channel. The channel is 2de wide,
extends to 12de in the y direction, and is constricted sinusoidall
at the middle by 75% as shown in Fig. 4~b!. In Fig. 4~a!, a portion
of a coarse grid containing 323192 grid cells is plotted in the
vicinity of the constriction to show the overall structure of th
body-fitted curvilinear grid used in the simulations. The govern
nondimensional numbers are set toEo58, M5831024, g50.8,
and z51. No-slip boundary conditions are applied on the so

Fig. 3 Percentage change in the drop area for Eo ¨ tvö s num-
bers 1, 4, and 16 in the computations of the freely rising drop in
the straight channel. Dashed curves denote the present results,
and the solid curves are the FTC2D results. Grid: 96 Ã384, dt *
Ä0.0316.
NOVEMBER 2004, Vol. 71 Õ 861
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Fig. 4 Freely rising drop in a sinusoidally constricted channel. „a… A portion of the body-fitted
curvilinear coarse grid containing 32 Ã192 grid cells. „b… Snapshots taken at time frames t *Ä0,
9.49, 15.81, 22.14, 28.46, 31.62, 37.95, and 44.27. Time progresses from bottom to top. „c… The
vertical position „top plot … and the rise velocity „bottom plot … of the drop centroid computed with
the physical time steps dt *Ä0.3162 „dotted line …, dt *Ä0.1581 „dashed line …, and dt *Ä0.0791
„solid line …. EoÄ2, MÄ8Ã10À4, gÄ0.8, zÄ1. Grid: 128 Ã768.
c
,

e
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uted
walls, and periodic boundary conditions are employed in the v
tical direction. The drop is initially centered at (xc* ,yc* )
5(1.0,2.0) and starts rising from the rest due to buoyancy for
The snapshots taken at the time framest* 50, 9.49, 15.81, 22.14
28.46, 31.62, 37.95, and 44.27 are plotted in Fig. 4~b! to show the
overall behavior of the drop. The computations are performed
, NOVEMBER 2004
er-

es.

on

a 1283768 grid. In order to better quantify the drop motion, th
vertical position and the rise velocity of the drop centroid a
plotted in Fig. 4~c!. Computations are repeated for three differe
physical time steps~i.e., dt* 50.3162, 0.1581, and 0.0791! on the
same 1283768 grid to demonstrate the time-stepping error co
vergence. The small differences between the results comp
Fig. 5 Grid convergence analysis for the freely rising drop in the straight channel. The vertical position „left plot …
and the rise velocity „right plot … of the drop centroid as a function of time computed on the body-fitted curvilinear
grids containing 48 Ã288 „solid line …, 96Ã576 „dotted line … and 128Ã768 „dashed line … grid cells in the time interval
t *Ä25 and t *Ä35. dt *Ä0.1581, EoÄ4.
Transactions of the ASME
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Fig. 6 Effects of grid refinement of the front structure. Before the drop enters „left plot, time t *Ä12.65… and after
it passes „right plot, time t *Ä22.14… the constriction computed on 48 Ã288 „solid line … and 128Ã768 „dashed line …

grids. dt *Ä0.1581, EoÄ4. The coarse grid results in wiggles on the front while the front remains smooth in the
case of the fine grid.
h
c

h the
of

ime
with the two smallest physical time steps indicate that the tim
stepping error convergence is achieved anddt* 50.1581 is suffi-
cient for this test problem. Figures 4~b! and 4~c! together show
that the drop motion initially resembles that of the straig
channel case before the drop starts feeling the effects of the
al of Applied Mechanics
e-

t-
on-

striction~i.e., before aboutt* 515), but then it is strongly affected
by the presence of the constriction as the drop passes throug
constriction. In Fig. 5, the vertical position and the rise velocity
the drop centroid computed on 483288, 963576, and 1283768
grids are plotted to show the grid convergence. The physical t
Fig. 7 Freely rising drop in a continuously constricted channel. „a… A portion of the body-fitted
curvilinear coarse grid containing 32 Ã192 grid cells. „b… Snapshots taken at time frames t *
Ä0, 10.33, 20.66, 30.98, 41.31, and 51.64. Time progresses from bottom to top. „c… The vertical
position „top plot … and the rise velocity „bottom plot … of the drop centroid computed with the
physical time step dt *Ä0.1291 on a 128Ã768 grid. EoÄ18, MÄ8Ã10À4, gÄ0.8, zÄ1.
NOVEMBER 2004, Vol. 71 Õ 863
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Fig. 8 Buoyancy-driven two-drop interaction in the continuously constricted channel. Snapshots taken at t *Ä0, 35.78,
53.67, 71.55, 89.44, 107.33, 125.22, 143.11, 161.00, and 178.89. EoÄ2, MÄ8Ã10À4, gÄ0.8 and zÄ1. Grid: 96 Ã576,
dt *Ä0.2236.
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step is kept constant atdt* 50.1581, and the results are show
only in the time intervalt* 525 and t* 535, during which the
drop passes through the constriction. The decreasing differe
between results obtained on the successively finer grids indi
that the grid convergence is achieved and the 963576 grid is
sufficient for this test case. Figure 6 shows the fronts compute
the 483288 and 1283768 grids just before the drop enters a
after it passes the constriction in order to demonstrate the eff
of the grid refinement on the front structure. As can be seen in
figure, the coarse grid results in wiggles on the front while
front remains very smooth in the case of the fine grid. Note t
results obtained on the 963576 grid is not plotted because it i
almost indistinguishable from the 1283768 grid case.

The next test case concerns a buoyancy-driven drop freely
ing in a continuously constricted channel depicted in Fig. 7~b!.
4 Õ Vol. 71, NOVEMBER 2004
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The channel is 4de/3 wide, and extends to 8de in the y direction,
and is constricted along they-axis by sinusoidal wavy walls. The
constriction ratio is 75% as in the singly constricted channel ca
The initial and the boundary conditions are the same as the si
constricted channel case, and the drop is initially centered
(xc* ,yc* )5(0.6667,1.6). The governing nondimensional numb
are Eo518, M5831024, g50.8, andz51. Computations are
performed on a 963576 grid with the constant physical time ste
dt* 50.1291. A portion of a coarser grid containing 323192 grid
cells is plotted in Fig. 7~a!. Note that a similar geometry was use
by Hemmat and Borhan@2# in their experimental study of the
buoyancy-driven drops and bubbles. The snapshots taken a
time framest* 50.0, 10.33, 20.66, 30.98, 41.31, and 51.64 a
plotted in Fig. 7~b! to show the overall evolution of the dro
motion. The strong interactions between the drop and the s
Fig. 9 Buoyancy-driven two-drop interaction in the continuously constricted channel. The horizontal „left plot … and
the vertical „right plot … positions of the „initially … left drop centroid „solid line …, the „initially … right drop „dashed line …,
and the center of the mass of the drop system „dotted line …. EoÄ2, MÄ8Ã10À4, gÄ0.8, zÄ1. Grid: 96 Ã576,
dt *Ä0.2236.
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Fig. 10 Buoyancy-driven two-drop interaction in the continuously constricted channel. The horizontal „left plot … and
the vertical „right plot … velocities of the „initially … left drop centroid „solid line …, the „initially … right drop „dashed line …,
and the center of the mass of the drop system „dotted line …. EoÄ2, MÄ8Ã10À4, gÄ0.8, zÄ1. Grid: 96 Ã576,
dt *Ä0.2236.
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walls can be clearly seen in this figure. It is emphasized that
spite of large deformations, the front remains smooth, wh
might be considered as a good indication for the accuracy of
simulation. The vertical position and the rise velocity of the dr
centroid are plotted in Fig. 7~c!. It can be seen in this figure tha
the rise velocity becomes periodic after a transient period~i.e.,
after aboutt* 520).

Finally, the method is used to compute two identical dro
freely rising in the continuously constricted channel. In this ca
the drop diameters are relatively small compared to the cha
width, and the ratio of the initial drop diameter to the maximu
channel width isde /dmax50.25. The corresponding nondimen
sional numbers areEo52, M5831024, g50.8, andz51. The
same 963576 grid is employed as used in the single-drop c
and the physical time step is taken asdt* 50.2236. The drops are
initially located at (xc* ,yc* )5(1.0,4.8) and (xc* ,yc* )5(3.0,4.8).
The snapshots taken at the time framest* 50, 35.78, 53.67, 71.55
89.44, 107.33, 125.22, 143.11, 161.00, and 178.89 are plotte
Fig. 8 to show the overall behavior of the drops. The dro
strongly interact with the solid walls as well as with themselv
and deform considerably as they pass through the constriction
is interesting to observe that the drops initially rise side by s
but the right drop passes the first constriction little earlier than
left drop and then the left drop catches up and passes the
drop. After that the drops switches their positions and this beh
ior is repeated periodically after each constriction. This beha
can also be seen in Figs. 9 and 10, where the horizontal
vertical locations, the horizontal and vertical~rise! velocities of
the individual drop centroids, and the center of the mass of
drop system are plotted. Note that neither breakup nor coalesc
is allowed in the present simulations. It can be seen from th
figures that the motion of a two-drop system becomes perio
after a transient period. Due to relatively poor grid resolution a
large physical time step, drops lose about 20% volume when
move about 14 drop diameters~which corresponds tot* 5215). In
spite of very strong interactions between the drops and the s
walls as well as between drops themselves and a relatively co
grid, the periodic behavior of the two-drop system observed
nal of Applied Mechanics
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Figs. 9 and 10 indicates that the main features of the two-d
interactions are well captured by the present method.

5 Conclusions
The computations of buoyant drops in constricted chann

have been reported in this paper. The FV/FT method is first v
dated for the case of a buoyancy-driven drop in a straight cha
by comparing the results with the computations obtained by
well-tested FD/FT method implemented in FTC2D code@8#. The
method has been successfully applied to buoyant drops in var
constricted channels. Some error convergence studies have
been performed. It is found that the present method is a via
tool to model dispersed multiphase flows in arbitrarily compl
geometries.
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Three-Dimensional Electroelastic
Analysis of a Piezoelectric
Material With a Penny-Shaped
Dielectric Crack
Previous studies assumed that a crack is either impermeable or permeable, whic
actually two limiting cases of a dielectric crack. This paper considers the electroela
problem of a three-dimensional transversely isotropic piezoelectric material with a pe
shaped dielectric crack perpendicular to the poling axis. Using electric boundary co
tions controlled by the boundaries of an opening crack, the electric displacements a
crack surfaces are determined. The Hankel transform technique is employed to redu
considered problem to dual integral equations. By solving resulting equations, the re
are presented for the case of remote uniform loading, and explicit expressions fo
electroelastic field at any point in the entire piezoelectric body are given in term
elementary functions. Moreover, the distribution of asymptotic field around the crack
and field intensity factors are determined. Numerical results for a cracked PZT-5H
ramic are evaluated to examine the influence of the dielectric permittivity of the c
interior on the field intensity factors, indicating that the electric boundary conditions
the crack surfaces play an important role in determining electroelastic field induced
crack, and that the results are overestimated for an impermeable crack, and unde
mated for a permeable crack.@DOI: 10.1115/1.1795219#
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1 Introduction
Piezoelectric materials have been used widely in techniq

such as actuators, sensors, transducers, etc., due to the int
coupling feature between elastic and electric behaviors@1#. How-
ever, a main disadvantage is that they are very susceptibl
fracture because of their brittleness. Owing to various cau
cracks or flaws are inevitably present in piezoelectric materi
which gives rise to electroelastic field concentration under app
electromechanical loading, rising high enough to cause the c
advance, and finally leads to serious degradation of the pe
mance of piezoelectric materials. To understand the failure me
nism of piezoelectric materials and maintain the stability
cracked piezoelectric structures operating in an environmen
combined electromechanical loading, the analysis of elastic
electric behaviors is prerequisite. So far, many efforts in the
have been made in this field~e.g.,@1–13#, among others!.

In determining electroelastic field induced by cracks embed
in piezoelectric materials, cracks of two types prevail, which u
ally are referred to as impermeable and permeable cracks. In o
words, for electric boundary conditions at the crack surfaces,
assumed that the electric displacements at the crack surface
inside the crack vanishes for the former case@3,4#, and that elec-
tric displacement and electric potential are continuous across
crack for latter case@8#. However, a real crack is a dielectric wit
permittivity « (c), « (c)5«0 , «058.85310212 F/m corresponding
to a crack full of air or vacuum. An impermeable crack simp
imposes the requirement of« (c)50, and further exact analysis of

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, Septembe
2003; final revision, March 17, 2004. Associate Editor: H. Gao. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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slender elliptical hole by Dunn@5#, Sosa and Khutoryansky@7#,
and Zhang et al.@9# indicates that the assumption of the impe
meable crack may give rise to significant errors in determining
electroelastic field. In contrast, for permeable crack having
thickness, since the electric boundary conditions are assume
be fulfilled at the boundaries of anundeformedcrack in solving
electroelastic fields, it ignores the contribution of the dielectric
the opening crack interior under applied electromechanical lo
ing on the electroelastic field. Therefore, in order to characte
the dependence of the crack opening displacement~COD! and the
electric displacements at the crack surfaces and inside the ope
crack, it is natural to assume that electric field inside the open
crack obeys

Ez
~c!52

Df

Duz
(1)

where a quantity with the superscriptc designates the one insid
the opening crack, andDf and Duz are the voltage and COD
across the crack, respectively. Consequently, the electric displ
ment vectorD (c) inside the opening crack obeys

Dz
~c!5«~c!Ez

~c! (2)

or

Dz
~c!52«~c!

Df

Duz
(3)

which was first proposed by Hao and Shen@14#, who used the
above electric boundary condition together with solving
Riemann-Hilbert boundary value problem, and gave an elec
elastic analysis of a crack in an infinite piezoelectric plane.

It is emphasized that~3! is fulfilled for a crack posterior to
deformation, not prior to deformation, orDuz denotes the final
displacement jump across the crack under combined electroel
loading. In fact, finite element analysis given by McMeeking@15#
demonstrated that it is more suitable and reasonable to con
the boundaries of a deformed crack, rather than an undefor
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E
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crack. Moreover, the validity of~3! is observed from recent ex
periments by Schneider et al.@16#, who found that there is a dis
tinct drop of electric potential between the two surfaces of
opening crack, implying that the existence of electric field in t
interior of an opening crack is full of dielectric such as air
vacuum. As a result, the condition~3! is adopted as an electri
boundary condition, reflecting a geometrically nonlinear relat
between electric displacement and COD, i.e., the electric displ
ment is controlled by unknown COD. Strictly speaking, the abo
electric boundary condition is not an exact electric boundary c
dition, since exact electric boundary conditions indicate that e
tric displacements and electric potentials~or fields! are continuous
along the normal and tangential directions of the interface
tween a piezoelectric matrix and an inhomogeneity, respectiv
@17#. However, for an opening crack, due to the COD small co
pared to the crack length or radius. As a simple modelling, in w
follows the electric boundary condition~3! is adopted.

For the two-dimensional case, such a treatment has been
in dealing with certain crack problems, such as Hao and S
@14#, Hao @18#, Liu et al. @19#, Xu and Rajapakse@20#, Wang and
Jiang @21#, and Wang and Mai@22#. However, for three-
dimensional crack problems in piezoelectric materials, sim
treatment is lacking, although some field intensity factors h
been determined for a penny-shaped crack. Such works ca
found in @23–33#, which are mainly concentrated on determinin
field intensity factors for either permeable or impermeable cra
via various approaches. For example, using the results of ele
elastic behavior in an infinite piezoelectric medium containing
spheroidal piezoelectric inclusion and letting a spheroidal pie
electric inclusion reduce to a penny-shaped crack, Kogan e
@25# derived the results of field intensity factors for a permea
penny-shaped crack. A similar problem has also been studied
der the electrically impermeable condition by Jiang and Sun@29#,
who found that the electric displacement intensity factor is in
pendent of applied mechanical loading, which is completely
posite to that for a permeable crack@25#. This means that the
dielectric of the crack interior~or equivalently the electric bound
ary conditions at the crack surfaces! plays a significant role in
determining the electroelastic field in a piezoelectric material c
taining cracks. Nevertheless, there are few papers dealing w
dielectric crack in a three-dimensional piezoelectric space. Th
fore, it is very necessary to investigate the effects of the dielec
of the crack interior on failure behavior of three-dimensional
ezoelectric materials.

This paper is concerned with the electroelastic behavior an
sis of a transversely isotropic piezoelectric material with a pen
shaped dielectric crack. The emphasis is focused on the influ
of the dielectric permittivity of the crack interior on the electr
elastic field, or the influence of the electric boundary condition~3!
on the electroelastic field. The electric displacements at the c
surfaces are determined by applied electromechanical loadin
well as the dielectric permittivity of the crack interior. By mea
of the Hankel transform technique, a complete solution for el
troelastic behavior in the entire piezoelectric space is given
terms of elementary functions, and the corresponding field in
sity factors are determined. The effects of the dielectric inside
crack on the fiend intensity factors are presented graphically f
cracked PZT-5H ceramic.

2 Statement of the Problem
Consider a class of axisymmetric problems of an infinite tra

versely isotropic piezoelectric body with the poling axis as thz
axis and the isotropic plane as thexy plane. The constitutive
equations with the framework of the theory of linear piezoel
tricity take the form

s rr 5c11ur ,r1c12

ur

r
1c13uz,z1e31f ,z (4a)
Journal of Applied Mechanics
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suu5c12ur ,r1c11

ur

r
1c13uz,z1e31f ,z (4b)

szz5c13ur ,r1c13

ur

r
1c33uz,z1e33f ,z (4c)

s rz5c44~uz,r1ur ,z!1e15f ,r (4d)

Dr5e15~uz,r1ur ,z!2«11f ,r (4e)

Dz5e31S ur ,r1
ur

r D1e33uz,z2«33f ,z (4f)

whereci j , « i j , and ei j are the elastic stiffnesses, the dielectr
permittivities, the piezoelectric constants, respectively.

In the absence of body forces and free charges, the equilibr
equations of stresses and electric displacements are, respect

s rr ,r1s rz,z1
s rr 2suu

r
50 (5a)

s rz,r1szz,z1
s rz

r
50 (5b)

Dr ,r1Dz,z1
Dr

r
50 (5c)

Substituting the constitutive equations into the above equilibri
equations yields the basic governing equations for elastic
placementsur anduz , and electric potentialf as follows:

c11S ur ,rr 1
ur ,r

r
2

ur

r 2D 1c44ur ,zz1~c131c44!uz,rz1~e311e15!f ,rz

50 (6a)

c44S uz,rr 1
uz,r

r D1c33uz,zz1~c131c44!S ur ,rz1
ur ,z

r D1e15S f ,rr

1
f ,r

r D1e33f ,zz50 (6b)

e15S uz,rr 1
uz,r

r D1e33uz,zz1~e311e15!S ur ,rz1
ur ,z

r D2«11S f ,rr

1
f ,r

r D2«33f ,zz50 (6c)

In what follows special attention is focussed on a penny-sha
crack of radiusa perpendicular to the poling axis, as shown in F
1. In order to obtain a desired electroelastic field of a piezoelec
body weakened by a penny-shaped crack, appropriate boun
conditions must be furnished. First of all, from the above analy
the electric boundary condition at the surfaces of a dielectric cr
is

Dz
~c!Duz~r ,0!52«~c!Df~r ,0!, r ,a (7)

It is worth noting that the above electric boundary condition at
crack surface is equivalent to~3! for an opening crack
@Duz(r ,0).0#. However, in case ofDuz(r ,0)50, ~3! becomes
meaningless. As a matter of fact, in this case two crack surfa
keep contact with each other, and the electric potential ju
NOVEMBER 2004, Vol. 71 Õ 867
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across the crack should vanish. Therefore, it is more convenie
rewrite ~3! in the above form, which pertains to an opening cra
as well as a closed crack. Previous assumptions on an electri
permeable crack are that electric potentials and electric displ
ments are continuous across an undeformed crack, rather th
deformed crack. In fact, once a crack opens, the electric pote
jumps across the crack should exist. Therefore, electric boun
condition ~7! is more suitable than the electrically impermeab
and permeable assumptions, and moreover, the latter two case
two limiting cases of the assumption~7!. Very recently, Ou and
Chen@34# also gave a discussion of validity of the condition~7!.

For a penny-shaped crack embedded in an infinite piezoele
body subjected to a uniform mechanical tensions0

` and constant
electric fieldE0

` at infinity along the poling axis, remote mechan
cal and electric boundary conditions can be written, respectiv
below

szz~r ,z!→s0
` , z→` (8a)

s rr ~r ,z!→0, r→` (8b)

s rz~r ,z!→0, z→` (8c)

Ez~r ,z!→E0
` , z→` (8d)

In general, it is easy to measure and control the electric fi
strength, rather than the electric displacement, in experim
Hence, for electric boundary conditions,E0

` is supposed to be
prescribed. Of course, the case when electric displacemen
given at infinity can be solved in a similar manner, which is om
ted here.

3 Solution of the Problem
In this section, we consider a penny-shaped crack lying a

plane perpendicular to the poling direction. Obviously, due to
symmetry it is sufficient to consider the upper half piezoelec
body. The electroelastic field in the lower part can be direc
given by symmetry from the counterpart in the upper part. He
in what follows we confine our attention to the upper half-spa

In order to obtain a desired solution, it is expedient to emp
the Hankel transform technique. We introduce three general
harmonic functions by Hankel transform of the zeroth order

Fig. 1 Geometry of a piezoelectric material with a penny-
shaped crack along with the corresponding coordinates
868 Õ Vol. 71, NOVEMBER 2004
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F j~r ,z!52E
0

` 1

j
Aj~j!e2g jjzJ0~jr !dj (9)

for z>0, whereAj (j)’s are unknown functions to be determine
through appropriate electric and elastic boundary conditio
g j

2 ( j 51,2,3) are three distinct roots of the following character
tic equation:

a0g61b0g41c0g21d050 (10)

wherea0 , b0 , c0 , andd0 are given in the Appendix, andg j is
chosen such that Re(gj) is larger than zero to guarantee that t
integral in ~9! vanishes asz approaches infinity. Then a forma
solution can be obtained in terms ofAj (j) as follows:

ur~r ,z!5(
j 51

3 E
0

`

Aj~j!e2g jjzJ1~jr !dj1B1r (11a)

uz~r ,z!5(
j 51

3

h3 jg jE
0

`

Aj~j!e2g jjzJ0~jr !dj1B3z (11b)

f~r ,z!5(
j 51

3

h4 jg jE
0

`

Aj~j!e2g jjzJ0~jr !dj1B4z (11c)

whereBk (k51,3,4) are unknown constants, andh3 j andh4 j are
constants that can be determined by the following relations:

c11

c441~c131c44!h3 j1~e311e15!h4 j
5

c131c441c44h3 j1e15h4 j

c33h3 j1e33h4 j

5
e311e151e15h3 j2«11h4 j

e33h3 j2«33h4 j
5g j

2 (12)

Moreover, from the constitutive equations, expressions for
stresses and electric displacements in terms ofAj (j) are also ob-
tainable. For example, we have

s rr ~r ,z!52(
j 51

3

b0 jE
0

`

jAj~j!e2g jjzJ0~jr !dj2~c112c12!r
21

3(
j 51

3 E
0

`

Aj~j!e2g jjzJ1~jr !dj1~c111c12!B11c13B3

1e31B4 (13a)

szz~r ,z!52(
j 51

3

b1 jE
0

`

jAj~j!e2g jjzJ0~jr !dj12c13B11c33B3

1e33B4 (13b)

s rz~r ,z!52(
j 51

3

b2 jE
0

`

jAj~j!e2g jjzJ1~jr !dj (13c)

Dr~r ,z!52(
j 51

3

b3 jE
0

`

jAj~j!e2g jjzJ1~jr !dj (13d)

Dz~r ,z!52(
j 51

3

b4 jE
0

`

jAj~j!e2g jjzJ0~jr !dj12e31B11e33B3

2«33B4 (13e)

wherebk j (k50,1, . . . ,4,j 51,2,3) are given in the Appendix.
As a straightforward check, substitution of~13! into the equi-

librium equations reveals that these equations are satisfied id
cally. The remaining task is how to get unknownBj and Aj (j)
Transactions of the ASME
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through appropriate electric and elastic boundary conditions
further determine electroelastic field for the crack problem po
by associated mixed boundary conditions.

Consideration of symmetry of the problem allows us to co
clude that the shear stress at the crack plane vanishes, i.e.,

s rz~r ,0!50, 0<r ,` (14a)

Since attention is restricted to the upper half-space, the follow
condition:

uz~r ,0!50, f~r ,0!50, r>a (14b)

must be supplemented owing to symmetry of the proble
Besides, at the crack surfaces, electromechanical boun
conditions

szz~r ,0!50, r ,a (14c)

Dz~r ,0!5D ~c!, r ,a (14d)

should be satisfied, whereD (c) is a constant to be determine
through~7!.

First, from the remote electromechanical loading expressed
~8!, we can get a system of linear equations that can be use
determine uniquelyBk (k51,3,4). The final result is

B15
~c33e312c13e33!E0

`2c13s0
`

~c111c12!c3322c13
2

(15a)

B35
@~c111c12!e3322c13e31#E0

`1~c111c12!s0
`

~c111c12!c3322c13
2

(15b)

B452E0
` (15c)

Knowledge ofBk (k51,3,4) permits us to further seek the di
turbed electroelastic field in a piezoelectric body weakened b
penny-shaped crack. To this end, by substituting the above re
into ~11! and~13!, application of~13b! and~13e! to the conditions
~14c! and ~14d!, respectively, leads to

2(
j 51

3

b1 jE
0

`

jAj~j!J0~jr !dj1s0
`50, r ,a (16a)

2(
j 51

3

b4 jE
0

`

jAj~j!J0~jr !dj1D0
`5D ~c!, r ,a (16b)

with

D ~c!(
j 51

3

h3 jg jE
0

`

Aj~j!J0~jr !dj

52«~c!(
j 51

3

h4 jg jE
0

`

Aj~j!J0~jr !dj, r ,a

(17a)

D0
`5

~c111c12!e3322c13e31

~c111c12!c3322c13
2

s0
`

1F ~c111c12!e33
2 12c33e31

2 24c13e33e31

~c111c12!c3322c13
2

1«33GE0
`

(17b)

Additionally, from ~11b! and~11c! in conjunction with the condi-
tions in ~14b!, we have

(
j 51

3

h3 jg jE
0

`

Aj~j!J0~jr !dj50, r>a (18a)
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(
j 51

3

h4 jg jE
0

`

Aj~j!J0~jr !dj50, r>a (18b)

BecauseD (c) is assumed to be an unknown constant,

(
j 51

3

@D ~c!h3 j1«~c!h4 j #g jAj~j!50 (19)

follows from ~17a! together with~18!. On the other hand, utilizing
the boundary conditions~14a! yields

(
j 51

3

b2 jAj~j!50 (20)

Now we arrive at two equations~20! and ~19! for Aj (j) ( j
51,2,3), which are solvable up to two unknowns. In other wor
two unknowns may be represented by the remaining one.
achieve this, we may choose a new intermediate auxiliary func
A(j) such that

Aj~j!5ajA~j! (21)

where aj ’s are constants. Putting the above into~20! and ~19!
yields, respectively,

(
j 51

3

b2 jaj50 (22a)

(
j 51

3

@D ~c!h3 j1«~c!h4 j #g jaj50 (22b)

Furthermore, substituting~21! into ~16a! and ~16b!, by compari-
son we find

s0
`(

j 51

3

b4 jaj1@D ~c!2D0
`#(

j 51

3

b1 jaj50 (22c)

Accordingly, Eqs.~22a!–~22c! form a system of linear algebrai
equations foraj , which can be rewritten in a compact form

LF a1

a2

a3

G5F 0
0
0
G (23)

with
NOVEMBER 2004, Vol. 71 Õ 869



b11@D ~c!2D0
`#1b41s0

` b12@D ~c!2D0
`#1b42s0

` b13@D ~c!2D0
`#1b43s0

`

L5F b21 b22 b23

@h31D
~c!1h41«

~c!#g1 @h32D
~c!1h42«

~c!#g2 @h33D
~c!1h43«

~c!#g3

G (24)
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In order to obtain a nontrivial solution of this equation, th
determinant of the matrixL must take zero, from whichD (c) can
be determined. In particular, for several special situations,D (c)

may be given via simple expressions.

i. In the absence of applied mechanical loading at infinity, t
situation gives

D~c!5D0
` , or D ~c!52

det@b1 ,b2 ,h2#

det@b1 ,b2 ,h1#
«~c! (25)

Hereafter bk denotes the vector composed
(bk1 ,bk2 ,bk3)T (k50,1, . . . ,4), andhk22 denotes the vec-
tor composed of (hk1g1 ,hk2g2 ,hk3g3)T (k53,4), T being
the transposition. Obviously, the first solution pertains to
case where a piezoelectric body without crack or two cra
surfaces contact each other, and the second solution is
ant on the material properties and not on applied load
suitable for an opening crack. From this, one further fin
the electric field inside the opening crack to be a const
2det@b1 ,b2 ,h2#/det@b1 ,b2 ,h1#, independent of applied
electric field and the dielectric permittivity. This phenom
enon has been found in studying a dielectric crack in
two-dimensional case@19#.

ii. In the case of an impermeable crack,« (c) is assumed to be
zero, and we then find

D~c!50, or D ~c!5D0
`2s0

`
det@b4 ,b2 ,h1#

det@b1 ,b2 ,h1#
(26)

Clearly, the first solutionD (c)50 corresponds to an openin
impermeable crack, and the second corresponds to a cl
crack, since two crack surfaces for a closed crack con
each other and the electric displacement at the crack
faces is certainly no longer vanishing.

iii. For a permeable crack,Df(r ,0)50 follows the assumption
of the electrically permeable crack. Owing to the fact th
Dz

(c)(r ,0) andDuz(r ,0) are finite, in this situation, it is eas
to derive

D~c!5D0
`2s0

`
det@b4 ,b2 ,h2#

det@b1 ,b2 ,h2#
(27)

which indicates thatD (c) is a linear function of applied
electric loading as well as applied mechanical loading.
addition, if letting « (c)→`, the derived electric displace
ments at the crack surface are the same as that give
~27!. This is to say that the electric displacements given
~27! are, in effect, equal to those for a conducting cra
where applied electric fields are parallel or antiparallel
the poling direction. Due to the fact that a real permea
crack is not a conducting crack, even for the present stu
i.e., applied electric fields parallel or antiparallel to the p
ing direction, the above result indicates a drawback of
electrically permeable assumption at the boundaries of
undeformed crack.

For a general case, expanding the determinant yields a qua
equation forD (c), and it admits two solutions

D ~c!5
2m16Am1

224m0m2

2m2
(28)

where

m05«~c!s0
` det@b4 ,b2 ,h2#2«~c!D0

` det@b1 ,b2 ,h2# (29a)
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m15«~c! det@b1 ,b2 ,h2#1s0
` det@b4 ,b2 ,h1#

2D0
` det@b1 ,b2 ,h1# (29b)

m25det@b1 ,b2 ,h1# (29c)

Clearly, apart from the material properties of the piezoelec
matrix, the electric displacementD (c) in the opening crack interior
is also dependent on the dielectric permittivity of the interior
the opening crack. Moreover, not only applied electric loading
also applied mechanical loading at infinity have a pronoun
influence onD (c). The above result coincides with those for th
analysis of a dielectric crack in the two-dimensional ca
@14,18,20–22#.

Generally speaking, in the two roots given by~28! for a dielec-
tric crack, only one is reasonable and the other is superflu
which should be neglected. Since« (c) is finite and lies in a range
of 0 to `, corresponding to the impermeable and conduct
cracks, respectively, the corresponding electric displacementD (c)

inside the opening crack should be located at the range betw
two limiting values corresponding to« (c)50 and« (c)5`, respec-
tively. Thus, an acceptableD (c) may be selected. An alternativ
approach for determining an acceptableD (c) is to look for the one
such thatDuz(x,0)>0, the physical interpretation of which is ob
vious, avoiding penetration of two crack surfaces. By comput
for many practical examples, we find thatD (c) selected from the
abovementioned two methods are identical. The variation ofD (c)

with E0
` for a dielectric crack embedded in a PZT-5H ceramic

plotted in Fig. 2, from which it is seen for a vacuum crack, t
electric displacements at the crack surfaces lie between thos
an impermeable crack and a conducting crack. In addition,
curve corresponding to« (c)50 has an apparent turning point a
about E0

`523 kV/cm, i.e., the crack is closed asE0
`,

23 kV/cm, and the crack starts to open asE0
` exceeds23 kV/cm

in the presence ofs0
`55 MPa.

Fig. 2 Electric displacement versus applied electric field with
s0

`Ä5 MPa for various values of « „c … of the crack interior for a
cracked PZT-5H ceramic
Transactions of the ASME



Due to the complexity of dependence~28! of D (c), we here
present an approximate linear relation betweenD (c) and applied
electric fieldsE0

` for computingD (c) by the following form:
Journal of Applied Mechanics
Dap
~c!5lEE0

` (30)

with
lE5
«~c!g2 det@b1 ,b2 ,h2#

«~c! det@b1 ,b2 ,h2#1s0
` det@b4 ,b2 ,h1#2g1s0

` det@b1 ,b2 ,h1#
(31a)
ni-
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d of
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he
where

g15
~c111c12!e3322c13e31

~c111c12!c3322c13
2

,

(31b)

g25
~c111c12!e33

2 12c33e31
2 24c13e33e31

~c111c12!c3322c13
2

which is very accurate forE0
` taking in a range from210 kV/cm

to 10 kV/cm.
Once D (c) is determined, nontrivial solutionaj can be ex-

pressed in terms ofD (c) via solving arbitrary two equations
among ~22a!–~22c!. For example, solving~22a! and ~22c! we
obtain

Fa2 /a1

a3 /a1
G

52F b22 b23

s0
`b421~D ~c!2D0

`!b12 s0
`b431~D ~c!2D0

`!b13
G21

•F b21

s0
`b411~D ~c!2D0

`!b11
G (32)

Next, applying the boundary conditions~16a! and~18a! we get
a pair of simultaneous dual integral equations forA(j)

kmE
0

`

jA~j!J0~jr !dj5s0
` , r ,a (33a)

E
0

`

A~j!J0~jr !dj50, r>a (33b)

where

km5(
j 51

3

b1 jaj (34)

This is a system of simultaneous dual integral equations involv
Bessel functions, and a solution can be obtained according
standard approach@35# is found to be

A~j!5A2

p

a3/2s0
`

km

J3/2~ja!

Aj
(35)

whereJ3/2(•) is the Bessel function of the first kind.
It is pointed out that the above result is suitable only for t

case where applied mechanical loading at infinity is nonzeros0
`

Þ0. In case ofs0
`50, from ~16a! we get( j 51

3 b1 jaj50, and in
this case Eq.~33a! becomes an identity. However, in the absen
of mechanical loading, in view of the coupling characteristic, a
plied electric loading also causes deformation of a piezoelec
body and further may give rise to crack opening. Taking in
account that the opening of crack is attributed to application
electric loading for this case, we therefore use Eq.~16b! instead of
Eq. ~16a! to obtain dual integral equations similar to~33!. An
analogous treatment gives a solution as
ing
to a

he

ce
p-
tric
to
of

A~j!5A2

p

a3/2@D0
`2D ~c!#

ke

J3/2~ja!

Aj
(36)

where

ke5(
j 51

3

b4 jaj (37)

In view of ~22c!, it is readily seen that in the presence of mecha
cal loading, the solution~35! coincides with~36!. Similarly, ~36!
is valid only forD0

`ÞD (c), since Eq.~16b! also becomes an iden
tity when D0

`5D (c). For convenience, we rewrite these two r
sults in a uniform form, i.e.,

A~j!5A2

p

a3/2P

k

J3/2~ja!

Aj
(38)

where

P5s0
` , k5km , as s0

`Þ0 (39a)

P5D0
`2D ~c!, k5ke , as s0

`50 (39b)

D0
` andD (c) being defined by~17b! and ~28!, respectively.
With the above obtained results, the entire electroelastic fiel

a cracked piezoelectric body can be determined. This can
achieved by substituting~38! into ~11! for elastic displacements
and potential. Making use of some known results involving in
nite integrals of Bessel functions, which are listed in the Appe
dix, explicit expressions for the elastic displacements and po
tial are obtained as follows:

ur~r ,z!5
P

pk (
j 51

3

ajF r sin21S l 1 j

r D2
l 1 j

r
Ar 22 l 1 j

2 G1B1r

(40a)

uz~r ,z!5
P

pk (
j 51

3

h3 jg jajFAa22 l 1 j
2 2g j z sin21S l 1 j

r D G1B3z

(40b)

f~r ,z!5
P

pk (
j 51

3

h4 jg jajFAa22 l 1 j
2 2g j z sin21S l 1 j

r D G2E0
`z

(40c)

whereB1 andB3 are given by~15a! and ~15b!, respectively, and

l 1 j5
1

2
@A~r 1a!21~g j z!22A~r 2a!21~g j z!2# (41a)

l 2 j5
1

2
@A~r 1a!21~g j z!21A~r 2a!21~g j z!2# (41b)

In a similar fashion, from~13! we can further give a complete
solution of elastic stresses, electric displacements, and ele
fields in the entire space. Or rather, utilizing the relevant formu
listed in the Appendix, the distribution of electroelastic field in t
entire space is
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s rr ~r ,z!5
P

pk (
j 51

3

@2b0 jajh2 j~r ,z!1~c112c12!ajh0 j~r ,z!#

(42a)

suu~r ,z!5
P

pk (
j 51

3

@2b5 jajh2 j~r ,z!2~c112c12!ajh0 j~r ,z!#

(42b)

szz~r ,z!5
2P

pk (
j 51

3

b1 jajh2 j~r ,z!1s0
` (42c)

s rz~r ,z!52
2P

pk (
j 51

3

b2 jajh1 j~r ,z! (42d)

Dr~r ,z!52
2P

pk (
j 51

3

b3 jajh1 j~r ,z!, Dz~r ,z!

5
2P

pk (
j 51

3

b4 jajh2 j~r ,z!1D0
` (43a)

Er~r ,z!5
2P

pk (
j 51

3

h4 jg jajh1 j~r ,z!, Ez~r ,z!5

2
2P

pk (
j 51

3

h4 jg j
2ajh2 j~r ,z!1E0

` (43b)

whereb i j ( j 51,2,3,i 50, . . . ,4) aredefined as before,

b5 j5~c13h3 j1e31h4 j !g j
22c12 (44)

and

h1 j~r ,z!5
l 1 j
2 Aa22 l 1 j

2

r ~ l 2 j
2 2 l 1 j

2 !
, h2 j~r ,z!5FaAl 2 j

2 2a2

l 2 j
2 2 l 1 j

2
2sin21S l 1 j

r D G
(45a)

h0 j~r ,z!5
l 1 j

r 2
Ar 22 l 1 j

2 2sin21S l 1 j

r D (45b)

Therefore, explicit analytic expressions for the complete el
troelastic field are given in terms of elementary functions. Fr
the above results, explicit expressions for electroelastic field
an impermeable crack and for a conducting crack can be dire
written out only if setting« (c)50 and« (c)5`, respectively. In
addition, if imposing the piezoelectric coefficients vanish, t
electric and elastic behaviors are uncoupled, and the corresp
ing elastic field reduces to the results relating to a penny-sha
crack embedded in an infinite transversely isotropic medium s
jected to uniform tension at infinity. It is interesting to note th
for the latter, explicit expressions in terms of elementary functio
are not given by Sneddon and Lowengrub@36#, who gave their
results involving complicated infinite integrals.

In what follows we confine our attention to the crack planez
50. In this case, using the properties ofl 1 j and l 2 j @37#

lim
z→0

l 1 j~r ,z!5H r , as r ,a,

a, as r .a
, lim

z→0
l 2 j~r ,z!5H a, as r ,a

r , as r .a
(46)

we get immediately elastic displacements and potential in
crack plane, from the results~40!
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ur~r ,0!5
PH~r 2a!

pk (
j 51

3

ajF r sin21S a

r D2
a

r
Ar 22a2G

1
rPH~a2r !

2k (
j 51

3

aj1
~c33e312c13e33!E0

`2c13s0
`

~c111c12!c3322c13
2

r

(47a)

uz~r ,0!5
PH~a2r !

pk (
j 51

3

h3 jg jajAa22r 2 (47b)

f~r ,0!5
PH~a2r !

pk (
j 51

3

h4 jg jajAa22r 2 (47c)

whereH(t) denotes the Heaviside unit step function, i.e.,H(t)
51 ast.0 andH(t)50 ast,0. Moreover, from the results~42!
in conjunction with~39!, it follows that aside from the apparen
conclusions rz(r ,0)50, other nonvanishing elastic stresses, el
tric displacement, and electric field in the crack plane are

szz~r ,0!5H 2s0
`

p F a

Ar 22a2
2sin21S a

r D G1s0
` , as r .a

0, as r ,a,

(48a)

Dz~r ,0!

5H 2@D0
`2D ~c!#

p F a

Ar 22a2
2sin21S a

r D G1D0
` , as r .a

D ~c!, as r ,a,

(48b)

Ez~x,0!

55 2
2P

pk (
j 51

3

h4 jg j
2ajF a

Ar 22a2
2sin21S a

r D G1E0
` , as r .a

1

«~c!
D ~c!, as r ,a.

(48c)

Note that from~48a!, szz(r ,z) for z50 is independent of ap-
plied electric loading and material properties. Nevertheless,
distribution ofszz(r ,z) for zÞ0 around the crack front is relian
on the material properties, which is apparently seen from~42c!
since aj together withk are determined by combined loading
including mechanical loading as well as electric loading. In co
trast,Dz(r ,z) around the crack front is dependent on applied m
chanical loading no matter whetherz50 or not, which is due to
the fact thatD (c) is controlled by applied mechanical loading
apart from electric loading. Furthermore, it is not difficult to fin
that the behavior ofEz(r ,z) is the same asDz(r ,z). Obviously, it
is seen that all the electroelastic quantities exhibit a usual squ
root singularity near the crack frontr 5a, in accordance with the
counterpart for a two-dimensional case.

By comparing these expressions for electroelastic field in
crack plane obtained above with those given by Zhang et al.@17#,
it is found that two results are the same in form except for
electric displacementsD (c) at the crack surfaces. Zhang et al.@17#
started with an elliptical hole before deformation and derived
electric displacementsD (c) at the hole boundary by use of th
exact electric boundary conditions. The results indicate that w
considering a very slender elliptical hole~i.e., reducing a crack!,
D (c) are strongly dependent on a competition factora/b* , a and
b* being defined by Zhang et al.~@17#, p. 227!. In the present
study, aflat penny-shaped crackbefore deformationand an open-
ing elliptical hole after deformation are assumed, and furtherD (c)

are related to the eventual COD of thedeformedelliptical hole
Transactions of the ASME
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Table 1 Relevant material properties

Dielectric
Piezoelectric permittivities

Elastic Stiffnessess~31010 N/m2
! constants~C/m2! ~31010 F/m!

c11 c33 c44 c12 c13 e31 e33 e15 «11 «33

PZT-5H 12.6 11.7 3.53 5.5 5.3 26.5 23.3 17 151 130
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~opening crack!. Under these circumstances, values ofD (c) evalu-
ated by~28! are also strongly dependent on both materials pr
erties, including the permittivity and applied electromechani
loadings, which is in exact agreement with those for the tw
dimensional analysis~see e.g.,@14,18,20–22#!.

4 Asymptotic Field and Intensity Factors
In studying the stability of a cracked piezoelectric structure,

importance from the viewpoint of fracture mechanics is the dis
bution of the asymptotic electroelastic field around the crack fro
which can be characterized as field intensity factors.

In order to obtain the required asymptotic field, we introduc
local polar coordinate system~r,u! with the origin at the periphery
of the crack, which satisfies

r5A~r 2a!21z2, u5tan21@z/~r 2a!# (49)

In the close vicinity of the crack front, i.e.,r!a, we have

l 1 j.a1
r

2
@cos~u!2Acos2~u!1g j

2 sin2~u!# (50a)

l 2 j.a1
r

2
@cos~u!1Acos2~u!1g j

2 sin2~u!# (50b)

Upon substitution of these into~42!, by neglecting some higher
order infinitesimal terms, the asymptotic expressions for elec
elastic field in the vicinity of the crack front are derived below

Fsrr~r,u!

szz~r,u!

srz~r,u!
G.

2P

pk
A a

2r (
j 51

3 F b0 jaj f 2 j~u!

b1 jaj f 2 j~u!

2b2 jaj f 1 j~u!
G (51a)

F Dr~r,u!

Dz~r,u!

Er~r,u!

Ez~r,u!

G.
2P

pk
A a

2r (
j 51

3 F 2b3 jaj f 1 j~u!

b4 jaj f 2 j~u!

h4 jg jaj f 1 j~u!

2h4 jg j
2aj f 2 j~u!

G (51b)

where f 1 j (u) and f 2 j (u) denote the functions of angle distribu
tion, defined by

f 1 j~u!5
1

A4 cos2~u!1g j
2 sin2~u!

3A1

2 F12
cos~u!

Acos2~u!1g j
2 sin2~u!

G (52a)

f 2 j~u!5
1

A4 cos2~u!1g j
2 sin2~u!

3A1

2 F11
cos~u!

Acos2~u!1g j
2 sin2~u!

G (52b)

From the above, the intensity factors of stress, elect
displacement, and electric-field near the crack front, accordin
their definitions

Kq5 lim
r→a1

A2p~r 2a!q~r ,0! (53)
ied Mechanics
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whereq stands forszz, Dz , andEz , respectively, can be evalu
ated as

Ks5
2s0

`

p
Apa, KD5

2@D0
`2D ~c!#

p
Apa,

(54)

KE52
2P

pk (
j 51

3

h4 jg j
2ajApa

As seen from the above, no matter how applied electric load
varies, the stress intensity factor maintains unchanged, imply
that stress intensity factors near the crack front are inapplicab
predicting crack growth of piezoelectric materials. On the co
trary, the intensity factors of electric displacement and elec
field depend on the material properties and applied mechan
loading. In particular, if setting« (c)50, we findKD52D0

`Aa/p,
independent of applied mechanical stress, which is in agreem
with existing results, such as@27–29#, whereas if setting
Df(r ,0)50 or « (c)5`, we find KD

52s0
` det@b4 ,b2 ,h2#Aa/(det@b1 ,b2 ,h2#Ap), dependent solely

on applied mechanical stress, in agreement with those obtaine
@25,30,32,33#. Therefore, the above obtained conclusions un
impermeable and permeable conditions are completely oppo
However, a real crack is neither electrically impermeable nor e
trically permeable~at the boundaries of an undeformed crac!.
Consideration of a dielectric crack results in an important conc
sion. That is, applied mechanical loading strongly affects the
gularity of the electric displacement near the crack front, and a
its intensity factor varies with the dielectric permittivity of th
crack interior. Moreover, the impermeable and permeable cra
can be taken as two limiting cases of a dielectric crack.

Additionally, we introduce a factor to characterize the behav
of the CODuz(r ,0) near the crack front, referred as to the CO
intensity factor, which is defined by

KCOD5 lim
r→a2

A 2p

a2r
uz~r ,0! (55)

With the help of~47b!, one can immediately obtain

KCOD5
2P

pk
Apa(

j 51

3

h3 jg jaj (56)

identical to the crack center opening displacement 2uz(0,0), aside
from a factor ofAa/p.

5 Numerical Results and Discussions
In this section numerical computations are carried out for co

mercially available PZT-5H ceramic with the relevant materi
properties, listed in Table 1@3#.

Figure 3 shows the variation of the COD intensity factorKCOD

with applied electric fieldE0
` for three different crack models, a

impermeable crack, a vacuum dielectric crack, and a perme
crack, in the case of mechanical loadingss0

`55, 20, and 0 MPa,
respectively. Here the radius of the penny-shaped crack is ch
asa51 mm. It is noted that the solution corresponding to a p
meable crack is identical to that corresponding to a conduc
crack for applied electric fields parallel or antiparallel to the p
NOVEMBER 2004, Vol. 71 Õ 873
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ing axis because of~27!. It is found from Fig. 3~a! for s0
`

55 MPa that for a vacuum dielectric crack, a positive elect
field increasesKCOD, while a negative electric field decreas
KCOD, which implies that applied electric fields can aid or impe
crack growth depending on positive or negative directions of e
tric fields, in agreement with the experimental observations

Fig. 3 Variation of the COD intensity factor K COD with applied
electric field E0

` for « „c …Õ«0Ä0, 1, `, „a… s0
`Ä5 MPa, „b… s0

`

Ä20 MPa, and „c… s0
`Ä0 MPa
874 Õ Vol. 71, NOVEMBER 2004
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Park and Sun@38#. Therefore, it is more reasonable to adopt t
COD intensity factor as a fracture criterion to assess the frac
behavior of piezoelectric materials. Especially, in the case
« (c)/«050 corresponding to an impermeable crack, the cra
keeps closed (KCOD50) whenE0

`,23 kV/cm, and starts to open
when E0

`.23 kV/cm. In contrast, for a permeable crack or
conducting crack, the opening of a crack does not vary with
plied electric fields, as expected. Also it is found that three cur
corresponding to« (c)/«050, 1, and` intersect a point atE0

`

50, implying that values ofKCOD for purely mechanical loading
are the same for a crack, irrespective of the dielectric permittiv
of the crack interior. Similar trends are seen in Fig. 3~b! for s0

`

520 MPa. The only difference lies in the fact that the imperm
able crack does not close asE0

`.210 kV/cm for s0
`520 MPa,

while it is closed asE0
`,23 kV/cm for s0

`55 MPa, which is
easily understood since applied mechanical tensions0

`520 MPa
is much larger thans0

`55 MPa. In the absence of mechanic
loading @Fig. 3~c!#, a purely electric field cannot drive crac
growth for a permeable or conducting crack. This is easily und
stood because the electric boundary conditions for a perme
crack are adopted at the boundaries of an undeformed cr
However, this is not true for a dielectric crack and an impermea
crack. For a vacuum crack, the crack surfaces remain in con
for a negative electric field because the piezoelectric mate
shrinks in the poling direction, in this case, and they start to o
until the electric field exceeds a certain positive electric fieldEc
because it expands in the poling directions. HereEc denotes a
turning point from a closed crack to an opening crack, which
related to the dielectric permittivity of the crack interior. Obv
ously,Ec is shifted to the origin when« (c)/«0 drops down to 0. In
other words, for an impermeable crack, the crack surfaces k
contact for negative electric fields and open immediately o
when positive electric fields are applied.

Similarly, the variation ofKCOD with applied mechanical load
ing s0

` is displayed for three different values« (c)/«050, 1,`, for
E0

`50, 65 kV/cm in Fig. 4. Clearly, in the absence of electr
fields, values of the COD caused by purely mechanical load
are almost the same for various values of« (c)/«0 . Nevertheless,
the results manifest an important difference in the presence
electric fields. For example, from Figs. 4~b! and 4~c! it is observed
that values ofKCOD for an opening dielectric crack gradually be
come close to those ofKCOD for an impermeable crack with an
increase ofs0

` . Conversely, they gradually become close to tho
for a conducting crack with the decrease ofs0

` , which implies the
influence of« (c) inside the opening crack. This coincides with th
theoretical prediction for a two-dimensional cracked piezoelec
medium by Wang and Jiang@21#. Especially, it is observed from
Figs. 4~b! and 4~c! that for an impermeable crack, application
positive electric fields drives crack opening, even in the abse
of mechanical loading, while application of negative electric fie
cannot drive crack opening for lower mechanical loading, wh
is attributed to negative electric fields that cause the piezoele
material to shrink in the poling direction. When applied mecha
cal loading is large enough, the crack begins to open, agre
with that in Fig. 3.

Figures 5 and 6 are devoted to the effects of applied mechan
loading on the intensity factors of electric displacement and e
tric field, respectively. As pointed out above, the stress inten
factor is independent of applied electric field. However, the el
tric displacement intensity factorKD depends strongly on applie
mechanical loading, which is seen in Fig. 5. When an appl
electric field is absent, the effect ofs0

` is small, as compared to
that when an electric field is present, and exhibits almost a lin
relation. For the latter, applied mechanical loading has a str
influence onKD. For a positive electric field,KD for a dielectric
crack increases and gradually approaches that for an imperme
crack ass0

` is raised from 0, and decreases and gradually
Transactions of the ASME
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proaches that for a conducting crack ass0
` drops to 0. While for a

negative electric field, the tread is similar to the above, aside f
that the curve corresponding to« (c)50 is below that correspond
ing to « (c)5` for E0

`,0, which is reversed forE0
`.0. This is

attributed to the fact that positive and negative electric fields ca
piezoelectric material to expand and shrink, respectively. A
with the increase ofs0

` , KD for a dielectric crack still gradually
approaches that for an impermeable crack. It is also seen tha
curve corresponding to« (c)50 coincides with that correspondin

Fig. 4 Variation of the COD intensity factor K COD with applied
mechanical stress s0

` for « „c …Õ«0Ä0, 1, `, „a… E0
`Ä0 kVÕcm, „b…

E0
`Ä5 kVÕcm, and „c… E0

`ÄÀ5 kVÕcm
Journal of Applied Mechanics
om

use
lso

t the

to « (c)5` for lower s0
` , which is still due to a closed crack

whose two surfaces keep contact with each other in this st
Similar behaviors can be found for the electric field intensity fa
tor KE near the crack front in Fig. 6.

6 Conclusions
The electroelastic analysis of a transversely isotropic piezoe

tric body with a penny-shaped dielectric crack perpendicular

Fig. 5 Electric displacement intensity factor K D as a function
of applied mechanical stress s0
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the poling direction is made within the framework of the theory
linear piezoelectricity. Using the electric boundary conditions
the crack surfaces dependent on the COD, the electric disp
ments at the crack surfaces are determined in terms of app
electromechanical loading as well as the dielectric permittivity
the crack interior. The Hankel transform technique is employed
reduce the mixed boundary value problem to dual integral eq
tions. The results are presented for the case of remote unif

Fig. 6 Electric field intensity factor K E as a function of applied
mechanical stress s0

` for « „c …Õ«0Ä0, 1, `, „a… E0
`Ä0 kVÕcm, „b…

E0
`Ä5 kVÕcm, and „c… E0

`ÄÀ5 kVÕcm
876 Õ Vol. 71, NOVEMBER 2004
of
at
ce-
lied
of
to

ua-
orm

electromechanical loading. Explicit expressions for the comp
electroelastic field at any point in the entire piezoelectric space
obtained in terms of elementary functions. In particular, t
asymptotic electroelastic field around the crack front is also gi
in terms of angle distribution functions, and the field intens
factors are determined. The previous results for a penny-sha
impermeable or permeable crack are two special cases of
present results.
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Appendix
In deriving explicit expressions for the complete electroelas

field, the following integral equalities have been utilized:

E
0

`

e2cjJ1~jr !J3/2~ja!Ajdj5
2l 1

2Aa22 l 1
2

A2pa3/2r ~ l 2
22 l 1

2!
(A1)

E
0

`

e2cjJ1~jr !J3/2~ja!
dj

Aj
5

1

A2pa3/2r
F2 l 1Ar 22 l 1

2

1r 2 sin21S l 1

r D G (A2)

E
0

`

e2cjJ0~jr !J3/2~ja!Ajdj5
2

A2pa3/2F sin21S l 1

r D2
aAl 2

22a2

l 2
22 l 1

2 G
(A3)

E
0

`

e2cjJ0~jr !J3/2~ja!
dj

Aj
5

2

A2pa3/2 FAa22 l 1
22c sin21S l 1

r D G
(A4)

for Re(c).uIm(a6b)u, where

l 15
1
2@A~r 1a!21c22A~r 2a!21c2# (A5)

l 25
1
2@A~r 1a!21c21A~r 2a!21c2# (A6)

It is noted that the first two have been given in Fabrikant@39#,
while the last two are derived as follows.

Multiplying ~A2! by r, then differentiating with respect tor, and
considering the known result

]

]r
@rJ1~jr !#5jrJ0~jr ! (A7)

we get

E
0

`

e2cjJ0~jr !J3/2~ja!Ajdj5
2

A2pa3/2Fsin21S l 1

r D
2

l 1

rAr 22 l 1
2 S r 2 l 1

] l 1

]r D G
(A8)

Furthermore, upon substitution of the following results@37#:

] l 1

]r
5

a~ l 2
22r 2!

l 2~ l 2
22 l 1

2!
, l 1l 25ar (A9)

Ar 22 l 1
2Al 2

22r 25cr, Al 2
22a2Al 2

22r 25cl2 (A10)

into ~A8!, after some manipulations one can obtain~A3!.
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In order to derive~A-4!, putting the known identity

J3/2~ja!52
Aj

a

d

dj S J1/2~ja!

Aj
D (A11)

into the left-hand side of~A4! and performing integration by parts
we find

E
0

`

e2cjJ0~jr !J3/2~ja!
dj

Aj

5
1

a FA2a

p
2cE

0

`

e2cjJ0~jr !J1/2~ja!
dj

Aj

2r E
0

`

e2cjJ1~jr !J1/2~ja!
dj

Aj
G (A12)

With the aid of the known results@39#

E
0

`

e2cjJ1~jr !J1/2~ja!
dj

jAj
5

A2

Apar
F l 1

2
Ar 22 l 1

21
r 2

2
sin21S l 1

r D
1c~Aa22 l 1

22a!G (A13)

differentiation of the above equality with respect toc, considering
~A10!, yields

E
0

`

e2cjJ1~jr !J1/2~ja!
dj

Aj
5

A2

Apar
~a2Aa22 l 1

2! (A14)

On the other hand, we multiply~A13! by r and then differentiate
with respect tor. Employing the relations in~A9! and ~A10!, to-
gether with

Aa22 l 1
2Ar 22 l 1

25cl1 (A15)

we derive

E
0

`

e2cjJ0~jr !J1/2~ja!
dj

Aj
5

A2

Apa
sin21S l 1

r D (A16)

As a consequence, substituting~A14! and~A16! into ~A12! yields
the desired result~A-4!.

The constants appearing in~10! are respectively

a05c44~c33«331e33
2 !

b052c33c44«111c13
2 «332c11c33«3312c13c44«332c33e15

2 2c11e33
2

22c33e31e152c33e31
2 12c13e33e1512c13e33e3112c44e33e31

(A17)
c052c13

2 «111c11c33«1122c13c44«111c11c44«3322c13e15
2

22c13e15e311c44e31
2 12c11e15e33

d052c11~c44«111e15
2 !

The constants appearing in~13! are respectively

b0 j5~c13h3 j1e31h4 j !g j
22c11

b1 j5~c33h3 j1e33h4 j !g j
22c13

b2 j5@c44~11h3 j !1e15h4 j #g j (A18)

b3 j5@e15~11h3 j !2«11h4 j #g j

b4 j5~e33h3 j2«33h4 j !g j
22e31
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The Onset of Tearing at Slits in
Stressed Coated Plain Weave
Fabrics
A simple micromechanical model is presented for predicting the onset of tearing at s
damage sites in biaxially stressed coated plain weave fabrics. The stress concentra
the first intact yarn at the slit tip is determined as a function of increasing loading,
predictions for the onset of tearing are made under the assumption that tearing init
through the rupture of the first intact yarn at a characteristic yarn breaking load. Ext
sive onset of tearing experiments on various coated nylon and polyester fabric
presented, and the model is shown to capture the onset of tearing in these fabrics
well over a range of slit lengths.@DOI: 10.1115/1.1794165#
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Introduction
Coated woven fabrics are used in a variety of inflatable a

tension structures. An emerging application is the use of coa
fabrics to create pressure-stabilized~air-inflated! fabric beam and
arch structures, commonly referred to asair-beams. While the
propagation of tears in coated fabric structures has long be
concern, the issue is particularly important in air-beams, wh
rapid tear propagation initiating at sites of local damage or st
concentration is accompanied by a hazardous explosive relea
compressed air. An improved fundamental understanding of
mechanics of damage in coated woven fabrics is needed to
vide a rational basis for efficient, damage-tolerant air-beam m
rials and designs.

Hedgepeth@1# provided the first micromechanical analysis of
damaged filamentary structure. His analysis, based on shea
theory, has been applied to fiber/matrix composites, where
matrix transfers the load from broken to unbroken fibers by me
of shear. Hedgepeth regarded his model to apply to coated wo
fabrics as well, where the coating transfers shear between y
Literature experimental results on slit-damaged coated fab
@2–4# suggest that Hedgepeth’s analysis underestimates the
mote stress needed to initiate tearing—fabrics are more dam
tolerant than predicted by the Hedgepeth model. Inelastic effe
not considered in Ref.@1#, may partially explain the discrepanc
between the literature experiments and the analysis. The m
presented here, while having a similar mathematical structur
Ref. @1#, includes a type of inelastic deformation near the slit t
In this paper, we present the onset of tearing experiments f
variety of coated polyester and nylon fabrics that agree well w
the model.

For an extensive review of the literature on mechanics of da
age in stressed fabrics, the reader is directed to Ref.@5#. Here we
will highlight some recent works not discussed in the prior revie
Szostkiewicz and Hamelin@6# observed and analyzed failur

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, November
2003; final revision, April 2, 2004. Associate Editor: D. A. Kouris. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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mechanisms of a PVC-coated plain-woven polyester fabric wit
variety of slit-damage configurations under displaceme
controlled uniaxial and biaxial loading conditions. They reporte
number of interesting findings; however, their work did not i
clude any theoretical modeling. Experiments on the same pol
ter fabric with and without the PVC coating demonstrated that
coating significantly lowers the threshold load for the onset
tearing. Davidson et al.@7# consider the role of woven fabric be
havior in developing fracture toughness in fabric-reinforced co
posites. They investigated the ‘‘crack-tip’’ micromechanics of
common plain-woven apparel fabric through optical displacem
measurements and finite element modeling. The finite elem
model represented the interlaced yarns of the weave by a netw
of pin-jointed beams. When frictional slip between interlac
yarns at crossover points was included in the model thro
spring elements that allowed relative displacement between
beams at the pinned joints@8#, a good fit with the experimenta
measurements of fabric strains near the crack tip was obtaine
fabric-reinforced composites, Davidson et al.@7# consider the ma-
trix to play a role in limiting the possible fracture toughness of t
composite by inhibiting the potential for frictional slip betwee
yarns near the crack tip. This idea is supported by the res
mentioned above@6# on fabrics with and without coatings~a
coated fabric is essentially fabric-reinforced composite with
elastomeric matrix! and by the present work. In this paper, inela
tic deformation involving slip between yarns and permanent
formation of the coating, is key to reducing the stress concen
tion in the yarn at the slit tip and, therefore, inhibiting the onset
tearing failure.

While the major emphasis in this paper is the comparison of
present model with experiments on coated fabrics, the behavio
the coated-fabric model will also be discussed in the contex
shear-lag models for notched-fiber composite sheets where m
yielding plays a role similar to the yarn-slip mechanism enco
tered in fabrics@9#. Such models, outgrowths of Hedgepeth
original two-dimensional~2D! shear-lag model@1#, have been the
subject of extensive study. The onset of inelastic deformation
growth under increasing load, and the attendant affect on st
concentrations at the notch tip will be briefly discussed in b
material systems. This framework provides further insight into
coated-fabric model by pointing out some common aspects of

4,
he
l of

ing,
l be
E

004 by ASME NOVEMBER 2004, Vol. 71 Õ 879



o

f

-

r

s
i

e

l

y

are
bric

ition
s

p-
of
ment

r-
tive
the

it

ts

ays
ore,

of

n-

l

ave

in-
behavior of notched-sheet systems and highlighting behavi
features that are unique to the coated-fabric model system.

Micromechanical Model. We adopt a micromechanical mod
eling approach originally developed in@10#. Essential aspects o
the development are summarized here. Consider a coated p
weave fabric with damage consisting of a slit, parallel to thex2
coordinate direction atx150, where thex1x2 coordinate system is
aligned with the yarn directions. The slit interrupts the coating a
a series of consecutive number one~#1! yarns, referring to yarns
parallel to thex1 and x2 directions as #1 and number two~#2!
yarns, respectively. The plain-weave-unit cell dimensions arey01
along thex1 axis ~the spacing of the #2 yarns! andy02 along the
x2 axis ~the spacing of the #1 yarns!. Remote biaxial membrane
stresses~i.e., having dimensions of force/length! are applied to the
fabric such that the stress in thex2 direction,T2 , is held constant
while the stress in thex1 direction, T1 , is increased quasistati
cally. The global configuration of the damage and remote load
is shown in Fig. 1. We assume that the elastomeric coating ca
only shear so that the direct membrane stresses are supp
entirely by tension in the yarns. At the microstructural level, the
fore, the membrane stresses are viewed as individual remote
tensions such that #2 yarns are under constant remote tensionF2*
and #1 yarns are under quasistatically increasing remote tens
p ~i.e., T15p/y02, T25F2* /y01). As p increases, the #1 yarn
exhibit displacements in thex1 direction, and the #2 yarns exhib
x1 direction displacements and small rotations in the fabric pla
With continued increasing loading, a small amount of perman
deformation takes place in a region along the first intact #1 ya
at the slit tips. Whenp reaches a critical valuepc , tearing begins
through the rupture of one of the first intact #1 yarns at either
of the slit. In actual fabric testing, tearing may be catastroph
where the first yarn rupture coincides with rapid propagation
the tear, or progressive, depending on the particular fabric and
conditions. In this work it is assumed that rupture occurs when
maximum tension in the first intact #1 yarns reaches the y
ultimate breaking loadpu .

Appropriate differential equations, which describe the equi
rium of yarns in regions where inelastic behavior occurs and
the region where inelastic behavior does not occur, can easil
derived. For instance, in the elastic region, equilibrium of the
yarns can be derived by taking into account the load transfer to
#1 yarns that occurs due to the rotated tensioned #2 yarns in
fabric plane and the additional load transfer due to shear of
coating, assuming the coating does not wrinkle. For small ro

Fig. 1 Configuration of biaxial remote stresses on damaged
fabric
880 Õ Vol. 71, NOVEMBER 2004
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tions, the angles are indicated in Fig. 2~b!. The component of the
#2 yarn tension along the #1 yarn can then be written.

Introduceun
j as thex1 displacement of thejth crossover point

on thenth #1 yarn, where the reference state for displacements
the positions of points on an otherwise identical stressed fa
without damage. For sufficiently high values of the loadingp, the
#1 yarns are assumed to be in a nearly straightened out cond
~i.e., the out-of-plane ‘‘crimp’’ due to interlacing with the #2 yarn
has been taken out by displacement along thex1 direction, see
Ref. @11#!, and display an effective constant axial stiffness pro
erty (EA)eff having the dimension of force. In-plane rotations
the #1 yarns may be neglected, and the #1 yarn load-displace
relation is

F1n
j 5EAeff

un
j 2un

j 21

y01
1p (1)

where the factor (un
j 2un

j 21)/y01 is the additional strain in the yarn
due to the damage, andp accounts for the yarn load in the refe
ence state. Rotation of the #2 yarns is represented by rela
displacements at points on adjacent #1 yarns. Considering
crossover point unit cell as a free body, Fig. 2~b!, the component
of force in thex1 direction acting on the #2 yarn entry and ex
boundaries will beF2* (un21

j 2un
j )/y02 and2F2* (un

j 2un11
j )/y02.

Shear in the matrix bays between thenth and neighboring (n
21)th and (n11)th yarns gives rise to force componen
Ghy01(un21

j 2un
j )/y02 and2Ghy01(un

j 2un11
j )/y02, whereGh is

the shear stiffness of the coating layer~dimension of force/length!,
y01 is the unit cell length, and shear strains in the coating b
between #1 yarns are identical to the #2 yarn rotations. Theref
referring to Fig. 2~b!, equilibrium of thejth crossover unit cell in
the x1 direction is written as

EAeff

y01
~un

j 2122un
j 1un

j 11!1
Ghy011F2*

y02
~un21

j 22un
j 1un11

j !50

(2)

where Eq.~1! has been used for the #1 yarn force on either side
the crossover point, i.e., thejth and (j 11)th F1n terms. Regard-
ing un as a continuous function of positionx1 , this equilibrium
equation can then be written as

d2un

dx1
2

1
Gh1F2* /y01

EAeffy02
~un2122un1un11!50 (3)

Equation~3! is written in dimensionless form as

Un91Un2122Un1Un1150 (4)

using the following nondimensionalization:

x15A EAeffy02

F2* /y011Gh
j, un5pA y02

EAeff$F2* /y011Gh%
Un

(5)

where primes denote differentiation with respect toj.
RegardingF1n as a function of position, introduce a nondime

sional yarn loadPn , defined by

F1n5pPn (6)

Reforming the #1 yarn load-displacement relation, Eq.~1!, into a
continuous form@i.e., replacing (un

j 2un
j 21)/y01 with dun /dx1]

and nondimensionalizing, using Eq.~5!, gives the nondimensiona
load-displacement relation,

Pn5Un811 (7)

where we have used the definition given by Eq.~6!.
Experiments and analytical modeling of uncoated plain-we

fabrics have shown that, for moderate-sized slits, asp increases,
crossover point yarn slip occurs predominantly along the first
tact #1 yarn@e.g., yarn 2 in Fig. 2~a!# at the slit tip@12#. Crossover
Transactions of the ASME



Jo
Fig. 2 „a…. Geometry of damaged fabric indicating the elastic deformation. Breaks in #1 yarns, dashed lines represent
deformed #2 yarns. „b…. Equilibrium of the j th cross-over point unit cell under forces due to rotation of the tensioned #2
yarns and shear in the coating.
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point forces between the #1 and #2 yarns are a maximum a
the first intact-yarn nearx150, therefore it is in this region tha
the forces first attain a threshold value necessary for frictional
to occur between the interlaced yarns. In coated fabrics, the c
ing layer acts to bond the interlaced yarns together and inh
crossover point slip. As in uncoated fabrics, crossover point for
between the interlaced #1 and #2 yarns will be greatest along
first intact #1 yarn nearx150. Therefore, assuming that the coat
fabric cross-over point has some characteristic strength, we ex
that crossover point slip or inelastic relative displacement w
occur preferentially along the first intact yarn. The inelastic re
tive displacement between the #1 and #2 yarns involves yield
or separation of the coating, as depicted speculatively in Fig.

In the present model, we assume that inelastic yarn-to-y
relative displacement occurs in a region along the first intact

Fig. 3 Cross-section showing first intact #1 yarn at slit tip and
location of possible separation or yielding of coating. Arrows
indicate motion of #2 yarns.
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yarn near the slit line, 0,x1, l , wherel denotes the extent of the
inelastic zone. The inelastic deformation is assumed to occur
constant force off ~perfect plasticity! acting in the1x1 direction
on the #1 yarn at the cross-over point. Note that possible w
kling will have the same effect. We interpretf as an average cross
over point force. For fabrics coated on one side only, the ac
crossover point slip forces alternate between small values
nearly 2f and these forces are regarded as having an ave
value off per crossover point. Note that in the development of
equilibrium equation, Eq.~8!, the inelastic force will be average
over the crossover point unit cell to a force per length, i.e.,f /y01.

We consider a finite-width configuration of 2q11 #1 yarns
with a slit interrupting 2N11 yarns centered at the zeroth yar
Yarns in the positivex2 half-plane are numbered so thatn equals
1 to q. Yarns in the negativex2 half-plane are numbered21 to
2q. The slit is symmetrical about the center yarn, so that, c
cerning ourselves only with non-negativen, yarns numbered 0
<n<N are severed by the slit, and yarns numberedn.N are
intact. The (N11)th yarn is the first intact #1 yarn at the slit tip
Because of symmetry, we need only consider equations for y
n50 to n5q.

Following the previous discussion of inelastic behavior, eq
librium of the (N11)th yarn in the region 0,x1, l may be writ-
ten as

d2uN11

dx1
2

1
f

EAeffy01
50 (8)
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where the inelastic force has been averaged over the cross
point spacing. Equation~8! may be written in dimensionless form
as

UN119 1 f̂ 50 (9)

where slip occurs in a region 0,j, l̂ and a dimensionless loadin
parameter and extent of the inelastic region are introduced,

f 5pA~F2* 1Ghy01!y01

EAeffy02
f̂ (10a)

l 5A EAeffy02

F2* /y011Gh
l̂ (10b)

Development of the equilibrium equations in the inelastic
gion for the nearest-neighbor yarns to the first intact yarn~i.e.,
yarns N and N12), takes into account the rotation of the #
yarns, which, in this region, is not coupled touN11 due to slip.
Following a similar procedure to that in Ref.@12#, the #2 yarns are
treated as classical taut strings withx1 displacementdN11 at the
crossover points along the (N11)th #1 yarn. Equilibrium of the
#2 yarns is used to eliminatedN11 in the Nth and (N12)th yarn
equations. Finally, the equilibrium equations in the region 0,j
, l̂ for the Nth and (N12)th yarns are written in dimensionles
form as

UN9 1UN212
3

2
UN1

1

2
UN125

f̂

2
(11a)

UN129 1
1

2
UN2

3

2
UN121UN135

f̂

2
(11b)

The width of the model, specified by the value ofq, is assumed
to be sufficiently large such that the behavior of the finite wid
configuration closely approximates that of an infinite fabric w
an isolated slit. Similar studies in composite sheets contain
matrix yield zones near the slit tip@13,14#, where the structure o
the equations is the same and the slip zone in fabrics play
analogous role as the matrix yield zone in composites, h
shown exponential decay in the width direction, so that fin
width sheets provide effective models for the infinite sheet pr
lems. Therefore, the displacements of yarnq are taken to be those
of the undamaged reference, i.e.,Uq(j)50.

Symmetry about the center yarn and the above assumptio
garding theqth yarn lead to the following special forms for yarn
0 andq21, written as:

U0922U012U150 (12a)

Uq219 1Uq2222Uq2150 (12b)

The boundary value problem for a slit involving a given num
ber of severed #1 yarns requires appropriate boundary condi
on the severed and intact yarns at the line of the slit,j50, and at
a remote distance from the slit,j5`. Since the broken yarn end
are stress free at the slit, the boundary condition on the bro
yarns isPn(0)50, which using Eq.~7!, gives Un8(0)521. For
intact yarns, symmetry requires thatUn50 atj50. Uniform yarn
loads ofp are assumed far from the breaks, therefore, for all ya
we require thatPn51 and, therefore,Un850 at j5`.

Since all yarns are continuous atj5 l̂ , continuous yarn dis-
placements and strains lead to continuity conditions onUn andUn8

at j5 l̂ . An additional continuity condition arises from the a
sumption that cross-over point forces required to initiate inela
deformation at the boundary of the slipping region are approac
in a continuous manner@10#.

The system of equations for regions I, 0,j, l̂ , and II, j> l̂ ,
are written in matrix form, and solutions in each region are o
tained using an eigenvector expansion technique, as describ
882 Õ Vol. 71, NOVEMBER 2004
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detail for a similar boundary value problem in@12#. The solution
process is completed by selecting values of the inelastic z
extent l̂ and determining the values of the integration consta
and parameterf̂ , such that the boundary and continuity conditio
are satisfied. Observing from Eq.~10a! that the parameterf̂ is
inversely proportional to the applied loadp, we introduce a di-
mensionless applied loadp̂ that we define asp̂5 f̂ 21. For selected
values of the inelastic zone extent, solution of the defined bou
ary value problem provides the corresponding value of the app
load p̂. A key result that can be easily computed from the solut
is the stress concentration factor~SCF!, defined here as the ratio
of the maximum tension~which occurs atx150) in the first intact
yarn at the tip of the slit to the remote applied load,F1 N11(0)/p.
Using Eqs.~6! and ~7! the SCF can be written asUN118 (0)11.

As p increases, the value ofF1 N11(0) increases also, to the
point of rupture of the (N11)th yarn, which we assume occur
when F1 N11(0) attains the value of the ultimate yarn breakin
loadpu . Rupture of the first intact yarn is regarded as the onse
tearing. The applied load has the valuepc ~p critical! at the instant
of first yarn rupture, and we denote the value of the SCF at
instant as SCFt , i.e., thestress concentration factor at onset o
tearing. From our assumption regarding yarn rupture, we wr
SCFt as SCFt5pu /pc . We denote the value of dimensionless a
plied load at onset of tearing asp̂c ; it can be evaluated asp̂c

5 f̂ 21up5pc
.

Consider the behavior of a particular fabric over a range of
lengths. For increasing slit lengths~involving greater numbers o
severed yarns!, the value ofpc will decrease and SCFt will in-
crease. The productpc SCFt should remain approximately con
stant over the range of slit lengths, however, sincepc SCFt5pu
~the yarn breaking load!, which is independent of the slit size
Nondimensionalizing this relationship, we introduce a parame
p̂u5 p̂c SCFt , which may be used to characterize the behavior
specific fabrics over a range of slit lengths. The parameterp̂u may
be regarded as a material property of the coated fabric, sinc
contains micromechanical constitutive parameters, such as
strength, yarn stiffness, unit cell dimensions, and the crosso
point inelastic force. Results for SCFt versusp̂c ~i.e., SCF versus
p̂ obtained from solution of the boundary value problem! are used
to tabulate SCFt versusp̂u for slits involving various numbers o
severed yarns. Selecting values ofp̂u and extracting from the
tabulation the corresponding SCFt for various slit sizes provides
the behavior of specific fabrics versus slit length.

Effects of Inelastic Behavior—Comparison With a Fiber
Composite Sheet Model

As previously mentioned, shear-lag models for fiber compo
sheets~monolayers! containing a central notch have a simila
mathematical structure to the present model for a slit-dama
coated fabric. For a comprehensive exposition, including both
and 3D shear lag models for fibrous composite materials, con
tion to statistical strength theories, and an extensive account o
literature, the reader is referred to Ref.@15#. A review with par-
ticular attention to 2D sheets is given by Rossettos and God
@5#.

A number of investigators have considered extensions
Hedgepeth’s model incorporating local plastic deformation of
matrix. Here we refer to Beyerlein and Phoenix@9# ~B-P! in par-
ticular. As in @1#, the 2D composite consists of infinite sheet
equispaced parallel elastic fibers in an elastic matrix, where
fibers are parallel to thex axis, uniformly loaded atx56` by
fiber loadsp. The matrix is viewed as divided into discrete ba
separating neighboring fibers. A central notch interrupts a serie
consecutive fibers and the associated matrix bays along the
x50. Fibers are assumed to deform in simple tension, and
matrix is assumed to deform in simple shear. It is assumed tha
Transactions of the ASME
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matrix yields in an elastic-perfectly plastic sense only in the m
trix bay between the last fiber break and the first intact fiber at
tip of the notch.

Beyerlein and Phoenix@9# ~B-P! provide extensive results fo
this configuration, including calculations for notch sizes~number
of contiguous breaks! similar to the slit sizes considered in th
present work. The nondimensional loadP defined by B-P, is es-
sentially equivalent to ourp̂, where a matrix bay yield force
lengthtyh ~yield stress times sheet thickness!, may be regarded a
playing the same role as a quantityf /y01 in our model. As the load
is increased, the composite deforms elastically until a thresho
reached at which the matrix bay begins to yield atx50. B-P give
the applied load at first yield asPY50.33 for 15 breaks and 0.22
for 31 breaks. For the coated fabric model, comparable nondim
sional loads at the onset of inelastic deformation are found to
0.294 and 0.204 for 15 and 31 breaks, respectively, which
slightly lower than in the fiber composite, but very similar
dependence on number of breaks, with increasing slit size lea
to decreasing loads at onset of inelasticity. In both material sys
models, an increasing load beyond the yield/inelastic thresh
leads to the growth of a yielded region along the first intact fi
or yarn. The inelastic zone extentl̂ , with increasing applied loadp̂
for the coated fabric model is exhibited in Fig. 4. The inelas
zone extent is seen to grow at a higher rate with applied load
larger slit sizes. B-P find the same trend with the fiber compo
model, however, as exhibited in Fig. 7 of@9#, the extent of the
yielded region increases approximately linearly with applied lo
whereas growth is seen to be nonlinear in the coated fabric m
~Fig. 4!, which leads to smaller inelastic zone extents at sim
load values. In the fiber composite model, the entire matrix
yields in the region 0<x<b, whereb is the dimensional yield
region extent, corresponding to the nondimensional extentb. The
yielded region, therefore, passes a total shear load oftyhb to the

Fig. 4 Analytical results for inelastic zone extent, l̂ , with in-
creasing applied load, p̂ , for slits involving seven, fifteen, and
31 severed yarns „# breaks indicated next to curves …
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first intact fiber and the remaining intact sheet~at one notch tip in
a quarter symmetric portion of the sheet!. Since only a small,
limited load can be transferred elastically, increasing the app
load beyond yield requires that the shear transferred through
yielded regiontyhb increase in proportion to the applied loa
leading to the nearly linear increase inb. In the coated fabric
model, inelasticity limits load transfer to the first intact ya
through slip between the yarn and the coating/#2 yarns, bu
gross yielding of the coating ‘‘bay’’ occurs. Therefore, load tran
fer to the remaining undamaged fabric is not as severely limit
and the inelastic zone extent grows at a rate less than linear
increasing applied load.

In both material systems, the SCF is found to decrease w
increasing applied load, as load transfer tends to occur ov
larger portion of the sheet surrounding the notch/slit, due to
increasing yield/inelastic region extent. Results for small slits
5–13 breaks in the coated fabric were given in@10#. For a notch of
31 fiber breaks in the composite sheet, B-P give the SCF as s
ing at 5.03 for the elastic case, and falling to roughly 3.9, 3.5, a
3.0 for P values of 0.620, 0.820, and 1.160, respectively. Cor
sponding yield region extents areb53, 5, and 9. Note that, for the
elastic case~i.e., the yield/inelastic region extent is taken to b
zero!, both models reduce to Hedgepeth’s original model@1#, and
the solution methods faithfully reproduce the SCF result given
@1#. For comparison, we find for 31 breaks in the coated fabric,
SCF falls from the elastic value~5.03! to 4.2, 3.95, and 3.6 atp̂
values of 0.62, 0.82, and 1.16, respectively. The decrease in
is seen to be less steep in the coated fabric model due to
relatively restricted growth in inelastic extent~e.g., l̂ 51.37 at p̂
50.82).

For the notched fiber composite sheet, B-P treat debondin
addition to yielding and provide a wealth of information on she
stress and shear strain distributions in the matrix, load profi
along fibers, stress concentrations on fibers ahead of the c
relationships to damage region extent, and applied load and
with the question of yielding in multiple adjacent matrix bays.
similar depth of study of the coated fabric model is beyond
present scope and will be the subject of a future paper. Pho
and Beyerlein@15# connect the fiber composite sheet results
linear elastic fracture mechanics~LEFM! theory for an orthotropic
planar continuum and provide additional theoretical results
cluding a variety of approximations for fiber stress concentrat
factors, shear stress concentrations, etc., as well as the previ
mentioned comprehensive treatment of statistical strength the

Experiments
ILC Dover provided samples of five coated fabrics for expe

mental investigation. One of the samples, a silicone coated p
weave Vectran fabric, could not be effectively tested using
apparatus and was dropped from the study. Characteristics o
remaining four fabrics are given in Table 1. The yarn size is giv
for fabric a and fabricd in the traditional textile unit of denier. A
yarn’s denier count is defined as the mass in grams for a lengt
the yarn measuring 9000 meters. Yarn deniers were not avail
for fabric b and c. Three additional fabrics were obtained fro
stock of the Natick Soldier Center’s~NSC! tent prototype shop
Table 1 Sample fabrics furnished by ILC Dover

sample coating base fabric construction
No. warp yarns/cm3No.

weft yarns/cm,
yarn denier

specified
strength

warp, weft
direction,

N/cm

a urethane, one side nylon 26320, 210 315, 300
b urethane, both sides nylon 16316, - 220, 190
c PVC, both sides polyester 7.438.7, - 900, 900
d urethane, one side Kevlar 14314, 400 790, 790
NOVEMBER 2004, Vol. 71 Õ 883
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Table 2 Sample fabrics furnished by NSC tent shop

sample application coating base
fabric

construction
No. warp yarns/cm3No.

weft yarns/cm

e Soldier Crew Tent Fly heat set urethane,
both sides

nylon 31323

f TEMPER tent fabric PVC, both sides polyester 18313
g tent liner fabric -, one side - 27320
t

o

t

and are described in Table 2. All fabrics are plain woven with
exception of fabricc, which is a weft-inserted warp knit with a
laid-in warp system. In such fabrics, warp and weft directi
yarns are not interlaced, as in a woven, but are laid in straight
joined via a much lighter weight thread that knits the warps to
wefts at the crossover points, yielding a fabric where the yarns
closely packed and do not exhibit the out-of-plane crimp char
teristic of woven fabrics. Areal densities were not obtained for a
of the fabrics, however, fabric c, which is typical of a high pe
formance architectural fabric, is significantly heavier with a mu
greater coating thickness than the other ILC Dover fabrics. T
NOVEMBER 2004
he

n
and
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are
ac-
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he

Table 3 Yarn ultimate breaking loads p u

sample pu , N No. observations

a 8.97 ~0.245! 4
b 14.4 ~0.754! 6
c 117 ~3.47! 4
d 76.9 ~4.26! 4
e 15.2 ~0.252! 8
f 22.4 ~0.179! 4
g 5.41 ~0.338! 4

Standard deviations shown in parentheses.
Fig. 5 Experimental „symbols … and analytical results „curves … for SCF t versus slit length. Top-most curve,
labeled ‘‘Hedgepeth,’’ shows SCF t from Ref. †1‡. Remaining curves indicate results for various p̂ u „values
indicated next to curves ….
Transactions of the ASME
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Fig. 6 Post-test condition of fabric c specimen
d

s

f

s
l

o

fi

t

ther
is
ail-
g a
sta-
dis-
and
n is
only
slit
rred
ves
ad
For
ated
so

tom

F
lit
ot-

at a
sts

nt
As
three military tent fabrics from the NSC shop include a ligh
weight tent fabric e, a medium-weight tent fabric f, and a tent lin
fabric g.

Onset of tearing tests were performed on the sample fab
using biaxially stressed initially slit cruciform specimens follow
ing a procedure similar to that described in Ref.@12#. The central
stressed region of the specimen is 15 cm315 cm and overall
dimensions are nominally 36 cm top-to-bottom and 43 cm si
to-side. Each cross arm is 15 cm wide, and a 2.5 cm long sec
of the end of each arm is retained in the test fixture grips. T
initial test slit is cut in the center of the central region with a sha
razor, running parallel to the side-to-side direction of the spe
men. Typically, four ‘‘stress relief’’ slits are cut in the side cro
arms, and two are cut in the top/bottom cross arms to mitigate
buildup of in-plane shearing stresses along the boundaries o
central region. The test setup uses a lightweight frame incorpo
ing air cylinders to apply a constant tension in thex2 direction
~specimen side-to-side direction!, while an increasing tension i
applied in thex1 direction using an Instron test machine. Usua
the tests were performed under load control, however, the ne
sity to change test machines during the test program required
some of the samples be tested under displacement control c
tions. Each sample fabric was tested over a range of initial
lengths. The yarn ultimate breaking loadspu exhibited in Table 3,
were measured through tension tests on narrow strips of
coated fabrics using a loading rate approximately the same as
used in the onset of tearing tests. Generally the gage length
these tests was 5.08 cm, although fabricc and d required that
capstan grips be used and involved a longer and less well-de
gage length. From four to eight observations were made for e
fabric.

The failure process in some of the fabrics was sudden, wi
rapid tear propagating across the full center section of the sp
al of Applied Mechanics
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men and an associated sudden drop in the applied load. In o
fabrics, a few yarns at the tip of the slit rupture while the load
still generally increasing on the specimen. The progression of f
ure is regarded as a complex dynamic event possibly involvin
variety of factors: the response characteristics of the material,
tistical aspects of yarn strength, specimen size and geometry,
placement versus load control, compliance of the test fixtures
test machine, etc. As such, investigation of failure progressio
not an objective of the present study, and we are concerned
with the conditions leading to the onset of tearing failure at the
damage site. For the tests where initial yarn ruptures occu
prior to maximum load, the specimen load-displacement cur
were carefully studied to reveal the point at which a localized lo
drop occurs associated with the first yarn rupture at the slit tip.
tests involving sudden catastrophic tearing, the load associ
with first yarn rupture coincides with the maximum load, and
the maximum load value is used in the calculation ofpc . Once the
proper load value is identified, the value ofpc is determined by
assuming the applied load on the specimen’s gripped top/bot
cross-arm ends is distributed uniformly among the #1 yarns.

Comparison of Experimental and Analytical Results
The experimental and analytical results for the SCt

(5pu /pc) behavior of particular fabrics over a range of s
lengths are exhibited in Fig. 5. Each individual test result is pl
ted, where the SCFt is calculated using the mean value ofpu
~Table 3!, and the particular value ofpc observed in that test. In
some cases, only a single observation was made for a fabric
particular slit length, though generally two to four replicate te
were made.

Analytical SCFt curves are plotted in Fig. 5 for various consta
values ofp̂u , where the value is indicated next to the curve.
NOVEMBER 2004, Vol. 71 Õ 885
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shown previously,p̂u may be regarded as the single dimensionl
parameter that governs the SCFt versus slit-length behavior o
particular fabrics. As such, experimental SCFt—slit length data
for individual fabric samples are expected to follow a constantp̂u
curve. Increasing values ofp̂u result in decreasing values of SCFt
for given slit lengths; since fabrics with lower SCFt values can
tolerate higher loading relative to yarn strengthp̂u may be re-
garded as a measure of a fabric’s tolerance to slit damage. G
frey and Rossettos@16# introduced a somewhat similar paramet
as a screening measure for slit-damage tolerance in uncoated
ven fabrics.

Hedgepeth’s stress concentration factors@1# are exhibited by
the curve marked ‘‘Hedgepeth’’ in the figure. As previously me
tioned, if we assume an inelastic zone extent of length zero,
present model essentially reduces to Hedgepeth’s, and the
calculated using the present method closely approximate th
given by his result.

With the exception of fabric d, the experimental data are see
be in good agreement with the analytical curves for constantp̂u .
While the data for fabrics c and e are somewhat scattered, dat
fabrics a, f, and g follow the analytical curves for constantp̂u
quite well. Results for fabric b lie close to the Hedgepeth cur
suggesting that deformation near the damage site in that fabr
primarily elastic up to onset of tearing. Consistent with results
coated fabrics in the literature@2–4#, the slit-damaged fabrics sus
tain higher remote loadings than would be anticipated based
Hedgepeth’s analysis~the experimental SCFt are lower than the
result given in@1#!.

Results for fabric d do not exhibit the trend of increasing SCt
with increasing slit size clearly shown in the analytical and ot
experimental results. Noting that the Kevlar yarns in fabric d
significantly stiffer than the nylon and polyester yarns in the ot
fabric samples, we investigated how the fabric’s elastic proper
affect the relationship between the actual experiments and
theoretical model. The model treats an isolated slit in an infin
fabric, whereas the experiment assumes that a 15 cm by 15
region of the specimen isapproximatelyinfinite. It turns out that,
due to the high stiffnessEAeff of the Kevlar yarns, the characte
istic length scale~i.e., the physical length alongx1 associated with
a unit length along the dimensionless position coordinatej! in
fabric d is about an order-of-magnitude larger than in the ot
fabric samples. Calculations made using the model showed
for fabric d, the edge of the central region of the specimen
mained well within the local region significantly affected by th
presence of the slit for typical slit sizes. Therefore, a much lar
specimen size is needed for a proper measurement of the SCt in
fabric d, and the present experimental results for d should
disregarded. For fabrics with properties typical of the nylon a
polyester samples, calculations showed that the central region
large enough to approximate an infinite fabric, and therefore,
specimen size used here is adequate.

Post-test examination of fabric c specimens supports the
sumption made on the configuration of inelastic deformation. F
ure 6 exhibits a typical c test specimen in the vicinity of the init
slit. The coating surface is seen to be disturbed along lines
ning some distance perpendicular from the slit tips. These li
follow the first intact #1 yarns. Although fabric c is not a pla
weave, a similar mechanism is at work, whereby the coa
yields or separates to permit relative motion between the warp
weft direction yarns. No clear evidence of coating disturban
could be detected in casual examination of the other fa
samples.

Conclusion
A simple micromechanical model for predicting the onset

tearing at slitlike damage sites in coated woven fabrics has b
886 Õ Vol. 71, NOVEMBER 2004
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presented. A crucial aspect is the treatment of inelastic defor
tion involving yielding or separation of the coating and relati
displacement between the interlaced yarns near the slit tip. Re
for the onset and growth of inelastic deformation under increas
load and the associated decrease in stress concentrations at t
tip have been discussed in connection with similar results fo
notched fiber composite sheet model in the literature. Experim
tal results on a variety of coated nylon and polyester fabrics h
been shown to corroborate the model and demonstrate the us
ness of a parameterp̂u as a measure of slit-damage tolerance. T
effect of experimental specimen size on obtaining realistic res
consistent with the present analytical model was discussed.
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Concept and Fundamentals of
Temporal-Spatial Pulse
Representation for Dislocation
Source Modeling
For far-field wave-motion response to a point dynamic dislocation source, the temp
and spatial features of the source mechanism are characterized, respectively, b
factors, i.e., a source time function for dislocation growth and a combination of n
couples of impulse forces that is equivalent to the final dislocation. The mathema
representation for each of the couples, referred to as spatial couples, is a coup
impulses acting in opposing directions with an infinitesimal separation distance or, in
limit, by the derivative of the impulse with respect to the separation-distance param
This study proposes a temporal-spatial pulse representation for the nine couples, re
to as temporal-spatial couples, and subsequently for the dislocation source mod
Each temporal-spatial couple consists of two impulses acting in opposite directions
both an infinitesimal separation distance and an infinitesimal time delay. By exam
dynamite source modeling, this study shows that the proposed representation can
sically integrate the spatial and temporal features of the dislocation sources from
response point of view. This study also shows an example of a point, shear-slip s
source modeling using traditional and proposed pulse representations for far-field w
motion. Discussion is finally provided for the implications of the proposed representa
in broad applications.@DOI: 10.1115/1.1794712#
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1 Introduction
Material crack, seismic rupture source, and the like, share

same source mechanism, i.e., time-dependent dislocation ov
finite fault area, or simply the finite dislocation source. The fin
dislocation source can be modeled as the summation~or integra-
tion in the limit! of point sources, each of which accounts for t
evolutionary dislocation over a discretized subarea triggere
different time instants. Therefore, truthfully characterizing t
point source is a key in understanding of nature of the disloca
source. More important, it has broad-based applications, exem
fied as diagnosing crack damage in structural health monitor
improving understanding of seismic source and subsequently
ing the source model to simulate earthquake ground motion
seismic design and retrofit, and conducting seismic survey
oil/gas exploration.

The mechanism of the above point source is typically mode
as the product of a source time function characterizing the di
cation growth~e.g., a ramp function!, a factor combining nine
couples of impulse forces that is equivalent to the unit dislocat
and a scaling factor or magnitude (5final dislocation
3material rigidity3fault area). Each couple can be represen
mathematically by two impulses acting in opposite directio
with an infinitesimal separation distance either along or perp
dicular to the impulse direction or, in the limit, by the derivativ
of the impulse with respect to the separation-distance param
This study refers to the above approach as thespatial pulse rep-
resentationfor couples, or simplyspatial couples. The combina-

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIET
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF AP-
PLIED MECHANICS. Manuscript received by the Applied Mechanics Division, Mar
3, 2004; final revision, July 13, 2004. Associated Editor: Z. Suo. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California - Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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tion of the nine spatial couples can be theoretically proved to
equivalent to any kind of a dislocation~normal and shear! in an
arbitrary orientation from an elastodynamic approach, which u
the generalized Betti reciprocal relation by introducing a time
rameter, as first described in@1#. In this approach, the Green’
function ~i.e., displacement response to a unit force! is assumed to
be continuous everywhere, even on both sides of a fault as
dislocation never happens~for details, see@2#!. Alternatively and
more generally, Bakus and Mulcahy@3,4# use the concept ofstress
glut to derive the same results. That derivation uses the assu
tion that the earthquake and indigenous sources are consider
be the result of a localized, transient failure of the linearized e
tic constitutive relation, which leads to the stress glut as a func
of the dislocation quantity~for details, see@5#!.

The above traditional approach basically characterizes the
tial and temporal features of the dislocation mechanism separa
through two factors, i.e., the spatial couples and the source
function. It provides an equivalent description of far-field wa
motion due to the point source, in which the features of the spa
couples are closely related to the type of the physical source.
example, the couples with separation-distance orientation a
the impulse direction are usually related to the explosive sou
~or mode I in fracture mechanics!, while the so-called double-
couples ~or combination of modes II and III!, in which each
couple has the separation-distance orientation perpendicular t
impulse direction, are associated with the seismic she
dislocation source. The combination of the above two types
couples can be used to explain the volcanic earthquake so
mechanism, among others~see details in@2,6–9#!.

While the above point-source characterization and subseq
use for the finite dislocation source modeling have been well
veloped and widely used in study of seismology~with some ap-
plications in fracture mechanics, e.g., see@10,11#!, the separation
of temporal and spatial features in modeling the point dislocat
mechanism needs to be reexamined.

In particular, the aforementioned traditional approach builds
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the assumption that the two impulses in a spatial couple m
simultaneouslyexist with an infinitesimal separation distance, th
generating no net force in the far field. Note that since the dis
cation is equivalent to a combination of nine couples of impuls
only couples/impulses are used here and subsequently for ex
nation of the underlying physical phenomena. With the same r
son of no net force generated by the spatial couples in the far fi
temporal pulse representationfor couples ortemporal couplescan
be introduced, each of which is modeled by the two impuls
acting in the opposite directions with no separation distance
with an infinitesimal time delay or, in the limit, by the derivativ
of the impulse with respect to time.

The objectives of this study are to examine the validation a
implications of the alternative temporal couples for dislocati
modeling. Moreover, the study will propose a concept of co
bined temporal-spatial pulse representationfor the nine couples,
or temporal-spatial couples, for dislocation source modeling
Each temporal-spatial couple consists of two impulses acting
opposite directions with both an infinitesimal separation dista
and an infinitesimal time delay. This study will then provide th
fundamentals and explore the underlying physics and implicati
of the proposed representation.

2 Spatial and Temporal Representations for a Couple
Without loss of generality, this study first investigates the f

field displacement wave motion due to a spatial couple of i
pulses in thexj direction. Shown in Fig. 1, this couple is repre
sented as two impulses at timet acting in opposite directions
along j with an infinitesimal separation distancehk in directionk.
A mathematical representation of the impulses exerted by
couple is

FW j
s~xW ,t ![FW j

s1~xW ,t !1FW j
s2~xW ,t !

5
1

hk
@d~xW2jW !2d~xW2jW1hkeW k!#d~ t2t!eW j

——→
hk→0

]

]jk
d~xW2jW !d~ t2t!eW j or

——→
hk→0

2
]

]xk
d~xW2jW !d~ t2t!eW j (1)

where[denotes ‘‘by definition’’ andFW j
s(xW ,t) is the force represen-

tation of the couple that consists of the two impulses,FW j
s1(xW ,t)

andFW j
s2(xW ,t). The superscripts is used to emphasize that this is

spatial pulse representation. In Eq.~1!, t represents time,d is the
Dirac delta function, andeW i is the unit vector in thexi direction
wherei 5 j or k. Further,xW5x1eW11x2eW21x3eW3 represents the ob-
servation site in space, where (eW1 ,eW2 ,eW3) are the three orthogona
unit vectors, andjW5j1eW11j2eW21j3eW3 is the location of one
source impulse. Note thateW j andeW k are not necessarily orthogona
or parallel to each other, or coincident with one of the three
thogonal unit vectors (eW1 ,eW2 ,eW3). Since the separation distance
infinitesimally small in comparison with the source-to-observati
distance, the spatial pulse representation for the couple in Eq~1!
generates no net force at the locations far away from the sou

Fig. 1 Spatial pulse representation for a couple with an infini-
tesimal separation distance
888 Õ Vol. 71, NOVEMBER 2004
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Each of the two impulses will produce three additive terms
motion response, i.e., two far-field motions of pure P and pur
waves, respectively, and one near-field coupled P-S wave mo
This can be seen, for example, in@7#, from the classicStokes
solution that is the displacement response to a force in a hom
neous medium. The far-field terms of the pure P- and pure S-w
motions are proportional to the geometrical spreading factor
where R is the source-to-observation distance, while the near-
term for the coupled P-S wave motion is proportional to 1/R2. As
far as the far-field motion is concerned in this and other pertin
studies, the near-field motion term can be neglected, as illustr
in @7#, among others. To this end and also due to the addi
response feature, this study can examine the pure P- and S-
motions in the far field separately.

The impulse response functionGi j (xW ,t;jW ,t) is denoted as the
P- or S-wave response in the directioni at (xW ,t) due to a unit
impulse in direction j at (jW ,t), i.e., d(xW2jW )d(t2t)eW j . This
study defines the unit impulse having the dimension of mom
~force-length! and the impulse response function having the
mension of length squared. The far-field displacement of P-
S-waves at the observation site due to the coupleUi j (xW ,t) can
then be found as the superposition

Ui j ~xW ,t !5
1

hk
@Gi j ~xW ,t;jW ,t!2Gi j ~xW ,t;jW2hkeW k ,t!#

——→
hk→0

]

]jk
Gi j ~xW ,t;jW ,t! (2)

Alternatively, Eq.~2! can be written as

Ui j ~xW ,t !5
1

hk
@Gi j ~xW ,t;jW ,t!2Gi j ~xW1hkeW k ,t;jW ,t!#

——→
hk→0

2
]

]xk
Gi j ~xW ,t;jW ,t! (3)

Equations~2! and ~3! indicate that the derivatives of the impuls
response function, with respect to the spatial parameters at
source and observation locations, are equivalent except for a
change. This is a direct consequence of spatial reciprocity.

The spatial reciprocity of source and observation positions
be related to a temporal reciprocity at the source and observa
locations. For a given impulse at (jW ,t), the induced wave motion
at (xW1hkeW k ,t) is equivalent to the wave motion at (xW ,t1tdk),
where the direction-dependent time differencetdk is

tdk5
@hkeW k#•@eW r #

v
5

hk

v
cosuk (4)

Here the dot denotes an inner product,uk is the angle between the
source-observation directioneW r and separation-distance directio
eW k , andv is the body wave speed~i.e., either P- or S-wave speed!.
Similarly, for a given wave motion at (xW ,t), the causative impulse
at (jW2hkeW k ,t) is equivalent to the impulse at (jW k ,t2tdk).

With the aid of the above relationships, the first parts of Eqs.~2!
and ~3! can then be written as

Ui j ~xW ,t !5
1

hk
@Gi j ~xW ,t;jW ,t!2Gi j ~xW ,t;jW ,t2tdk!#

——→
tdk→0

cosuk

v

]

]t
Gi j ~xW ,t;jW ,t! (5)
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Ui j ~xW ,t !5
1

hk
@Gi j ~xW ,t;jW ,t!2Gi j ~xW ,t1tdk ;jW ,t!#

——→
tdk→0

2
cosuk

v

]

]t
Gi j ~xW ,t;jW ,t! (6)

where use has been made of Eq.~4!. Comparison of Eqs.~2! and
~3! with Eqs.~5! and ~6! yields

]

]jk
Gi j ~xW ,t;jW ,t!5

cosuk

v

]

]t
Gi j ~xW ,t;jW ,t! (7)

]

]xk
Gi j ~xW ,t;jW ,t!5

cosuk

v

]

]t
Gi j ~xW ,t;jW ,t! (8)

The above equations imply that the temporal and spatial der
tives are exchangeable, to within an adjustable factor cosuk /v.
These equations also suggest that the spatial pulse represen
for a source couple in Eq.~1! can be alternatively replaced by th
temporal pulse representation below and in Fig. 2,

FW j
t~xW ,t ![FW j

t1~xW ,t !1FW j
t2~xW ,t !

5
1

hk
d~xW2jW !@d~ t2t!2d~ t2t1tdk!#eW j

——→
tdk→0

cosuk

v

]

]t
d~xW2jW !d~ t2t!eW j or

——→
tdk→0

2
cosuk

v

]

]t
d~xW2jW !d~ t2t!eW j (9)

where the superscriptt in F is used to emphasize that this is
temporal pulse representation, in comparison with the supersc
s.

Since the time difference for the temporal couple is infinite
mally small in comparison with the time elapse required for
wave traveling from the source to the far-field observation site,
temporal pulse representation in Eq.~9! introduces no net force in
the locations far away from the source. Therefore, both the spa
and temporal pulse representations are conceivable for the in
enous source, the latter of which is referred to as any phenom
occurring within or upon the surface of the earth that does
involve forces exerted by any other bodies,@5#.

3 Conventional Models for Dynamite Sources
The physical mechanism of a point dynamite source is hig

nonlinear and very complicated~e.g., @12#!. Nevertheless, the
source for far-field wave motion can be modeled by three ortho
nal couples in the spatial pulse representation, which essent
represents the consequence of a sudden pressurization, or forc
all the directions, on a spherical cavity~e.g., see detailed deriva
tion in @13,14#!. The far-field displacement in directioni due to
the three couples,ui

c(xW ,t), can be found below, with the aid of Eq
~3! in which k5 j ,

ui
c~xW ,t !5(

j 51

3

Ui j ~xW ,t !52(
j 51

3
]

]xj
Gi j ~xW ,t;jW ,t! (10)

Fig. 2 Alternative temporal pulse representation for a couple
with an infinitesimal time difference
Journal of Applied Mechanics
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Since the dynamite source generates only P waves, the imp
response function in Eq.~10! and pertinent quantities in subse
quent equations are related to P-wave motion only. Note that
simplicity, the factor of the source time function, describing t
temporal evolution of the dynamite source or forces and scaled
the total magnitude or seismic moment of the source, is not
cluded in Eq.~10!. The superscriptc is used to indicate that the
displacement is obtained by using theconventional approachwith
the spatial pulse representation, as opposed to the new prop
approach to be elaborated on later.

With the aid of Eq.~6! or ~8!, Eq. ~10! can be rewritten as

ui
c~xW ,t !52(

j 51

3
cosu j

v

]

]t
@Gi j ~xW ,t;jW ,t!#

52
1

v

]

]t H(j 51

3

@Gi j ~xW ,t;jW ,t!cosu j #J (11)

Note that the subscriptj in Eqs.~10! and~11! is a dummy index,
depending only on the coordinate system selected for describ
the three orthogonal couples. Without loss of generality, therefo
one of the three couple directionsj (51,2,3) can be selected to b
coincident with the directioneW r . Equation~11! then becomes

Fig. 3 „a… A 2D dynamite source with a spatial pulse represen-
tation for couples in a finite version; „b… a 2D dynamite source
with a spatial pulse representation for couples in a limiting
version

Fig. 4 „a… A 2D dynamite source with a temporal pulse repre-
sentation for couples in a finite version; „b… a 2D dynamite
source with a temporal pulse representation for couples in a
limiting version; „c… a 2D dynamite source with a temporal
pulse representation for couples in an alternative version
NOVEMBER 2004, Vol. 71 Õ 889
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c~xW ,t !52

1

v

]

]t
Gir ~xW ,t;jW ,t! (12)

Equations~10!–~12! indicate that the far-field displacement, du
to a point dynamite source, is composed of fundamental solut
that are proportional to the derivative of the impulse respo
function with respect to either a spatial or a temporal parame

The above equivalence on far-field displacement can also
interpreted from the source point of view. Equation~10! suggests
that the three orthogonal spatial couples generate the far-
wave motion. For convenience in illustration, a two-dimensio
~2D! dynamite source model is shown in Figs. 3~a! and 3~b!.
Since all the impulses in Fig. 3~a! develop at the same timet with
infinitesimal separation distancesh1 and h2 , the spatial-based
source model can be regarded as to physically capture~or snap-
shot! the cavity growth of the dynamite process with the cav
size proportional toh1 andh2 at time instantt. Note again that the
temporal evolution of the cavity growth is characterized by
source time function that is not included in Eq.~10!.

On the other hand, Eq.~11!, the alternative form of Eq.~10!,
implies that the far-field displacement is generated by three
thogonal couples that are described by the temporal pulse re
sentation, as depicted for a 2D source model in Figs. 4~a! and
4~b!. Since all the impulses in Fig. 4~a! develop at the same loca
tion (jW ), but with infinitesimal time differencestd1 and td2 , this
alternative temporal-based source model may feasibly capture
temporal evolution of the impulse generation at a given locat
(jW ) for the dynamite source. Similar to Eq.~11! and Figs. 4~a! and
4~b!, Eq. ~12! or its 2D case depicted in Fig. 4~c!, shows an
alternative temporal pulse representation for the dynamite sou

4 Implications of Spatial- and Temporal-Based Models
While both spatial and temporal pulse representations for

above dynamite source are consistent each other from the per
tive of far-field wave-motion responses, their underlying phys
and implications may be different, which is examined below.

The spatial-based model for the dynamite source characte
the spatial and temporal features of a point dynamite sou
mechanism separately through the spatial couples and a so
time function. The source time function is, however, typica
assumed~e.g., a ramp function with a selected risetime for t
dislocation progression!, which may not have as much intrinsi
physical meaning as the spatial couples. In fact, in deriving
spatial pulse representation for the couples that is equivalent to
dislocation, the principles for motion synchronization and comp
ibility are implicitly used, i.e., the pair of forces or stresses
opposite directions equivalent to the dislocation or discontinu
of strainmustoccur at the same time instant. While the synch
nization is widely used in establishing and solving wave mot
equations in a continuous medium, it may not truly characte
the dynamic process of a dislocation source that has inte
temporal-spatial features.

In particular, from the perspective of far-field wave-motion r
sponses, if one impulse of a couple can be regarded to take p
at the source location closer to the observation site than the o
impulse, the former impulse should also be viewed similarly
occurring at an earlier time instant than the latter impulse. N
that the above time difference in the generation of the two
pulses for the far-field motion is different from the time differen
due to the wave motion generated by the latter impulse trave
the infinitesimal separation distance. In other words, the two
pulses in each of the couples for modeling a dislocation sou
have not only the infinitesimal spatial difference~traditional view!
but also the infinitesimal temporal difference~new view that is
parallel to the traditional view with the time replacing the spa
parameters!.

With the above in mind, the traditional spatial-based sou
modeling may not capture the essential temporal features of
source in general, and two-impulses formation for each of the n
890 Õ Vol. 71, NOVEMBER 2004
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couples in particular, although the spatial features of the sou
are well characterized by the spatial couples as shown in Fig. 3~a!.
On the other hand, the alternative temporal-based source m
may capture the temporal features of the two-impulses forma
for each of the nine couples, while it may not seize upon t
spatial characteristics in the two-impulses formation.

The above observations and analyses suggest that the dyna
source may be modeled on the basis of a combined tempo
spatial pulse representation for the couples, each of which has
opposite impulses built at both infinitesimal separation distan
and time delay. Accordingly, the temporal and spatial features
the source can be characterized in an integrated way, which
overcome the influences of inappropriate assumption of a sou
time function in the conventional source modeling.

5 Temporal-Spatial Pulse Representation
Building on the above analysis, a temporal-spatial pulse rep

sentation for couples, and consequently for such applications
dynamite source modeling, is proposed. Shown in Fig. 5, the
impulses for a temporal-spatial couple act in opposite direction
direction j with an infinitesimal separation distancehk in direction
k and an infinitesimal time delaytk . Mathematically, it can be
represented as

FW j
n~xW ,t ![FW j

n1~xW ,t !1FW j
n2~xW ,t !

5
1

tkhk
@d~xW2jW !d~ t2t!2d~xW2jW1hkeW k!d~ t2t2tk!#eW j

(13)

where the superscriptn denotes thenew, temporal-spatial pulse
representation for a couple. Note that theFW j

n(xW ,t) in Eq. ~13! has
a different dimension of force such asFW j

s(xW ,t) in Eq. ~1!, because
the new pulse representation takes into consideration both the
tial and temporal features of the source to be modeled. The
pression forFW j

n(xW ,t) can be adjusted to the force dimension b
introducing a constant dimension-related factor in Eq.~13!. For
convenience and also for conceptual comparison only, howe
such a factor is not used and similar terminology, such as ‘‘forc
for FW j

n(xW ,t) and its induced wave motion, is still used in the su
sequent analysis. With the same reasons used in explaining
spatial and temporal couples, the new pulse representation ge
ates no net force in the locations far away from the source, an
therefore feasible for the indigenous source.

The temporal-spatial pulse representation for the couple@Fig. 5
and Eq.~13!# can be decomposed into one spatial and one tem
ral pulse representation~see Fig. 6!,

FW j
n~xW ,t !5@FW j

ns1~xW ,t !1FW j
ns2~xW ,t !#1@FW j

nt1~xW ,t !1FW j
nt2~xW ,t !#

5
1

tkhk
@d~xW2jW !d~ t2t!2d~xW2jW1hkeW k!d~ t2t!#eW j

1
1

tkhk
@d~xW2jW1hkeW k!d~ t2t!

2d~xW2jW1hkeW k!d~ t2t2tk!#eW j

Fig. 5 Temporal-spatial pulse representation for a couple with
both a separation distance and a time delay
Transactions of the ASME
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——→
tk ,hk→0

2
1

tk

]

]xk
d~xW2jW !d~ t2t!eW j1

1

hk

]

]t
d~xW2jW

1hkeW k!d~ t2t!eW j (14)

The corresponding P- or S-wave displacement,Ui j
n (xW ,t), is

Ui j
n ~xW ,t !5

1

tkhk
@Gi j ~xW ,t;jW ,t!2Gi j ~xW1hkeW k ,t;jW ,t!#1

1

tkhk

3@Gi j ~xW1hkeW k ,t;jW ,t!2Gi j ~xW1hkeW k ,t2tk ;jW ,t!#

——→
tk ,hk→0

2
1

tk

]

]xk
Gi j ~xW ,t;jW ,t!1

1

hk

]

]t
Gi j ~xW

1hkeW k ,t;jW ,t! (15)

In general, the time delay for the impulse-induced waves trave
the infinitesimal separation distance between the two impulse
different from the time difference generated by the two impuls
from the perspective of far field, i.e.,tdkÞtk . However, both
quantities (tdk ,tk) are much smaller than the time required for th
impulse-induced waves propagating from the source to the
field observation site; an assumption can be made that they
approximately equal for the far-field motion. In fact, this is not
assumption if the derivative representation for each of the cou
is used. This is similar to the fact that although generallyh1
Þh2 in Fig. 3~a!, they can be assumed to be the same. Never
less, the assumption will not affect the limiting case in Fig. 3~b! if
the derivative representation is used.

With the above analysis, Eq.~15! then becomes

Ui j
n ~xW ,t !52

1

hk

]

]t
Gi j ~xW ,t;jW ,t!1

1

hk

]

]t
Gi j ~xW1hkeW k ,t;jW ,t!

——→
hk→0

]2

]xk]t
Gi j ~xW ,t;jW ,t!

5
cosuk

v

]2

]t2 Gi j ~xW ,t;jW ,t! (16)

Fig. 6 Decomposition of the temporal-spatial pulse represen-
tation for a couple
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where use is made of Eqs.~4! and~8!. The far-field displacemen
for a dynamite source,ui

n(xW ,t), can then be found by

ui
n~xW ,t !5(

j 51

3
cosu j

v

]2

]t2 Gi j ~xW ,t;jW ,t!

5
1

v

]2

]t2 H(
j 51

3

Gi j ~xW ,t;jW ,t!cosu jJ (17)

Again, if one of the three couple-directionsj (51,2,3) is selected
to be coincident with the source-observation directioneW r , Eq.~17!
becomes

ui
n~xW ,t !5

1

v

]2

]t2 Gir ~xW ,t;jW ,t! (18)

Equation~18! implies that the far-field displacement for a poi
dynamite source is proportional to the two derivatives of the i
pulse response function with respect to time, i.e.,

ui
n~xW ,t !}

]2

]t2 Gir ~xW ,t;jW ,t! (19)

Correspondingly, the force representation for the source is t
proportional to the two time derivatives of an impulse, i.e.,

FW n~xW ,t !}
]2

]t2 d~xW2jW !d~ t2t!eW r (20)

Equation~20! can also be derived from Eqs.~13! and~14! follow-
ing the same approach used in Eqs.~15!–~19!.

The underlying physics of Eq.~20! is now explained. From the
perspective of far-field wave-motion response, the point dynam
source mechanism is an evolutionary process of the pressuriz
on a spherical cavity, which has a diameter infinitesimally smal
comparison with the source-to-observation distance. All the sa
amplitude forces of the pressurization on the spherical circum
ence of the cavity are not exerted simultaneously from the
sponse point of view, i.e., each pair of the forces along a cer
direction has a time delay that is infinitesimally small in compa
son with the time elapse for the force-induced waves propaga
from the source to the observation site. Note that all the phys
quantities of the cavity formation@e.g.,hk and tk in Eq. ~13!# are
also much smaller than the physical quantities of wave motion
the observation site, such as wavelengths of interest. The w
signals generated by the impulse at the cavity end nearest to
observation site will be received first, among all the signals fr
the source, while the wave signals induced by the impulse at
farthest end of the cavity will be picked up finally. Both the abo
causative impulses, i.e., a pair of impulses or a couple, are in
line of source-to-site direction. Note again that the time differen
in the above pair of wave signals shown in the response is
only caused by the infinitesimal separation distancehr but also the
infinitesimal time delayt r . The signals caused by the other pa
of impulses or couples in the other directions will be cancelled
by each other due to the symmetry to the source-to-site direct
This leads to a single couple of the impulses in the source-to-
direction in Eq.~20!. The two derivatives in Eq.~20! are made of
Table 1 Comparison of conventional, alternative, and proposed pulse representations for the
couples at source and wave motions in far field

Description Conventional Alternative Proposed

Force representation for a
dislocation source

]

]x
@d~xW2jW!d~t2t!#

]

]t
@d~xW2jW!d~t2t!#

]2

]t2
@d~xW2jW!d~t2t!#

Displacement of wave
motion to a dislocation

source

]

]x
@G~xW,t;jW,t!#

]

]t
@G~xW,t;jW,t!#

]2

]t2
@G~xW,t;jW,t!#
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one temporal derivative, capturing the temporal features of
couple generation in the source-to-site direction, and another t
poral derivative that is equivalent to the spatial derivative, ch
acterizing the spatial features of the couple generation.

In comparison with the traditional source model that is based
the product of a factor for spatial couples and a source time fu
tion, the proposed dynamite source model for the wave motion
the far field has an extra derivative of the impulse response fu
tion with respect to the time parameter in comparison with
traditional model, which should intrinsically integrate the sour
temporal feature. Table 1 summarizes the traditional, alternat
and proposed pulse representations for the couples at source
wave motion in far field.

6 Extended Applications
While the above study focuses on the application of the p

posed temporal-spatial pulse representation in modeling a p
dynamite source, it is straightforward to extend it to modeli
other dislocation sources such as seismic shear dislocation
material crack. As an illustration, below is an example of a poi
shear-slip seismic source modeling using conventional and
posed pulse representation for in-plane, P- or S-wave motion
far field.

Conventionally, two orthogonal spatial couples or so-call
double-couples@2#, each of which has the impulse direction pe
pendicular to the separation-distance orientation, are used
model a point, shear-slip seismic source located atjW and activat-
ing at t, shown in Figs. 7 and 8. The far-field P- or S-wav
displacement in directioni in the plane ofeW1 and eW2 due to the
double-couples,ui

c(xW ,t) can be found by

ui
c~xW ,t !52

]

]x2
Gi1~xW ,t;jW ,t!2

]

]x1
Gi2~xW ,t;jW ,t! (21)

With the two reference frames (eW1 , eW2) and (eW r , eW t) in Fig. 7, one
could have the following transformation:

eW15eW r cosu22eW t sinu2 , eW25eW r sinu21eW t cosu2 (22)

Gi1~xW ,t;jW ,t!5Gir ~xW ,t;jW ,t!cosu22Git~xW ,t;jW ,t!sinu2

Gi2~xW ,t;jW ,t!5Gir ~xW ,t;jW ,t!sinu21Git~xW ,t;jW ,t!cosu2 (23)

Note that angleu1 (u2) is between directionseW r and eW2 (eW r and
eW1) because the impulse directioneW1 (eW2) of a couple is perpen-
dicular to the direction of separation distance of the couple w
eW2 (eW1).

With the aid of Eqs.~8! and~23! andu11u25p/2, Eq.~21! for
the far-field wave motion can be rewritten as

Fig. 7 Two sets of orthogonal unit vectors and their rotational
angles for pulse representations of a shear-slip dislocation

Fig. 8 A point shear-slip seismic source with a spatial pulse
representation for couples
892 Õ Vol. 71, NOVEMBER 2004
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ui
c~xW ,t !52

cosu2

v

]

]t
Gi1~xW ,t;jW ,t!2

cosu1

v

]

]t
Gi2~xW ,t;jW ,t!

52
1

v

]

]t
Gir ~xW ,t;jW ,t! (24)

Equations~21! and ~24! indicate that the far-field P- or S-wave
displacement, due to a shear-slip source, can be obtained from
fundamental solutions that are proportional to the derivative of
impulse response function with respect to either a spatial o
temporal parameter.

The above equivalence on far-field displacement can also
interpreted from the source point of view. In particular, Eq.~21!
suggests that two orthogonal spatial couples are responsible
the far-field P- or S-displacement wave response, depicted in
8. On the other hand, the first equality of Eq.~24! implies that two
orthogonal temporal couples cause the response shown in Fi
The last equality of Eq.~24! implies an alternative temporal rep
resentation for the source, i.e., a temporal couple in the direc
eW r .

With the aid of temporal-spatial pulse representation
couples, the far-field displacement caused by the shear-slip so
can be found as

ui
n~xW ,t !52

]2

]x2]t
Gi1~xW ,t;jW ,t!2

]2

]x1]t
Gi2~xW ,t;jW ,t!

52
1

v

]2

]t2 Gir ~xW ,t;jW ,§! (25)

where use has been made of Eqs.~8! and ~23!. Equation ~25!
suggests that the far-field P- or S-wave displacement to a s
dislocation source,ui

n(xW ,t), is proportional to the two derivatives
of an impulse response function with respect to the time, i.e.,

ui
n~xW ,t !}

]2

]t2 Gir ~xW ,t;jW ,t! (26)

Accordingly, the force representation for the source is then p
portional to the two time derivatives of an impulse, as show
below and Fig. 10,

FW n~xW ,t !}
]2

]t2 d~xW2jW !d~ t2t!eW r (27)

The underlying physics of impulses for the shear dislocation s
as Eq. ~27! are not as easily interpreted as those of dynam
source in Eq.~20! ~e.g., see@2#!, because the double-couples re
resentation for a shear dislocation is derived in the sense

Fig. 9 A point shear-slip seismic source with a temporal pulse
representation for couples

Fig. 10 A point shear-slip seismic source with a proposed
temporal-spatial pulse representation for couples
Transactions of the ASME
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impulse forces and the dislocation are equivalent in mechan
not explicitly through the simple, physical observations.

7 Conclusions and Discussions
Following a review of the conventional spatial pulse repres

tation for couples, a temporal pulse representation for couple
introduced. This study shows that the temporal and spatial p
representations are alternative for the source modeling as fa
the far-field wave motions are concerned. Furthermore
temporal-spatial pulse representation for couples is propo
which is then used to build new models for dislocation sourc
The proposed temporal-spatial pulse representation for e
couple consists of two impulses acting in opposite directions w
an infinitesimal separation distance and an infinitesimal time
lay, which can be applied for modeling various types of dynam
dislocation sources.

This study shows that the proposed representation for cou
and subsequently for dynamite sources integrates intrinsically
temporal and spatial features of the source mechanism from
response point of view, which is physically sound in comparis
with the traditional approach with the use of two separate fact
i.e., one from the spatial couples and the other from a source
function that is typically assumed and thus not fully inherent
the temporal features of the dynamic source mechanism.

While this study presents only the concept and fundamenta
the proposed representation, further development and valida
of the representation in terms of the explicit solution expressi
and numerical examples will improve the understanding
temporal-spatial mechanism of a class of dynamic disloca
sources. That will be reported in the near future.

The applications of the proposed representation for disloca
sources will be broad, which are briefly discussed now. Since
proposed source modeling suggests that the dislocation-ind
signals in responses have one more derivative of an impulse
sponse function than that with the conventional approach, the
nature of the dislocation for structural health monitoring and da
age detection could be explored most notably in the accelera
recordings if velocity recordings were used with the conventio
approach. For seismic applications, the proposed source me
nism can be implemented into earthquake motion models@15,16#.
One of the earthquake motion models@15# is assumed as the resu
of shear dislocation propagating on a fault line that is furth
discretized into a series of point sources. The activated time
cation, and magnitude of each point source is modeled as a
dom process and field with the aid of the generalized rand
pulse train theory@17,18#. Accordingly, deterministic and statisti
cal ground motion features can be theoretically obtained from
above model. In addition, with the use of the proposed couples
the source mechanism, the inverse solution for the earthqu
source characterization based on the ground motion record
will be different from the one with the conventional approa
@18#. This would improve our understanding of the source mec
nism in terms of the role of each source factor, such as slip
rise time in seismic ground motion. It would also help explo
other wave propagation effects@19#.

In short, the proposed representation would update the exis
practical-use approaches and techniques in modeling various
location sources, thus improving the accuracy and efficiency
Journal of Applied Mechanics
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the broad-based applications such as diagnosing crack dama
structural health monitoring, simulating earthquake ground m
tion for seismic design and retrofit, conducting seismic surveys
oil/gas exploration, and assessing influences of explosions
structures, among others.
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Three-Dimensional Steady-State String
Motion in a Fluid Flow

Roman Miroshnik
The Israel Electric Corp., R&D Division, P.O. Box 10,
Haifa 31000, Israel

The phenomenon of three-dimensional (3D) steady-state motio
a string traveling along an invariant curve in a flowing medium
studied. Existence conditions are found using a perturbat
scheme where a known two-dimensional (2D) solution is use
an initial approximation. @DOI: 10.1115/1.1794713#

1 Introduction
The paper examines the steady-state motion of an inexten

perfectly flexible string along an invariant curve of lengthL in a
flowing medium having constant velocityW. The string, which
has a mass densitym, travels with constant velocityV between
outlet and inlet rollers@1#.

The string motion causes a constant tangential drag force, w
the fluid induces a normal force. It is assumed that the trave
velocity is much greater than the fluid velocity and the drag re
tance does not depend on it. Particular cases of string motion
quiescent@1–3# and flowing medium@4–6# were examined ear
lier.

2 Three-Dimensional Equations and Solution
Manipulations with string steady-state dimensionless equat

@1# in Cartesian coordinatesXi and the Frenet triadt, v, andb
result in

du

dv
5

qtu2qx1

qtv2qx2
;

dp*

dv
52

p* qt

qtv2qx2
;

ds

dv
5

p*

qtv2qx2
;

dx1

dv
5

p* u

qtv2qx2
; (1)

dx2

dv
5

p* v
qtv2qx2

;
dx3

dv
56

p* A12u22v2

qtv2qx2
.
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where xi5Xi /L; s5S/L; qxi5Qxi /mg; qt5Qt /mg; p*
5P* /mgL (i 51,2,3); Qxi , Qt are projections of external force
per unit length;S is an arc-length coordinate;P* 5P2mV2 is the
fictitious string tension;P is the real tension (P* may have any
sign, while P is always positive!; and u and v are the direction
cosines of the string tangent vector.

Fig. 1 Three critical domains of the string motion

Fig. 2 String modes for different traveling and constant flow
velocities
2004 by ASME Transactions of the ASME
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There is a singularity in Eq.~1! at v5v* , where the normal
string force vanishes. Because the singularity cannot be cro
uniquely by direct numerical integration, the integration of t
equations is carried out in two stages: consecutively from
outlet and from the inlet until the singularity is reached.

The boundary conditions for both integration stages are

s~vo!50; u~vo!5u0 ; p* ~vo!5po* ;

xi~vo!50; s~ve!50; u~ve!5ue ;

p* ~ve!5pe* ; xi~ve!5xi0 (2)

whereuo , vo , ue , andve are direction cosines corresponding
outlet and inlet, andxi0 are the coordinates of the inlet.

The boundary conditions~2! contain four unknowns,ue , ve ,
po* , andpe* , that are found using a gradient method by succ
sive iterations satisfying the discrepancy equations:

xi
o2xi

e50 ~ i 51,2,3!;so1se2150 (3)

wherexi
o , so, xi

e , and se are the correspondingly values of th
variablesxi and s obtained at the end of the first and seco
integration stages.

Knowledge of an accurate initial approximation of unknowns
necessary to obtain solution convergence. A known solution of
two-dimensional~2D! problem @5# ~for the case when medium
flow acts on a quiescent string plane! is used as an initial approxi
mation for the present 3D problem. The solution for the appro
ate flow direction~not coinciding with initial string plane! is
found by advanced movement with sufficiently small angular
crements.

The fictitious tension and the radius of curvaturer either vanish
or are infinite at the singularity regardless of the boundary con
tions ~2!. There are two critical velocities:V1cr and V2cr . They
determine the minimum velocities for which, correspondingly,
Journal of Applied Mechanics
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tension and the curvature radius vanish at the singularity. E
dently the string motion exists, only if the tension vanishes.

Three domains of string motion are shown in Fig. 1~wherem
andk are correspondingly the drag force and the fluid resista
per string unit mass!:

• Subcritical domain I, when 0,V,V1cr ; r5`,
• Supercritical one II, whenV1cr,V,V2cr ; r5`,
• Hypercritical domain III, whenV.V2cr ; r50.

3 Results and Discussion
The string modes for different flow velocities and a consta

string one are shown in Fig. 2. The experiments with a maxim
airflow velocity of 100 m/sec were carried out in a wind tunn
@7#. There is good agreement between theoretical and experim
tal results.

The stability of steady-state modes is not analyzed here.
experimental results demonstrate the string modes are stabl
the analyzed domain of parameters. This enables us to use
obtained results for practical use as a first approach.
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1 Introduction
The stability problem of plates has been of considerable imp

tance in engineering. For the case of a thin circular plate descr
by the von Kármán nonlinear plate theory stability, analysis
given by Wolkowisky@1#. The stability of a clamped annular plat
also described by the von Ka´rmán nonlinear plate theory is pre
sented by Machinek and Troger@2#, where the Liapunov-Schmid
method is used. For the case of a moderately thick circular p
stability, analysis is given by Raju and Rao@3#.

Many papers investigated the influence of temperature on
stability and the stress distribution of the plate. Pal@4# has exam-
ined the axisymmetric post-buckling behavior of annular hea
plates with both edges clamped or simply supported. Ghosh@5#
has shown that the flexural vibration of a spinning disk is stron
affected by the heat flow across the disk and specially by
parabolic type of temperature distribution. Renshaw@6# used the
Liapunov method to determine the critical speed of a flexible sp
ning disk.

Many of the above-mentioned papers mostly deal with the
bility of rotating annular plates with the free outer edge. Howev
there are many cases in practice where the outer edge of the
is not free. One of them is given in Fig. 1, showing a circular pl
of radiusR and thicknessh, the edge of which is welded to a rigi
cylinder rotating at the constant angular speedv. The plate con-
sidered can be the base or the lid of a rotating tank or centrifu
The elasticity of the welded seam, which will be modeled
torsional springs uniformly distributed on the outer edge of
plate, will be taken into account. The mentioned torsional spri
have distributed rotational stiffnessk. It is assumed that the con
stant temperatureT is imposed on the plate in comparison to
natural state.

In this paper, an attempt has been made to investigate th
fluence of the thermal effect on the stability of the abov
mentioned circular plate spinning at a high angular speed.
adjacent equilibrium method will be used and only the axisy
metrical deformation will be examined.

2 Mathematical Formulation
In this paper we use von Ka´rmán’s theory for axisymmetric thin

circular plates and the Duhamel-Neumann theory. The govern
equations for a rotating heated plate~see Timoshenko and
Woinowsky-Krieger@7# and Nowacki@8#! can be reduced to the
following system:

dw

dr
52u,

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nove
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du

dr
5kr ,

dkr

dr
5

1

D
Nru2

kr

r
1

u

r 2 , (1)

dNr

dr
5

uEh

r 2 2
Nr~12n!

r
2rhrv22

EhaT

r
,

du

dr
52

1

2
u22n

u

r
1Nr

12n2

Eh
1aT~11n!,

whereD5Eh3/12(12n2) is the bending stiffness,r is the radial
coordinate,E is the elastic modulus,n is the Poisson ratio,a is the
thermal expansion coefficient,u and w are the radial and trans
verse displacements of the middle plane,Nr is the radial mem-
brane force,r is the mass density,u is the angle of the tangent in
the radial direction, andkr is the radial curvature. The boundar
conditions are

u~0!50, u~0!50, w~R!50, u~R!50,
(2)

khu~R!1DFkr~R!1
n

R
u~R!G50.

Introducing the nondimensional variables

x5
r

R
, (3a)

y5
w

h
, (3b)

Q5
uR

h
, (3c)

K5
krR

2

h
, (3d)

U5
uR

h2 , (3e)

N5
NrR

2

Eh3 , (3f)

CT5
kR

D
, (3g)

l5
rv2R4

Eh2 , (3h)

t5
aTR2

h2 , (3i)

and by using Eqs.~1! we obtain

ẏ52Q,

Q̇5K,

K̇512~12n2!NQ2
K

x
1

Q

x2 , (4)

Ṅ5
U

x22
N~12n!

x
2xl2

t

x
,

U̇52
1

2
Q21N~12n2!2n

U

x
1t~11n!,

where (̇ )5d( )/dx, subject to

U~0!50, Q~0!50,
(5)

-
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y~1!50, U~1!50, ~CT1n!Q~1!1K~1!50.

The system~4! and ~5! has a trivial solution in which the plate
remains planar. The trivial solution reads.

yT50 (6a)

QT50, (6b)

KT50, (6c)

NT5Nl2
1

12n
t, (6d)

UT5Ul. (6e)

where

N5
1
8@11n2~31n!x2#, U5

12n2

8
~12x2!x. (7)

We assume the solution of Eqs.~4! in the form

y5yT1y* , Q5QT1Q* , K5KT1K* ,
(8)

U5UT1U* , N5NT1N* .

By using Eqs.~8! in this decomposition and substituting the res
into Eqs.~4!, we finally obtain

ẏ* 52Q* ,

Q̇* 5K*

K̇* 512~12n2!~NT1N* !Q* 2
K*

x
1

Q*

x2 , (9)

Ṅ* 5
U*

x2 2
12n

x
N* ,

U̇52
1

2
~Q* !21~12n2!N* 2

n

x
U* ,

subject to

U* ~0!50, (10a)

Q* ~0!50, (10b)

y* ~1!50, (10c)

U* ~1!50, (10d)

~CT1n!Q* ~1!1K* ~1!50. (10e)

Fig. 1 A circular plate supported elastically around its edge
Journal of Applied Mechanics
lt

Note that the system~9! and ~10! has the solutiony* 5Q* 5K*
5U* 5N* 50 for all the values ofl andt. The nontrivial solu-
tions of Eqs.~9! and~10! correspond to the buckled state~loss of
stability! of the plate.

3 Bifurcation Analysys and Critical Angular Speed
To determine the possible bifurcation points of the system~9!,

~10! we consider the linearization of~9!. The result of lineariza-
tion is

ẏ* 52Q* , (11a)

Q̇* 5K* , (11b)

K̇* 512~12n2!NTQ* 2
K*

x
1

Q*

x2 , (11c)

Ṅ* 5
U*

x2 2
12n

x
N* , (11d)

U̇* 5~12n2!N* 2
n

x
U* . (11e)

The solution to Eqs.~11d!, ~11e!, ~10a!, and~10d! is

UL* 50, NL* 50, (12)

while Eqs.~11a!–~11c! can be combined to give

x2ŷ* 1xÿ* 2@12~12n2!NTx211# ẏ* 50. (13)

Reducing the order of Eq.~13! and using Eqs.~6d! and ~7!, we
obtain

x2Q̈* 1xQ̇* 1~bx42cx221!Q* 50, (14)

where

b5
3
2~12n2!~31n!l, c512~12n2!S 11n

8
l2

t

12n D .

(15)

The solution to the Eq.~14! reads

QL* 5C1

1

x
F0~h, 1

2Abx2!1C2

1

x
G0~h, 1

2Abx2!, (16)

whereF0 is a regular Coulomb wave function of order zero a
G0 is an irregular Coulomb wave function of order ze
~Abramowitz and Stegun@9#!, C1 andC2 are the constants, and

h5
c

4Ab
. (17)

Satisfying the boundary condition~10b! we getC250, so that Eq.
~16! becomes

QL* 5C1

1

x
F0~h, 1

2Abx2!. (18)

From Eqs.~11a! and ~11b! it follows that

yL* 52C1E
1

x 1

x
F0~h, 1

2Abx2!dx, (19a)

KL* 5C1

d

dx F1

x
F0~h, 1

2Abx2!G . (19b)

Substituting Eqs.~18! and~19b! into the boundary condition~10e!
we get

C1@~CT1n21!F0~h, 1
2Abx2!1Ḟ0~h, 1

2Abx2!#ux5150.
(20)

Next, for the case of parameterst andCT fixed, solving Eq.~20!
the corresponding values ofl are obtained. The choice of th
NOVEMBER 2004, Vol. 71 Õ 897
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critical value lcr , between the obtained ones, will be the d
cussed in Sec. 4. We proceed following the standard Liapun
Schmidt procedure~see Golubitsky and Schaeffer@10# or Chow
and Hale@11#!. Therefore we determine the formal adjoint of Eq
~10! and ~11! and then formulate the bifurcation equation in t
following form:

g~a,lcr1Dl!5c1aDl1c3a31O~ uau2Dl,uau4!, (21)

where a is a small real amplitude parameter~see Troger and
Steindl @12#!, Dl!1, and

c15
1
8E

0

1F11n

x
2~31n!xGF0

2~h, 1
2Abx2!dx, (22)

c35
1
2E

0

1 1

x FW~x!2
1

12n
Ẇ~1!2W~1!GF0

2~h, 1
2Abx2!dx,

(23)

with

W~x!52
1

x2 E xE 1

x3 F0
3~h, 1

2Abx2!dxdx. (24)

When writing Eqs.~22! and~23! we assumed thatC151 without
reducing generalization. To study the qualitative behavior of
solution, we can neglect the higher-order terms in Eq.~21!. Thus
we conclude that Eq.~21! is contact equivalent~Keyfitz @13#! to

g~a,lcr1Dl!5sgn~c1!aDl1sgn~c3!a3. (25)

Therefore, Eq.~25! has pitchfork bifurcation, and this type o
bifurcation will be studied in the next section. If the constantsc1
andc2 are of the same sign, the bifurcation is called subcritical
they are of the opposite sign, the bifurcation is supercritical.

4 Results and Discussion
Figure 2 shows the nondimensional critical angular speedlcr

with respect to the nondimensional temperaturet and the rota-
tional stiffnessCT . The parameterlcr was determined by solving
Eq. ~20! given that the Poisson ratio isn50.3. In case oft50
~not heated plate! the obtained critical values oflcr are the same
as in Maretic@14#. The critical values oflcr in that paper were
determined using the dynamic stability criterion. It can be notic
that overall rule of behavior of the parameterlcr shows a decreas
when the temperature increases and shows an increase whe
rotational stiffness increases. However, there is an exceptio
this rule, since there are certain temperature values that have
corresponding critical values of the parameterlcr : the upper (lcr

u )
and lower (lcr

l ). In this case they are obtained as the two smal
positive roots of Eq.~20!. So, depending on the nondimension
temperaturet and the rotational stiffnessCT , there can be only
one or two critical angular speeds.lcr can be determined as th

Fig. 2 The critical speed parameter lcr with super- and sub-
critical bifurcation regions
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smallest positive root~only one solution! of Eq. ~20! or as the two
smallest positive roots~two solutions! of Eq. ~20!. The lower criti-
cal values (lcr

l ) are shown by the shadowed part of the diagra
below the line AB. In that part of the diagram when the tempe
ture increases, the critical angular speed also increases, whi
an unexpected behavior. Based on the bifurcation equation~21! it
can be established thatc1.0 and c3.0 within the shadowed
diagram area. This shows that bifurcation is subcritical in t
diagram area, while above it~the area not shedowed! c1,0 and
c3.0, which shows that bifurcation is supercritical. In the e
larged diagram part around point A in Fig. 2 it can be seen t
points on the boundary line AB~which separates different bifur
cation types! are determined as points on the curves whose t
gents are vertical.

To confirm subcritical bifurcation the numerical integration
the differential equations systems~4! and~5! was performed. For
the special case of the clamped plate (CT5`) and the paramete
value oft50.98, Fig. 3 shows the maximal nondimensional tran
verse displacementsy(0) obtained using the numerical integra
tion. For l50 the value of the maximal transverse displacem
is y(0)50.2804. With the increase of the angular speed the m
mal transverse displacement reduces and for the value ol
52.7757 it isy(0)50. So, this value of the parameterl is the
lower critical value (lcr

l ). With the increase of the angular spee
the plate remains stable. The plate is not bent and its stat
described by the trivial solution~6!. The plate retains this stat
until the angular speed reaches the value ofl511.035, which is
the upper critical value (lcr

u ). When the parameterl exceeds the
upper critical value,l.lcr

u , the plate loses stability again and
bends. The shape of this diagram confirms that there are re
two stability boundaries and two bifurcation types, sub- and
percritical.

The numerical integration of the equation system confirms
conclusion of existence of the subcritical bufurcation, as well
the upper and lower critical values of the angular speed. Th
fore, the plate will be stable provided that its angular speed
inside the range defined by the lower and upper critical ang
speed. For example, if the clamped plateR51 m and h
530 mm, made of concrete (r57850 kg/m3,E52.1
31011 N/m2,a51.26310251/°C), heated atT570°C is consid-
ered, it will be stable forvcr

l ,v,vcr
u , wherevcr

l 52465 rpm and
vcr

u 54921 rpm.

5 Conclusions
This paper presents the following results:

~1! The critical values of the angular speed at which the ro
ing heated circular plate loses its stability have been de

Fig. 3 Maximal transverse displacements
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mined. From Eq.~3h! it follows that the critical angular
speed is given by

vcr5
h

R2AElcr

r
,

wherelcr is the root of Eq.~20!.
~2! Using the Liapunov-Schmidt method it has been shown t

the loss of stability for different values of temperature a
stiffness can be sub- and supercritical. Subsequently, t
are two values of the critical angular speed, lower and
per. The plate is stable if its angular speed is between
critical values. In case of existence of the supercritical
furcation only, the plate is stable if its angular speed is l
than the critical one.

~3! As an interesting effect we show that under certain circu
stances the angular speed can stabilize the plate which
stability due to heating.

Acknowledgment
This research was supported by the Ministry of Science, Te

nologies and Development of Republic of Serbia, Project N
1402.
Journal of Applied Mechanics
hat
d
ere
p-
the
i-
ss

m-
lost

ch-
o.

References
@1# Wolkowisky, J. H., 1967, ‘‘Existence of Buckled States of Circular Plates

Commun. Pure Appl. Math.,XX , pp. 546–560.
@2# Machinek, A. K., and Troger, H., 1988, ‘‘Postbuckling of Elastic Annul

Plates at Multiple Eigenvalues,’’ Dyn. Stab. Syst.,3, pp. 78–98.
@3# Raju, K. K., and Rao, G. V., 1983, ‘‘Postbuckling Analysis of Moderate

Thick Elastic Circular Plates,’’ ASME J. Appl. Mech.,50, pp. 468–470.
@4# Pal, M. C., 1969, ‘‘Large Deformations of Heated Circular Plates,’’ Ac

Mech.,8, pp. 82–91.
@5# Ghosh, N. C., 1975, ‘‘Thermal Effect on the Transverse Vibration of Spin

Disk of Variable Thickness,’’ ASME J. Appl. Mech.,42, pp. 358–362.
@6# Renshaw, A. A., 1998, ‘‘Critical Speed for Floppy Disks,’’ ASME J. App

Mech.,65, pp. 116–120.
@7# Timoshenko, S., and Woinowsky-Krieger, S., 1959,Theory of Plates of Shells,

2nd ed. McGraw-Hill, New York.
@8# Nowacki, W., 1962,Thermoelasticity, International Series of Monograph on

Aeronautics and Astronautics,3, Addison-Wesley, Reading, MA.
@9# Abramowitz, M., and Stegun, I., 1965,Handbook of Mathematical Functions,

Dover, New York.
@10# Golubitsky, M., and Schaeffer, D. G., 1985,Singularities and Groups in Bi-

furcation Theory, Vol. 1, Springer, New York.
@11# Chow, S. N., and Hale, J. K., 1982,Methods of Bifurcation Theory, Springer,

New York.
@12# Troger, H., and Steindl, A., 1991,Nonlinear Stability and Bifurcation Theory:

An Introduction for Engineers and Applied Scientisty, Springer, Wien.
@13# Keyfitz, B. L., 1986, ‘‘Classification of one-state variable bifurcation problem

up to codimension seven,’’ Dyn. Stab. Syst.,1, pp. 1–41.
@14# Maretic, R., 1998, ‘‘Vibration and Stability of Rotating Plates with Elast

Edge Supports,’’ J. Sound Vib.,210, pp. 291–294.
NOVEMBER 2004, Vol. 71 Õ 899


	TECHNICAL PAPERS
	BRIEF NOTES
	ANNOUNCEMENTS AND SPECIAL NOTICES
	Binder12.pdf
	AMJ000753.pdf
	AMJ000759.pdf
	AMJ000769.pdf
	AMJ000774.pdf
	AMJ000786.pdf
	AMJ000796.pdf
	AMJ000805.pdf
	AMJ000816.pdf
	AMJ000825.pdf
	AMJ000839.pdf
	AMJ000851.pdf
	AMJ000857.pdf
	AMJ000866.pdf
	AMJ000879.pdf
	AMJ000887.pdf
	AMJ000894.pdf
	AMJ000896.pdf


